Что является решением квадратного уравнения. Приведенное квадратное уравнение

Конспект урока

учителя математики

МБОУ СОШ №2 г. Ворсма

Киселевой Ларисы Алексеевны

Тема: «Приведенное квадратное уравнение. Теорема Виета»

Цель урока: Введение понятия приведенного квадратного уравнения, теоремы Виета и обратной ей теоремы.

Задачи:

Образовательные:

    Ввести понятие приведенного квадратного уравнения,

    Вывести формулу корней приведенного квадратного уравнения,

    Сформулировать и доказать теорему Виета,

    Сформулировать и доказать теорему, обратную теореме Виета,

    Научить учащихся решать приведенные квадратные уравнения, пользуясь теоремой, обратной теореме Виета.

Развивающие:

    развитие логического мышления, памяти, внимания, общеучебных умений, умений сравнивать и обобщать;

Воспитательные:

    воспитание трудолюбия, взаимопомощи, математической культуры.

Тип урока: урок ознакомления с новым материалом.

Оборудование: учебник алгебры под ред. Алимова и др., тетрадь, раздаточный материал, презентация к уроку.

План урока.

Этап урока

Содержание (цель)этапа

Время (мин)

Организационный момент

Проверка домашнего задания

Проверочная работа

Разбор работы, ответы на вопросы.

Изучение нового материала

Формирование опорных знаний, формулировка правил, решение задач, анализ результатов, ответы на вопросы учащихся.

Усвоение изученного материала путем его применения при решении задач по аналогии под контролем учителя.

Подведение итогов урока

Оценка знаний отвечавших учеников. Проверка знаний и понимания формулировок правил методом фронтального опроса.

Домашнее задание

Ознакомление учащихся с содержанием задания и получение необходимых пояснений.

Дополнительные задания

Разноуровневые задания для обеспечения развития учащихся.

Ход урока.

    Организационный момент. Постановка цели урока. Создание благоприятных условий для успешной деятельности. Мотивация учения.

    Проверка домашнего задания. Фронтальная, индивидуальная проверка и коррекция знаний и умений учащихся.

Уравнение

Количество корней

Учитель: Как, не решая квадратного уравнения, определить количество его корней? (ответы учащихся)

    Проверочная работа. Ответы на вопросы.

Текст проверочной работы:

Вариант №1.

    Решите уравнения:

А) ,

Б)

имеет:

    Один корень,

    Два различных корня.

Вариант №2.

    Решите уравнения:

А) ,

Б)

2.Найдите значение параметра а, при которых уравнение имеет:

    Один корень,

    Два различных корня.

Проверочная работа выполняется на отдельных листах, сдается учителю на проверку.

После сдачи работы решение высвечивается на экран.

    Изучение нового материала.

4.1. Франсуа Виет – французский математик 16 века. Он был адвокатом, позднее – советником французских королей Генриха III и Генриха II .

Однажды он сумел расшифровать очень сложное испанское письмо, перехваченное французами. Инквизиция чуть не сожгла его на костре, обвинив в сговоре с дьяволом.

Франсуа Виета называют «отцом буквенной современной алгебры»

Как связаны между собой корни квадратного трёхчлена и его коэффициенты p и q ? Ответ на этот вопрос дает теорема, которая носит имя «отца алгебры», французского математика Ф.Виета, которую мы будем сегодня изучать.

Знаменитая теорема была обнародована в 1591 году.

4.2.Сформулируем определение приведенного квадратного уравнения.

Определение. Квадратное уравнение вида называется приведенным.

Это значит, что старший коэффициент уравнения равен единице.

Пример. .

Всякое квадратное уравнение может быть приведено к виду . Для этого необходимо разделить обе части уравнения на .

Например , уравнение 7Х 2 – 12Х + 14 = 0 делением на 7 приводится к виду

Х 2 – 12/7Х + 2 = 0

4.3. Вывести формулы корней приведенного квадратного уравнения.

a , b , c

a=1 , b=p , c=q

Решите уравнение Х 2 – 14Х – 15 =0 (Ученик решает у доски)

Вопросы:

Назовите коэффициенты p и q (-14, -15);

Запишите формулу корней приведенного квадратного уравнения;

Найдите корни данного уравнения (Х 1 = 15, Х 2 = -1)

4.4. сформулировать и доказать теорему Виета.

Если и - корни уравнения , то справедливы формулы , т.е. сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.

После этого учителем проводится доказательство теоремы. Затем совместно с учащимися делает вывод.

Пример. . p =-5,q =6.

Значит числа и - числа

положительные. Необходимо найти два положительных числа, произведение которых

равно 6, а сумма равна 5. =2, =3 – корни уравнения.

4.5. Применение теоремы Виета .

С её помощью можно:

Найти сумму и произведение корней квадратного уравнения, не решая его,

Зная один из корней, найти другой,

Определить знаки корней уравнения,

Подобрать корни уравнения, не решая его.

4.6. Сформулируем теорему обратную теореме Виета.

Если числа p , q , и таковы, что удовлетворяют соотношения , то , - корни квадратного уравнения .

Доказательство теоремы, обратной теореме Виета, выносится на дом для самостоятельно изучения сильным учащимся.

4.7. рассмотреть решение задачи 5 на странице учебника 125.

    Закрепление изученного материала

450 (1)

451 (1, 3, 5) - устно

452 (устно)

455 (1,3)

456 (1, 3)

    Подведение итогов урока.

Ответьте на вопросы:

    Сформулируйте теорему Виета.

Зачем нужна теорема Виета?

Сформулируйте обратную теорему теореме Виета.

    Домашнее задание.

§29 (до задачи 6), № 450(2,4,6); 455(2,4); 456(2,4,6).

    Дополнительные задания.

Уровень А.

    Найдите сумму и произведение корней уравнения:

2. Пользуясь теоремой, обратной теореме Виета, составьте квадратное уравнение, корни которого равны 2 и 5.

Уровень В.

1.Найдите сумму и произведение корней уравнения:

2. Пользуясь теоремой, обратной теореме Виета, составьте квадратное уравнение, корни которого равны и .

Уровень С.

1. Разобрать доказательство теоремы, обратной теореме Виета

2. Решите уравнение и выполните проверку по теореме, обратной теореме Виета:

Схема конспекта урока

Этапы работы

Содержание этапа

Организационный момент , включающий:

    постановку цели, которая должна быть достигнута учащимися на данном этапе урока (что должно быть сделано учащимися, чтобы их дальнейшая работа на уроке была эффективной)

    описание методов организации работы учащихся на начальном этапе урока, настроя учеников на учебную деятельность, предмет и тему урока (с учетом реальных особенностей класса, с которым работает педагог)

Программные требования к математической подготовке учащихся по этой теме заключается в введении понятия приведенного квадратного уравнения, теоремы Виета и обратной ей теоремы (из программы для общеобразовательных учреждений).

Учащиеся 8-го класса – дети подросткового возраста, который характеризуется неустойчивостью внимания. Лучший способ организовать внимание – так организовать учебную деятельность, чтобы у учеников не было ни времени, ни желания, ни возможности отвлекаться на длительное время.

На основании сказанного выше целью урока является решение следующих задач:
а) образовательные: введение понятия приведенного квадратного уравнения, теоремы Виета и обратной ей теоремы.

б) развивающие: развитие логического мышления, памяти, внимания, общеучебных умений, умений сравнивать и обобщать;
в) воспитательные: воспитание трудолюбия, взаимопомощи, математической культуры.

Для того, чтобы учащиеся восприняли урок как логически законченный, целостный, ограниченный во времени отрезок учебно-воспитательного процесса, он начинается с постановки обоснования задач и заканчивается подведением итогов и постановкой задач на следующие уроки.

Опрос учащихся по заданному на дом материалу , включающий:

    определение целей, которые учитель ставит перед учениками на данном этапе урока (какой результат должен быть достигнут учащимися);

    определение целей и задач, которых учитель хочет достичь на данном этапе урока;

    описание методов, способствующих решению поставленных целей и задач;

    описание критериев достижения целей и задач данного этапа урока;

    определение возможных действий педагога в случае, если ему или учащимся не удается достичь поставленных целей;

    описание методов организации совместной деятельности учащихся с учетом особенностей класса, с которым работает педагог;

    описание методов мотивирования (стимулирования) учебной активности учащихся в ходе опроса;

    описание методов и критериев оценивания ответов учащихся в ходе опроса.

На первом этапе происходит фронтальная, индивидуальная проверка и коррекция знаний и умений учащихся. При этом происходит повторение решения квадратных уравнений и закрепление определения количества корней по его дискриминанту. Осуществляется переход к определению приведенного квадратного уравнения.

На втором этапе рассматриваются уравнения двух видов. Чтобы учащиеся не уставали от однообразной работы, применяются различные формы работы и варианты заданий, включены задания более высокого уровня (с параметром).

Устная работа учащихся чередуется с письменной, которая состоит в обосновании выбора способа решения квадратного уравнения, анализе решения уравнения

Одним из приёмов педагогической поддержки, является использование в качестве наглядности информационных технологий, которые помогают учащимся разных уровней подготовленности легко усваивать материал, поэтому отдельные моменты урока проводятся с использованием презентации (показ решения самостоятельной работы, вопросы, домашнее задание)

Изучение нового учебного материала. Данный этап предполагает:

    изложение основных положений нового учебного материала, который должен быть освоен учащимися;

    описание форм и методов изложения (представления) нового учебного материала;

    описание основных форм и методов организации индивидуальной и групповой деятельности учащихся с учетом особенностей класса, в котором работает педагог;

    описание критериев определения уровня внимания и интереса учащихся к излагаемому педагогом учебному материалу;

    описание методов мотивирования (стимулирования) учебной активности учащихся в ходе освоения нового учебного материала

Дается определение приведенного квадратного уравнения. Учитель совместно с учениками проводит вывод формул корней приведенного квадратного уравнения, учащиеся осознают значимость учебного материала урока. Разбор формулировки и доказательства теоремы Виета также происходит совместно с учениками

Такая работа является также закреплением изучения нового материала.

Методы:

    наглядный;

    практический;

    словесный;

    частично-поисковый

Закрепление учебного материала , предполагающее:

    постановку конкретной учебной цели перед учащимися (какой результат должен быть достигнут учащимися на данном этапе урока);

    определение целей и задач, которые ставит перед собой учитель на данном этапе урока;

    описание форм и методов достижения поставленных целей в ходе закрепления нового учебного материала с учетом индивидуальных особенностей учащихся, с которыми работает педагог.

    описание критериев, позволяющих определить степень усвоения учащимися нового учебного материала;

    описание возможных путей и методов реагирования на ситуации, когда учитель определяет, что часть учащихся не освоила новый учебный материал.

Закрепление учебного материала происходит при ответах на вопросы и в работе с учебником:

Разбор задачи №5 на странице 125;

Решение упражнений

450 (1), 451 (1, 3, 5) – устно, 452 (устно);

455 (1,3); 456 (1, 3)

На протяжении всего урока наблюдается высокая активность учащихся, учитель имеет возможность опросить всех учащихся класса, а некоторых даже не один раз.

Подводится итог урока в форме фронтального опроса учащихся по вопросам:

    Какие уравнения называются приведенными?

    Можно ли обычное квадратное уравнение сделать приведенным?

    Запишите формулу корней приведенного квадратного уравнения

    Сформулируйте теорему Виета.

    Чему равна сумма и произведение корней уравнения:

Задание на дом , включающее:

    постановку целей самостоятельной работы для учащихся (что должны сделать учащиеся в ходе выполнения домашнего задания);

    определение целей, которые хочет достичь учитель, задавая задание на дом;

    определение и разъяснение учащимся критериев успешного выполнения домашнего задания.

В домашней работе предполагается, что учащиеся работают в соответствии со своими возможностями. Сильные учащиеся работают самостоятельно и в конце работы имеют возможность проверить правильность своих решений, сверив их с решениями, записанными на доске в начале следующего урока. Другие учащиеся могут получить консультацию своих одноклассников или учителя. Слабые учащиеся работают, опираясь на примеры, используют решения уравнений, разобранных в классе. Таким образом, создаются условия для работы на различных уровнях сложности.

Эта тема поначалу может показаться сложной из-за множества не самых простых формул. Мало того что сами квадратные уравнения имеют длинные записи, еще и корни находятся через дискриминант. Всего получается три новые формулы. Не очень просто запомнить. Это удается только после частого решения таких уравнений. Тогда все формулы будут вспоминаться сами собой.

Общий вид квадратного уравнения

Здесь предложена их явная запись, когда самая большая степень записана первой, и дальше - по убыванию. Часто бывают ситуации, когда слагаемые стоят вразнобой. Тогда лучше переписать уравнение в порядке убывания степени у переменной.

Введем обозначения. Они представлены в таблице ниже.

Если принять эти обозначения, все квадратные уравнения сводятся к следующей записи.

Причем коэффициент а ≠ 0. Пусть эта формула будет обозначена номером один.

Когда уравнение задано, то непонятно, сколько корней будет в ответе. Потому что всегда возможен один из трех вариантов:

  • в решении будет два корня;
  • ответом будет одно число;
  • корней у уравнения не будет совсем.

И пока решение не доведено до конца, сложно понять, какой из вариантов выпадет в конкретном случае.

Виды записей квадратных уравнений

В задачах могут встречаться их разные записи. Не всегда они будут выглядеть как общая формула квадратного уравнения. Иногда в ней будет не хватать некоторых слагаемых. То что было записано выше — это полное уравнение. Если в нем убрать второе или третье слагаемое, то получится нечто другое. Эти записи тоже называются квадратными уравнениями, только неполными.

Причем исчезнуть могут только слагаемые у которых коэффициенты «в» и «с». Число «а» не может быть равно нулю ни при каких условиях. Потому что в этом случае формула превращается в линейное уравнение. Формулы для неполного вида уравнений будут такими:

Итак, видов всего два, кроме полных, есть еще и неполные квадратные уравнения. Пусть первая формула будет иметь номер два, а вторая — три.

Дискриминант и зависимость количества корней от его значения

Это число нужно знать для того, чтобы вычислить корни уравнения. Оно может быть посчитано всегда, какой бы ни была формула квадратного уравнения. Для того чтобы вычислить дискриминант, нужно воспользоваться равенством, записанным ниже, которое будет иметь номер четыре.

После подстановки в эту формулу значений коэффициентов, можно получить числа с разными знаками. Если ответ положительный, то ответом уравнения будут два различных корня. При отрицательном числе корни квадратного уравнения будут отсутствовать. В случае его равенства нулю ответ будет один.

Как решается квадратное уравнение полного вида?

По сути, рассмотрение этого вопроса уже началось. Потому что сначала нужно найти дискриминант. После того как выяснено, что имеются корни квадратного уравнения, и известно их число, нужно воспользоваться формулами для переменных. Если корней два, то нужно применить такую формулу.

Поскольку в ней стоит знак «±», то значений будет два. Выражение под знаком квадратного корня — это дискриминант. Поэтому формулу можно переписать по-другому.

Формула номер пять. Из этой же записи видно, что если дискриминант равен нулю, то оба корня примут одинаковые значения.

Если решение квадратных уравнений еще не отработано, то лучше до того, как применять формулы дискриминанта и переменной, записать значения всех коэффициентов. Позже этот момент не будет вызывать трудностей. Но в самом начале бывает путаница.

Как решается квадратное уравнение неполного вида?

Здесь все гораздо проще. Даже нет необходимости в дополнительных формулах. И не понадобятся те, что уже были записаны для дискриминанта и неизвестной.

Сначала рассмотрим неполное уравнение под номером два. В этом равенстве полагается вынести неизвестную величину за скобку и решить линейное уравнение, которое останется в скобках. В ответе будет два корня. Первый - обязательно равен нулю, потому что имеется множитель, состоящий из самой переменной. Второй получится при решении линейного уравнения.

Неполное уравнение под номером три решается переносом числа из левой части равенства в правую. Потом нужно разделить на коэффициент, стоящий перед неизвестной. Останется только извлечь квадратный корень и не забыть записать его два раза с противоположными знаками.

Далее записаны некоторые действия, помогащие научиться решать всевозможные виды равенств, которые превращаются в квадратные уравнения. Они будут способствовать тому, что ученик сможет избежать ошибок по невнимательности. Эти недочеты бывают причиной плохих оценок при изучении обширной темы «Квадратные уравнения (8 класс)». Впоследствии эти действия не нужно будет постоянно выполнять. Потому что появится устойчивый навык.

  • Сначала нужно записать уравнение в стандартном виде. То есть сначала слагаемое с самой большой степенью переменной, а потом - без степени и последним - просто число.
  • Если перед коэффициентом «а» появляется минус, то он может усложнить работу для начинающего изучать квадратные уравнения. От него лучше избавиться. Для этой цели все равенство нужно умножить на «-1». Это значит, что у всех слагаемых изменится знак на противоположный.
  • Таким же образом рекомендуется избавляться от дробей. Просто умножить уравнение на соответствующий множитель, чтобы знаменатели сократились.

Примеры

Требуется решить следующие квадратные уравнения:

х 2 − 7х = 0;

15 − 2х − х 2 = 0;

х 2 + 8 + 3х = 0;

12х + х 2 + 36 = 0;

(х+1) 2 + х + 1 = (х+1)(х+2).

Первое уравнение: х 2 − 7х = 0. Оно неполное, поэтому решается так, как было описано для формулы под номером два.

После вынесения за скобки получается: х (х - 7) = 0.

Первый корень принимает значение: х 1 = 0. Второй будет найден из линейного уравнения: х - 7 = 0. Легко заметить, что х 2 = 7.

Второе уравнение: 5х 2 + 30 = 0. Снова неполное. Только решается оно так, как описано для третьей формулы.

После перенесения 30 в правую часть равенства: 5х 2 = 30. Теперь нужно выполнить деление на 5. Получается: х 2 = 6. Ответами будут числа: х 1 = √6, х 2 = - √6.

Третье уравнение: 15 − 2х − х 2 = 0. Здесь и далее решение квадратных уравнений будет начинаться с их переписывания в стандартный вид: − х 2 − 2х + 15 = 0. Теперь пришло время воспользоваться вторым полезным советом и умножить все на минус единицу. Получается х 2 + 2х - 15 = 0. По четвертой формуле нужно вычислить дискриминант: Д = 2 2 - 4 * (- 15) = 4 + 60 = 64. Он представляет собой положительное число. Из того, что сказано выше, получается, что уравнение имеет два корня. Их нужно вычислить по пятой формуле. По ней получается, что х = (-2 ± √64) / 2 = (-2 ± 8) / 2. Тогда х 1 = 3, х 2 = - 5.

Четвертое уравнение х 2 + 8 + 3х = 0 преобразуется в такое: х 2 + 3х + 8 = 0. Его дискриминант равен такому значению: -23. Поскольку это число отрицательное, то ответом к этому заданию будет следующая запись: «Корней нет».

Пятое уравнение 12х + х 2 + 36 = 0 следует переписать так: х 2 + 12х + 36 = 0. После применения формулы для дискриминанта получается число ноль. Это означает, что у него будет один корень, а именно: х = -12/ (2 * 1) = -6.

Шестое уравнение (х+1) 2 + х + 1 = (х+1)(х+2) требует провести преобразования, которые заключаются в том, что нужно привести подобные слагаемые, до того раскрыв скобки. На месте первой окажется такое выражение: х 2 + 2х + 1. После равенства появится эта запись: х 2 + 3х + 2. После того как подобные слагаемые будут сосчитаны, уравнение примет вид: х 2 - х = 0. Оно превратилось в неполное. Подобное ему уже рассматривалось чуть выше. Корнями этого будут числа 0 и 1.

Квадратное уравнение – решается просто! *Далее в тексте «КУ». Друзья, казалось бы, что может быть в математике проще, чем решение такого уравнения. Но что-то мне подсказывало, что с ним у многих есть проблемы. Решил посмотреть сколько показов по запросу в месяц выдаёт Яндекс. Вот что получилось, посмотрите:


Что это значит? Это значит то, что около 70000 человек в месяц ищут данную информацию, при чём это лето, а что будет среди учебного года — запросов будет в два раза больше. Это и неудивительно, ведь те ребята и девчата, которые давно окончили школу и готовятся к ЕГЭ, ищут эту информацию, также и школьники стремятся освежить её в памяти.

Несмотря на то, что есть масса сайтов, где рассказывается как решать это уравнение, я решил тоже внести свою лепту и опубликовать материал. Во-первых, хочется чтобы по данному запросу и на мой сайт приходили посетители; во-вторых, в других статьях, когда зайдёт речь «КУ» буду давать ссылку на эту статью; в-третьих, расскажу вам о его решении немного больше, чем обычно излагается на других сайтах. Приступим! Содержание статьи:

Квадратное уравнение – это уравнение вида:

где коэффициенты a, b и с произвольные числа, при чём a≠0.

В школьном курсе материал дают в следующем виде – условно делается разделение уравнений на три класса:

1. Имеют два корня.

2. *Имеют только один корень.

3. Не имеют корней. Здесь стоит особо отметить, что не имеют действительных корней

Как вычисляются корни? Просто!

Вычисляем дискриминант. Под этим «страшным» словом лежит вполне простая формула:

Формулы корней имеют следующий вид:

*Эти формулы нужно знать наизусть.

Можно сразу записывать и решать:

Пример:


1. Если D > 0, то уравнение имеет два корня.

2. Если D = 0, то уравнение имеет один корень.

3. Если D < 0, то уравнение не имеет действительных корней.

Давайте рассмотрим уравнение:


По данному поводу, когда дискриминант равен нулю, в школьном курсе говорится о том, что получается один корень, здесь он равен девяти. Всё правильно, так и есть, но…

Данное представление несколько несколько некорректно. На самом деле получается два корня. Да-да, не удивляйтесь, получается два равных корня, и если быть математически точным, то в ответе следует записывать два корня:

х 1 = 3 х 2 = 3

Но это так – небольшое отступление. В школе можете записывать и говорить, что корень один.

Теперь следующий пример:


Как нам известно – корень из отрицательного числа не извлекается, поэтому решения в данном случае нет.

Вот и весь процесс решения.

Квадратичная функция.

Здесь показано, как решение выглядит геометрически. Это крайне важно понимать (в дальнейшем в одной из статей мы подробно будем разбирать решение квадратного неравенства).

Это функция вида:

где х и у — переменные

a, b, с – заданные числа, при чём a ≠ 0

Графиком является парабола:

То есть, получается, что решая квадратное уравнение при «у» равном нулю мы находим точки пересечения параболы с осью ох. Этих точек может быть две (дискриминант положительный), одна (дискриминант равен нулю) и ни одной (дискриминант отрицательный). Подробно о квадратичной функции можете посмотреть статью у Инны Фельдман.

Рассмотрим примеры:

Пример 1: Решить 2x 2 +8 x –192=0

а=2 b=8 c= –192

D = b 2 –4ac = 8 2 –4∙2∙(–192) = 64+1536 = 1600

Ответ: х 1 = 8 х 2 = –12

*Можно было сразу же левую и правую часть уравнения разделить на 2, то есть упростить его. Вычисления будут проще.

Пример 2: Решить x 2 –22 x+121 = 0

а=1 b=–22 c=121

D = b 2 –4ac =(–22) 2 –4∙1∙121 = 484–484 = 0

Получили, что х 1 = 11 и х 2 = 11

В ответе допустимо записать х = 11.

Ответ: х = 11

Пример 3: Решить x 2 –8x+72 = 0

а=1 b= –8 c=72

D = b 2 –4ac =(–8) 2 –4∙1∙72 = 64–288 = –224

Дискриминант отрицательный, решения в действительных числах нет.

Ответ: решения нет

Дискриминант отрицательный. Решение есть!

Здесь речь пойдёт о решении уравнения в случае когда получается отрицательный дискриминант. Вы что-нибудь знаете о комплексных числах? Не буду здесь подробно рассказывать о том, почему и откуда они возникли и в чём их конкретная роль и необходимость в математике, это тема для большой отдельной статьи.

Понятие комплексного числа.

Немного теории.

Комплексным числом z называется число вида

z = a + bi

где a и b – действительные числа, i – так называемая мнимая единица.

a+bi – это ЕДИНОЕ ЧИСЛО, а не сложение.

Мнимая единица равна корню из минус единицы:

Теперь рассмотрим уравнение:


Получили два сопряжённых корня.

Неполное квадратное уравнение.

Рассмотрим частные случаи, это когда коэффициент «b» или «с» равен нулю (или оба равны нулю). Они решаются легко без всяких дискриминантов.

Случай 1. Коэффициент b = 0.

Уравнение приобретает вид:

Преобразуем:

Пример:

4x 2 –16 = 0 => 4x 2 =16 => x 2 = 4 => x 1 = 2 x 2 = –2

Случай 2. Коэффициент с = 0.

Уравнение приобретает вид:

Преобразуем, раскладываем на множители:

*Произведение равно нулю тогда, когда хотя бы один из множителей равен нулю.

Пример:

9x 2 –45x = 0 => 9x (x–5) =0 => x = 0 или x–5 =0

x 1 = 0 x 2 = 5

Случай 3. Коэффициенты b = 0 и c = 0.

Здесь понятно, что решением уравнения всегда будет х = 0.

Полезные свойства и закономерности коэффициентов.

Есть свойства, которые позволяют решить уравнения с большими коэффициентами.

а x 2 + bx + c =0 выполняется равенство

a + b + с = 0, то

— если для коэффициентов уравнения а x 2 + bx + c =0 выполняется равенство

a + с = b , то

Данные свойства помогают решить определённого вида уравнения.

Пример 1: 5001 x 2 –4995 x – 6=0

Сумма коэффициентов равна 5001+( 4995)+( 6) = 0, значит

Пример 2: 2501 x 2 +2507 x +6=0

Выполняется равенство a + с = b , значит

Закономерности коэффициентов.

1. Если в уравнении ax 2 + bx + c = 0 коэффициент «b» равен (а 2 +1), а коэффициент «с» численно равен коэффициенту «а», то его корни равны

аx 2 + (а 2 +1)∙х+ а= 0 = > х 1 = –а х 2 = –1/a.

Пример. Рассмотрим уравнение 6х 2 +37х+6 = 0.

х 1 = –6 х 2 = –1/6.

2. Если в уравнении ax 2 – bx + c = 0 коэффициент «b» равен (а 2 +1), а коэффициент «с» численно равен коэффициенту «а», то его корни равны

аx 2 – (а 2 +1)∙х+ а= 0 = > х 1 = а х 2 = 1/a.

Пример. Рассмотрим уравнение 15х 2 –226х +15 = 0.

х 1 = 15 х 2 = 1/15.

3. Если в уравнении ax 2 + bx – c = 0 коэффициент «b» равен (a 2 – 1), а коэффициент «c» численно равен коэффициенту «a» , то его корни равны

аx 2 + (а 2 –1)∙х – а= 0 = > х 1 = – а х 2 = 1/a.

Пример. Рассмотрим уравнение 17х 2 +288х – 17 = 0.

х 1 = – 17 х 2 = 1/17.

4. Если в уравнении ax 2 – bx – c = 0 коэффициент «b» равен (а 2 – 1), а коэффициент с численно равен коэффициенту «а», то его корни равны

аx 2 – (а 2 –1)∙х – а= 0 = > х 1 = а х 2 = – 1/a.

Пример. Рассмотрим уравнение 10х 2 – 99х –10 = 0.

х 1 = 10 х 2 = – 1/10

Теорема Виета.

Теорема Виета называется по имени знаменитого французского математика Франсуа Виета. Используя теорему Виета, можно выразить сумму и произведение корней произвольного КУ через его коэффициенты.

45 = 1∙45 45 = 3∙15 45 = 5∙9.

В сумме число 14 дают только 5 и 9. Это корни. При определённом навыке, используя представленную теорему, многие квадратные уравнения вы сможете решать сходу устно.

Теорема Виета, кроме того. удобна тем, что после решения квадратного уравнения обычным способом (через дискриминант) полученные корни можно проверять. Рекомендую это делать всегда.

СПОСОБ ПЕРЕБРОСКИ

При этом способе коэффициент «а» умножается на свободный член, как бы «перебрасывается» к нему, поэтому его и называют способом «переброски». Этот способ применяют, когда можно легко найти корни уравнения, используя теорему Виета и, что самое важное, когда дискриминант есть точный квадрат.

Если а ± b+c ≠ 0, то используется прием переброски, например:

2х 2 – 11х+ 5 = 0 (1) => х 2 – 11х+ 10 = 0 (2)

По теореме Виета в уравнении (2) легко определить, что х 1 = 10 х 2 = 1

Полученные корни уравнения необходимо разделить на 2 (так как от х 2 «перебрасывали» двойку), получим

х 1 = 5 х 2 = 0,5.

Каково обоснование? Посмотрите что происходит.

Дискриминанты уравнений (1) и (2) равны:

Если посмотреть на корни уравнений, то получаются только различные знаменатели, и результат зависит именно от коэффициента при х 2:


У второго (изменённого) корни получаются в 2 раза больше.

Потому результат и делим на 2.

*Если будем перебрасывать тройку, то результат разделим на 3 и т.д.

Ответ: х 1 = 5 х 2 = 0,5

Кв. ур-ие и ЕГЭ.

О его важности скажу кратко – ВЫ ДОЛЖНЫ УМЕТЬ РЕШАТЬ быстро и не задумываясь, формулы корней и дискриминанта необходимо знать наизусть. Очень многие задачи, входящие в состав заданий ЕГЭ, сводятся к решению квадратного уравнения (геометрические в том числе).

Что стоит отметить!

1. Форма записи уравнения может быть «неявной». Например, возможна такая запись:

15+ 9x 2 - 45x = 0 или 15х+42+9x 2 - 45x=0 или 15 -5x+10x 2 = 0.

Вам необходимо привести его к стандартному виду (чтобы не запутаться при решении).

2. Помните, что х это неизвестная величина и она может быть обозначена любой другой буквой – t, q, p, h и прочими.

Копьевская сельская средняя общеобразовательная школа

10 способов решения квадратных уравнений

Руководитель: Патрикеева Галина Анатольевна,

учитель математики

с.Копьево, 2007

1. История развития квадратных уравнений

1.1 Квадратные уравнения в Древнем Вавилоне

1.2 Как составлял и решал Диофант квадратные уравнения

1.3 Квадратные уравнения в Индии

1.4 Квадратные уравнения у ал- Хорезми

1.5 Квадратные уравнения в Европе XIII - XVII вв

1.6 О теореме Виета

2. Способы решения квадратных уравнений

Заключение

Литература

1. История развития квадратных уравнений

1.1 Квадратные уравнения в Древнем Вавилоне

Необходимость решать уравнения не только первой, но и второй степени еще в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики. Квадратные уравнения умели решать около 2000 лет до н. э. вавилоняне.

Применяя современную алгебраическую запись, можно сказать, что в их клинописных текстах встречаются, кроме неполных, и такие, например, полные квадратные уравнения:

X 2 + X = ¾; X 2 - X = 14,5

Правило решения этих уравнений, изложенное в вавилонских текстах, совпадает по существу с современным, однако неизвестно, каким образом дошли вавилоняне до этого правила. Почти все найденные до сих пор клинописные тексты приводят только задачи с решениями, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены.

Несмотря на высокий уровень развития алгебры в Вавилоне, в клинописных текстах отсутствуют понятие отрицательного числа и общие методы решения квадратных уравнений.

1.2 Как составлял и решал Диофант квадратные уравнения.

В «Арифметике» Диофанта нет систематического изложения алгебры, однако в ней содержится систематизированный ряд задач, сопровождаемых объяснениями и решаемых при помощи составления уравнений разных степеней.

При составлении уравнений Диофант для упрощения решения умело выбирает неизвестные.

Вот, к примеру, одна из его задач.

Задача 11. «Найти два числа, зная, что их сумма равна 20, а произведение - 96»

Диофант рассуждает следующим образом: из условия задачи вытекает, что искомые числа не равны, так как если бы они были равны, то их произведение равнялось бы не 96, а 100. Таким образом, одно из них будет больше половины их суммы, т.е. 10 + х , другое же меньше, т.е. 10 - х . Разность между ними .

Отсюда уравнение:

(10 + х)(10 - х) = 96

100 - х 2 = 96

х 2 - 4 = 0 (1)

Отсюда х = 2 . Одно из искомых чисел равно 12 , другое 8 . Решение х = -2 для Диофанта не существует, так как греческая математика знала только положительные числа.

Если мы решим эту задачу, выбирая в качестве неизвестного одно из искомых чисел, то мы придем к решению уравнения

у(20 - у) = 96,

у 2 - 20у + 96 = 0. (2)


Ясно, что, выбирая в качестве неизвестного полуразность искомых чисел, Диофант упрощает решение; ему удается свести задачу к решению неполного квадратного уравнения (1).

1.3 Квадратные уравнения в Индии

Задачи на квадратные уравнения встречаются уже в астрономическом тракте «Ариабхаттиам», составленном в 499 г. индийским математиком и астрономом Ариабхаттой. Другой индийский ученный, Брахмагупта (VII в.), изложил общее правило решения квадратных уравнений, приведенных к единой канонической форме:

ах 2 + b х = с, а > 0. (1)

В уравнении (1) коэфиценты, кроме а , могут быть и отрицательными. Правило Брахмагупты по существу совпадает с нашим.

В Древней Индии были распространены публичные соревнования в решении трудных задач. В одной из старинных индийских книг говорится по поводу таких соревнований следующее: «Как солнце блеском своим затмевает звезды, так ученый человек затмит славу другого в народных собраниях, предлагая и решая алгебраические задачи». Задачи часто облекались в стихотворную форму.

Вот одна из задач знаменитого индийского математика XII в. Бхаскары.

Задача 13.

«Обезьянок резвых стая А двенадцать по лианам…

Власть поевши, развлекалась. Стали прыгать, повисая…

Их в квадрате часть восьмая Сколько ж было обезьянок,

На поляне забавлялась. Ты скажи мне, в этой стае?»

Решение Бхаскары свидетельствует о том, что он знал о двузначности корней квадратных уравнений (рис. 3).

Соответствующее задаче 13 уравнение:

( x /8) 2 + 12 = x

Бхаскара пишет под видом:

х 2 - 64х = -768

и, чтобы дополнить левую часть этого уравнения до квадрата, прибавляет к обеим частям 32 2 , получая затем:

х 2 - 64х + 32 2 = -768 + 1024,

(х - 32) 2 = 256,

х - 32 = ± 16,

х 1 = 16, х 2 = 48.

1.4 Квадратные уравнения у ал – Хорезми

В алгебраическом трактате ал - Хорезми дается классификация линейных и квадратных уравнений. Автор насчитывает 6 видов уравнений, выражая их следующим образом:

1) «Квадраты равны корнями», т.е. ах 2 + с = b х.

2) «Квадраты равны числу», т.е. ах 2 = с.

3) «Корни равны числу», т.е. ах = с.

4) «Квадраты и числа равны корням», т.е. ах 2 + с = b х.

5) «Квадраты и корни равны числу», т.е. ах 2 + bx = с.

6) «Корни и числа равны квадратам», т.е. bx + с = ах 2 .

Для ал - Хорезми, избегавшего употребления отрицательных чисел, члены каждого их этих уравнений слагаемые, а не вычитаемые. При этом заведомо не берутся во внимание уравнения, у которых нет положительных решений. Автор излагает способы решения указанных уравнений, пользуясь приемами ал - джабр и ал - мукабала. Его решения, конечно, не совпадает полностью с нашим. Уже не говоря о том, что оно чисто риторическое, следует отметить, например, что при решении неполного квадратного уравнения первого вида

ал - Хорезми, как и все математики до XVII в., е учитывает нулевого решения, вероятно, потому, что в конкретных практических задачах оно не имеет значения. При решении полных квадратных уравнений ал - Хорезми на частных числовых примерах излагает правила решения, а затем и геометрические доказательства.

Задача 14. «Квадрат и число 21 равны 10 корням. Найти корень» (подразумевается корень уравнения х 2 + 21 = 10х).

Решение автора гласит примерно так: раздели пополам число корней, получишь 5, умножишь 5 само на себя, от произведения отними 21, останется 4. Извлеки корень из 4, получишь 2. Отними 2 от5, получишь 3, это и будет искомый корень. Или же прибавь 2 к 5, что даст 7, это тоже есть корень.

Трактат ал - Хорезми является первой, дошедшей до нас книгой, в которой систематически изложена классификация квадратных уравнений и даны формулы их решения.

1.5 Квадратные уравнения в Европе XIII - XVII вв

Формулы решения квадратных уравнений по образцу ал - Хорезми в Европе были впервые изложены в « Книге абака», написанной в 1202 г. итальянским математиком Леонардо Фибоначчи. Этот объемистый труд, в котором отражено влияние математики, как стран ислама, так и Древней Греции, отличается и полнотой, и ясностью изложения. Автор разработал самостоятельно некоторые новые алгебраические примеры решения задач и первый в Европе подошел к введению отрицательных чисел. Его книга способствовала распространению алгебраических знаний не только в Италии, но и в Германии, Франции и других странах Европы. Многие задачи из « Книги абака» переходили почти во все европейские учебники XVI - XVII вв. и частично XVIII.

Общее правило решения квадратных уравнений, приведенных к единому каноническому виду:

х 2 + bx = с,

при всевозможных комбинациях знаков коэффициентов b , с было сформулировано в Европе лишь в 1544 г. М. Штифелем.

Вывод формулы решения квадратного уравнения в общем виде имеется у Виета, однако Виет признавал только положительные корни. Итальянские математики Тарталья, Кардано, Бомбелли среди первых в XVI в. Учитывают, помимо положительных, и отрицательные корни. Лишь в XVII в. Благодаря труда Жирара, Декарта, Ньютона и других ученых способ решения квадратных уравнений принимает современный вид.

1.6 О теореме Виета

Теорема, выражающая связь между коэффициентами квадратного уравнения и его корнями, носящая имя Виета, была им сформулирована впервые в 1591 г. следующим образом: «Если B + D , умноженное на A - A 2 , равно BD , то A равно В и равноD ».

Чтобы понять Виета, следует вспомнить, что А , как и всякая гласная буква, означало у него неизвестное (наше х ), гласные же В, D - коэффициенты при неизвестном. На языке современной алгебры вышеприведенная формулировка Виета означает: если имеет место

(а + b )х - х 2 = ab ,

х 2 - (а + b )х + а b = 0,

х 1 = а, х 2 = b .

Выражая зависимость между корнями и коэффициентами уравнений общими формулами, записанными с помощью символов, Виет установил единообразие в приемах решения уравнений. Однако символика Виета еще далека от современного вида. Он не признавал отрицательных чисел и по этому при решении уравнений рассматривал лишь случаи, когда все корни положительны.

2. Способы решения квадратных уравнений

Квадратные уравнения - это фундамент, на котором покоится величественное здание алгебры. Квадратные уравнения находят широкое применение при решении тригонометрических, показательных, логарифмических, иррациональных и трансцендентных уравнений и неравенств. Все мы умеем решать квадратные уравнения со школьной скамьи (8 класс), до окончания вуза.

Квадратное уравнение – это уравнение вида ax 2 + bx + c = 0, где x – переменная, a, b и c – некоторые числа, причем a ≠ 0.

Пример квадратного уравнения:

3x 2 + 2x – 5 = 0.

Здесь а = 3, b = 2, c = –5.

Числа a, b и c коэффициенты квадратного уравнения.

Число a называют первым коэффициентом , число b вторым коэффициентом , а число c свободным членом .

Приведенное квадратное уравнение.

Квадратное уравнение, в котором первый коэффициент равен 1, называют приведенным квадратным уравнением .

Примеры приведенного квадратного уравнения:

x 2 + 10x – 11 = 0

x 2 – x – 12 = 0

x 2 – 6х + 5 = 0

здесь коэффициент при x 2 равен 1 (просто единица во всех трех уравнениях опущена).

Неполное квадратное уравнение.

Если в квадратном уравнении ax 2 + bx + c = 0 хотя бы один из коэффициентов b или c равен нулю, то такое уравнение называют неполным квадратным уравнением .

Примеры неполного квадратного уравнения:

2x 2 + 18 = 0

здесь есть коэффициент а , который равен -2, есть коэффициент c , равный 18, а коэффициента b нет – он равен нулю.

x 2 – 5x = 0

здесь а = 1, b = -5, c = 0 (поэтому коэффициент c в уравнении отсутствует).

Как решать квадратные уравнения.

Чтобы решить квадратное уравнение, надо совершить всего два действия:

1) Найти дискриминант D по формуле:

D = b 2 – 4 ac .

Если дискриминант – отрицательное число, то квадратное уравнение не имеет решения, вычисления прекращаются. Если D ≥ 0, то

2) Найти корни квадратного уравнения по формуле:

b ± √ D
х 1,2 = -----.
2а

Пример : Решить квадратное уравнение 3х 2 – 5х – 2 = 0.

Решение :

Сначала определимся с коэффициентами нашего уравнения:

а = 3, b = –5, c = –2.

Вычисляем дискриминант:

D = b 2 – 4ac = (–5) 2 – 4 · 3 · (–2) = 25 + 24 = 49.

D > 0, значит, уравнение имеет смысл, а значит, можем продолжить.

Находим корни квадратного уравнения:

b + √D 5 + 7 12
х 1 = ----- = ---- = -- = 2
2а 6 6

b – √D 5 – 7 2 1
х 2 = ----- = ---- = – -- = – --.
2а 6 6 3

1
Ответ : х 1 = 2, х 2 = – --.