Деление на ноль: почему нельзя? Почему нельзя делить на ноль? Наглядный пример.

Ноль сам по себе цифра очень интересная. Сам по себе означает пустоту, отсутствие значения, а рядом с другой цифрой увеличивает ее значимость в 10 раз. Любые числа в нулевой степени всегда дают 1. Этот знак использовали еще в цивилизации майя, причем он у них еще обозначал понятие «начало, причина». Даже календарь у начинался с нулевого дня. А еще эта цифра связана со строгим запретом.

Еще с начальных школьных лет все мы четко усвоили правило «на ноль делить нельзя». Но если в детстве многое воспринимаешь на веру и слова взрослого редко вызывают сомнения, то со временем иногда хочется все-таки разобраться в причинах, понять, почему были установлены те или иные правила.

Почему нельзя делить на ноль? На этот вопрос хочется получить понятное логическое объяснение. В первом классе учителя это сделать не могли, потому как в математике правила объясняются с помощью уравнений, а в том возрасте мы и представления не имели о том, что это такое. А теперь пришла пора разобраться и получить понятное логическое объяснение того, почему нельзя делить на ноль.

Дело в том, что в математике лишь две из четырех основных операций (+, - , х, /) с числами признаются независимыми: умножение и сложение. Остальные же операции принято считать производными. Рассмотрим простенький пример.

Вот скажите, сколько получится, если от 20 отнять 18? Естественно, в нашей голове моментально возникает ответ: это будет 2. А как мы пришли к такому результату? Кому-то этот вопрос покажется странным - ведь и так все ясно, что получится 2, кто-то пояснит, что от 20 копеек отнял 18 и у него получилось две копейки. Логически все эти ответы не вызывают сомнений, однако с точки зрения математики решать эту задачу следует по-другому. Еще раз напомним, что главными операциями в математике являются умножение и сложение и поэтому в нашем случае ответ кроется в решении следующего уравнения: х + 18 = 20. Из которого и вытекает, что х = 20 - 18, х =2. Казалось бы, зачем так подробно все расписывать? Ведь и так все элементарно просто. Однако без этого тяжело объяснить почему нельзя делить на ноль.

А теперь посмотрим что получится если мы пожелаем 18 разделить на ноль. Снова составим уравнение: 18: 0 = х. Поскольку операция деления является производной от процедуры умножения, то преобразовав наше уравнение получим х * 0 = 18. Вот здесь как раз и начинается тупик. Любое число на месте икса при умножении на ноль даст 0 и получить 18 нам никак не удастся. Теперь становится предельно ясно почему нельзя делить на ноль. Сам ноль можно делить на какое-угодно число, а вот наоборот - увы, никак нельзя.

А что получится, если ноль разделить на самого себя? Это можно записать в таком виде: 0: 0 = х, или х * 0 = 0. Это уравнение имеет бесчисленное число решений. Поэтому в итоге получается бесконечность. Поэтому операция и в этом случае тоже не имеет смысла.

Деление на 0 лежит в корне многих мнимых математических шуток, которыми при желании можно озадачить любого несведущего человека. К примеру, рассмотрим уравнение: 4*х - 20 = 7*х - 35. Вынесем за скобки в левой части 4, а в правой 7. Получим: 4*(х - 5) = 7*(х - 5). Теперь умножим левую и правую часть уравнения на дробь 1 / (х - 5). Уравнение примет такой вид: 4*(х - 5)/(х - 5) = 7*(х - 5)/ (х - 5). Сократим дроби на (х - 5) и у нас выйдет, что 4 = 7. Из этого можно сделать вывод, что 2*2 = 7! Конечно, подвох здесь в том, что равен 5 и сокращать дроби было нельзя, поскольку это приводило к делению на ноль. Поэтому при сокращении дробей нужно всегда проверять чтобы ноль случайно не оказался в знаменателе, иначе результат получится совсем непредсказуемым.

В курсе школьной арифметики все математические операции проводятся с вещественными числами. Множество этих чисел (или непрерывное упорядоченное поле) имеет ряд свойств (аксиом): коммутативность и ассоциативность умножения и сложения, существование нуля, единицы, противоположного и обратного элементов. Также аксиомы порядка и непрерывности, применяемые для сравнительного анализа, позволяют определить все свойства вещественных чисел.

Поскольку деление является операцией, обратной умножению, при делении на ноль вещественных чисел неизбежно возникновение двух неразрешимых проблем. Во-первых, проверка результата деления на ноль при помощи умножения не имеет числового выражения. Каким бы числом не было частное, если его умножить на ноль, делимое получить невозможно. Во-вторых, в примере 0:0 ответом может служить абсолютно любое число, которое при перемножении с делителем всегда обращается в ноль.

Деление на ноль в высшей математике

Перечисленные трудности деления на ноль привели к наложению табу на эту операцию, по крайней мере, в рамках школьного курса. Однако в высшей математике находят возможности обойти этот запрет.

Например, за счет построения другой алгебраической структуры, отличной от знакомой всем числовой прямой. Примером такой структуры является колесо. Здесь существуют свои законы и правила. В частности, деление не привязано к умножению и превращается из бинарной операции (с двумя аргументами) в унарную (с одним аргументом), обозначается символом /х.

Расширение поля вещественных чисел происходит за счет введения гиперреальных чисел, которое охватывает бесконечно большие и бесконечно малые величины. Такой подход позволяет рассматривать термин «бесконечность» как некое число. Причем это число при расширении числовой прямой теряет свой знак, превращаясь в идеализированную точку, соединяющую два конца этой прямой. Такой подход можно сравнить с линией смены дат, когда при переходе между двумя часовыми поясами UTC+12 и UTC-12 можно оказаться в следующем дне или же в предыдущем. При этом становится верным утверждение х/0=∞ для любых х≠0.

Чтобы устранить неопределенность 0/0, для колеса вводится новый элемент ⏊=0/0. При этом в данной алгебраической структуре есть свои нюансы: 0·х≠0; х-х≠0 в общем случае. Также х·/х≠1, поскольку деление и умножение больше не считаются обратными операциями. Но данные особенности колеса хорошо объясняются с помощью тождеств дистрибутивного закона, действующего в такой алгебраической структуре несколько иначе. Более подробные разъяснения можно найти в специализированной литературе.

Алгебра, к которой все привыкли, является, по сути, частным случаем более сложных систем, например, того же колеса. Как видим, делить на ноль в высшей математике можно. Для этого требуется выйти за границы привычных представлений о числах, алгебраических операциях и законах, которым они подчиняются. Хотя это вполне естественный процесс, сопровождающий любой поиск новых знаний.

В основе урока лежали самостоятельные действия учащихся на каждом этапе, полное погружение в учебную задачу. Этому способствовали такие приёмы, как работа в группах, само- и взаимопроверка, создание ситуации успеха, дифференцированные задания, саморефлексия.

Скачать:


Предварительный просмотр:

Учебник: «Математика» 3 класс М.И. Моро

Цели урока:

Задачи урока:

Для достижения цели урок был разработан с учётом деятельностного подхода.

Структура урока включала в себя:

  1. Орг. момент , целью которого было позитивно настроить детей на учебную деятельность.
  2. Мотивация позволила актуализировать знания, сформировать цели и задачи урока. Для этого были предложены задания на нахождение лишнего числа, классификацию примеров на группы, добавление недостающих чисел . В ходе решения этих заданий, дети столкнулись с проблемой : нашёлся пример, для решения которого не хватает имеющихся знаний. В связи с этим дети самостоятельно сформулировали цель и поставили перед собой учебные задачи урока.
  3. Поиск и открытие нового знания дал возможность детям предложить различные варианты решения задания. Основываясь на ранее изученный материал, они смогли найти верное решение и прийти к выводу , в котором сформулировали новое правило.
  4. Во время первичного закрепления ученики комментировали свои действия, работая по правилу , дополнительно были подобраны свои примеры на это правило.
  5. Для автоматизации действий и умения пользоваться правилам в нестандартных заданиях дети решали уравнения, выражения в несколько действий.
  6. Самостоятельная работа и проведенная взаимопроверка показали, что большинство детей тему усвоили.
  7. Во время рефлексии дети сделали вывод, что поставленная цель урока достигнута и оценили себя с помощью карточек.

В основе урока лежали самостоятельные действия учащихся на каждом этапе, полное погружение в учебную задачу. Этому способствовали такие приёмы, как работа в группах, само- и взаимопроверка, создание ситуации успеха, дифференцированные задания, саморефлексия.

Урок математики в 3 классе.

Тема урока: «Деление 0 на число. Невозможность деления на 0»

Цели урока: создать условия для формирования умения делить 0 на число.

Задачи урока:

  • раскрыть смысл деления 0 на число через связь умножения и деления;
  • развивать самостоятельность, внимание, мышление;
  • формировать навыки решения примеров на табличное умножение и деление.

Ход урока.

  1. Организационный этап.

Проверьте свою готовность к уроку, сядьте прямо.
Потрите свои ушки, чтобы кровь активнее поступала в мозг. Сегодня у вас будет много интересной работы, с которой, я уверена, вы справитесь на отлично.

  1. (слайд 1; 2; 3)

Веселый прозвенел звонок,

Мы начинаем наш урок.

Все ли правильно сидят,

Все внимательно глядят?

Каждый хочет получать

Только лишь оценку пять!

Откройте свои тетради, запишите сегодняшнее число. (слайд 4) Что вы можете сказать о числе 20? (Оно двузначное; оно чётное; состоит из разряда десятков и разряда единиц).

Сколько десятков и сколько единиц в нём? (2 десятка и 0 единиц.).

  1. Устный счёт.
  1. Игра «Найди лишнее число» (слайд 5)

Из каждого столбика выберите «лишнее число»

2. Найдите площади фигур: (слайд 6)

3. Арифметический диктант:

  1. Какое число надо умножить на 7, чтобы получить 42?
  2. Назовите число, которое меньше 24 на 6?
  3. Из какого числа надо вычесть 18, чтобы получить 3?
  4. Во сколько раз 4 десятка больше 5?
  5. Найдите произведение 9 и 3.
  6. Делимое 36, частное 6. Чему равен делитель?
  7. Увеличьте 8 в 6 раз.
  8. На какое число надо разделить 28, чтобы получить 7?

Запишите только ответы.

(Взаимопроверка: 6, 18, 21, 8, 27, 6, 48, 4.) – (слайд 7)

4.Индивидуальная работа (работа по карточкам, см. приложения)

5. Создание проблемной ситуации
Задания в парах:
- расставьте примеры в 2 группы:

Почему так распределили? (с ответом 4 и 5)

Решите примеры:
8·7-6+30:6=
28:(16:4)·6=
30-(20-10:2):5=
30-(20-10·2):5=

Что вы заметили? Есть ли здесь лишние примеры?
- Все ли примеры вы смогли решить?
- У кого возникли затруднения?
- Чем этот пример отличается от остальных?
- Если кто-то решил, то молодец. Но почему не все смогли справиться с этим примером?

6.Постановка учебной задачи.
Здесь есть пример с 0. А от 0 можно ожидать разные фокусы. Это необычное число.
Вспомните, что вы знаете про 0?
(а·0=0, 0·а=0, 0+а=а)·
Приведите примеры.
Посмотрите, какой он коварный: когда его прибавляют, он не изменяет число, а когда умножают, превращают его в 0.
Подходят ли эти правила к нашему примеру?(нет)
Как же он поведёт себя при делении?

  1. Сообщение темы и целей урока (слайд 8)

- Итак, какова наша цель? Решить этот пример верно.

цель

Таблица на доске.

Что для этого надо? Узнать правило деления 0 на число.

задача

Тема нашего урока: «Деление нуля на число, невозможность деления на нуль».

Мы рассмотрим приёмы деления нуля на число, закрепим знания таблицы умножения, умение решать составные задачи.

  1. Усвоение новых знаний и способов действий.

Как же найти верное решение?
С каким действием связано умножение? (с делением)
Приведите пример
2 · 3 = 6
6: 2 = 3

Можем ли мы теперь 0:5?
Это значит, надо найти число, при умножении которого на 5 получится 0.
х·5=0
Это число 0. Значит, 0:5=0.

Приведите свои примеры.

  1. На экране: 0:6 (слайд 9)

Подберите такое число, при умножении которого на 6 получился бы 0? (Это 0).

Значит, 0:6=0

Аналогично рассматривается случай деления 0:9.

Вывод: При делении нуля на любое другое число, получается нуль.

ПОМНИ, делить на нуль нельзя!

Почему нельзя делить на нуль? Обоснуйте свой ответ.

(При делении на 0, например, числа 6 или другого числа, кроме нуля нельзя найти такое число, умножив которое на нуль, получилось бы 6 или другое число).

2.Послушайте сказку о нуле. (слайды 10-16)

Далеко-далеко, за морями и горами, была страна Цифрия. Жили в ней очень честные числа. Только Нуль отличался ленью и нечестностью.

Однажды все узнали, что далеко за пустыней появилась королева Арифметика, зовущая к себе на службу жителей Цифрии. Служить королеве захотели все. Между Цифрией и королевством Арифметики пролегла пустыня, которую пересекли четыре реки: Сложение, Вычитание, Умножение и Деление. Как добраться до Арифметики? Числа решили обьедениться (ведь с товарищами легче преодолевать трудности) и попробовать перейти пустыню.

Рано утром, как только солнце коснулось земли своими лучами, двинулись числа в путь. Долго шли они под палящим солнцем и, наконец, добрались до реки Сложение. Числа бросились к реке, чтобы напиться, но река сказала: «Станьте по парам и сложитесь, тогда дам вам напиться». Всё исполнили приказание реки, исполнил желание и лентяй Нуль. Но число, с которым он сложился, осталось недовольно: ведь воды река давала столько, сколько единиц было в сумме, а сумма не отличалась от числа.

Солнце еще больше печет. Дошли до реки Вычитание. Она тоже потребовала за воду плату: стать парами и вычесть меньшее число из большего, у кого ответ получится меньше, тот получит больше воды. И снова число. Стоящее в паре с Нулём оказалось в проигрыше и было расстроено.

А у реки Деление никто из чисел не захотел становиться в пару с Нулём. С тех пор ни одно число не делится на нуль.

Правда, королева Арифметика примирила все числа с этим лентяем: она стала просто приписывать нуль рядом с числом, которое от этого увеличивалось в десять раз. И стали числа жить-поживать, да добра наживать.

Сегодня мы с вами открыли ещё один фокус «нуля». Что это за «фокус»? О нём надо помнить, чтобы не допускать ошибок в вычислениях.

  1. Первичная проверка понимания изученного. Работа по учебнику.

1.Прочитайте правило в учебнике и сравните с вашим.

А давайте попробуем любое число разделить на 0.
Например, 5:0. Сколько получится?
Нельзя подобрать такое число, при умножении которого на 0 получится 5.
Вывод: НА 0 ДЕЛИТЬ НЕЛЬЗЯ.

В каких ещё заданиях может понадобиться знание этого правила? (в решении примеров, уравнений)

  1. Выполнения №1 стр. 75 с комментированием «цепочкой».

Физкультминутка и зарядка для глаз (слайд 17-18)

Утром стрекоза проснулась,

Потянулась, улыбнулась.

Раз - росой она умылась,

Два - изящно покружилась

Три - нагнулась и присела,

На четыре – полетела.

У реки остановилась,

Над водою закружилась.

  1. Работа над пройденным материалом.

1)Выполнение №2 (устно)

2) Нахождение значений выражений №6 (1) стр. 85

3) Решение задачи №5 стр.85 (слайд 19)

Как вы думаете, часто ли в задачах используется число 0?
(Нет, не часто, т.к. 0 – это ничего, а в задачах должно какое-то количество чего-либо.)
Тогда будем решать задачи, где есть другие числа.
Составление таблицы на интерактивной доске.

Прочитайте условие задачи и подумайте, как удобнее выполнить краткую запись. (В таблице).

Какие графы должны быть в таблице?

Что такое 8кг? (Масса 1 ящика со сливами)

Что ещё известно в задаче? (Масса 1 ящика с грушами. Масса всех ящиков со сливами.)

Что сказано о количестве ящиков с грушами? (Их столько же). Или количество одинаковое.

Составьте программу решения и запишите решение самостоятельно.

Б) Проверка решения.

1) 48:8=6(ящ.)

2) 9∙6=54(кг)

Ответ:54 кг груш привезли на рынок.

4)Решение уравнений с устным объяснением.

№8 стр. 85

5)Найди закономерность (задание на слайде) (слайд 20)

6 )Самостоятельная работа. (слайд 21)

(Проверочная работа.с.42,43.)

  1. Итог урока
  • Что нового мы узнали на уроке?
  • Что получится при делении нуля на любое число?
  • Какое важное правило должны запомнить?
  1. Информация о домашнем задании (слайд 22)

№4, №6(2) стр. 85.

Рефлексия (см. приложение; слайды 23-24)

Над какой темой сегодня работали? О чём вы не знали в начале урока?
-Какую цель ставили перед собой?
-Достигли вы её? С каким правилом познакомились?
- Ребята! Вам понравился урок?

Посмотрите на "пушистиков". У них разные настроения. Раскрасьте "пушистика", у которого такое же настроение, как у вас. Покажите своих «пушистиков».(я доволен собой, у меня всё получилось; всё хорошо, но я мог работать лучше; урок обычный, ничего интересного; ничего не получилось) Молодцы! Спасибо за урок! До новых встреч!


Очень часто многие задаются вопросом, почему же нельзя использовать деление на ноль? В этой статье мы очень подробно расскажем о том, откуда появилось это правило, а также о том, какие действия можно выполнять с нолем.

Вконтакте

Ноль можно назвать одной из самых интересных цифр. У этой цифры нет значения , она означает пустоту в прямом смысле слова. Однако, если ноль поставить рядом с какой-либо цифрой, то значение этой цифры станет больше в несколько раз.

Число очень загадочно само по себе. Его использовал еще древний народ майя. У майя ноль означал «начало», а отсчет календарных дней также начинался с нуля.

Очень интересным фактом является то, что знак ноля и знак неопределенности у них были похожи. Этим майя хотели показать, что ноль является таким же тождественным знаком, как и неопределенность. В Европе же обозначение нуля появилось сравнительно недавно.

Также многим известен запрет, связанный с нолем. Любой человек скажет, что на ноль нельзя делить . Это говорят учителя в школе, а дети обычно верят им на слово. Обычно детям либо просто не интересно это знать, либо они знают, что будет, если, услышав важный запрет, сразу же спросить «А почему нельзя делить на ноль?». Но когда становишься старше, то просыпается интерес, и хочется побольше узнать о причинах такого запрета. Однако существует разумное доказательство.

Действия с нулем

Для начала необходимо определить, какие действия с нулем можно выполнять. Существует несколько видов действий :

  • Сложение;
  • Умножение;
  • Вычитание;
  • Деление (ноля на число);
  • Возведение в степень.

Важно! Если при сложении к любому числу прибавить ноль, то это число останется прежним и не поменяет своего числового значения. То же произойдет, если от любого числа отнять ноль.

При умножении и делении все обстоит немного иначе. Если умножить любое число на ноль , то и произведение тоже станет нулевым.

Рассмотрим пример:

Запишем это как сложение:

Всего складываемых нолей пять, вот и получается, что


Попробуем один умножить на ноль
. Результат также будет нулевым.

Ноль также можно разделить на любое другое число, не равное ему. В этом случае получится , значение которой также будет нулевым. Это же правило действует и для отрицательных чисел. Если ноль делить на отрицательное число, то получится ноль.

Также можно возвести любое число в нулевую степень . В таком случае получится 1. При этом важно помнить, что выражение «ноль в нулевой степени» абсолютно бессмысленно. Если попытаться возвести ноль в любую степень, то получится ноль. Пример:

Пользуемся правилом умножения, получаем 0.

Так можно ли делить на ноль

Итак, вот мы и подошли к главному вопросу. Можно ли делить на ноль вообще? И почему же нельзя разделить число на ноль при том, что все остальные действия с нулем вполне существуют и применяются? Для ответа на этот вопрос необходимо обратиться к высшей математике.

Начнем вообще с определения понятия, что же такое ноль? Школьные учителя утверждают, что ноль-это ничто. Пустота. То есть когда ты говоришь, что у тебя 0 ручек, это значит, что у тебя совсем нет ручек.

В высшей математике понятие «ноль» более широкое. Оно вовсе не означает пустоту. Здесь ноль называют неопределенностью, так как если провести небольшое исследование, то получается, что при делении ноля на ноль мы можем в результате получить любое другое число, которое не обязательно может быть нолем.

Знаете ли вы, что те простые арифметические действия, которые вы изучали в школе не так равноправны между собой? Самыми базовыми действиями являются сложение и умножение .

Для математиков не существует понятий « » и «вычитание». Допустим: если от пяти отнять три, то останется два. Так выглядит вычитание. Однако, математики запишут это таким образом:

Таким образом, получается, что неизвестной разностью является некое число, которое нужно прибавить к 3, чтобы получить 5. То есть, не нужно ничего вычитать, нужно просто найти подходящее число. Это правило действует для сложения.

Немного иначе дела обстоят с правилами умножения и деления. Известно, что умножение на ноль приводит к нулевому результату. Например, если 3:0=х, тогда, если перевернуть запись, получится 3*х=0. А число, которое умножалось на 0 даст ноль и в произведении. Получается, что числа, которое бы давало в произведении с нолем какую-либо величину, отличную от ноля, не существует. А значит, деление на ноль бессмысленно, то есть оно подходит к нашему правилу.

Но что будет, если попытаться разделить сам ноль на себя же? Возьмем как х некое неопределенное число. Получается уравнение 0*х=0. Его можно решить.

Если мы попробуем взять вместо х ноль, то мы получим 0:0=0. Казалось бы, логично? Но если мы попробуем вместо х взять любое другое число, например, 1, то в конечном итоге получится 0:0=1. Та же ситуация будет, если взять любое другое число и подставить его в уравнение .

В этом случае получится, что мы можем как множитель взять любое другое число. Итогом будет бесконечное множество разных чисел. Порой все же деление на 0 в высшей математике имеет смысл, но тогда обычно появляется некое условие, благодаря которому мы сможем все-таки выбрать одно подходящее число. Это действие называется «раскрытием неопределенности». В обычной же арифметике деление на ноль снова потеряет свой смысл, так как мы не сможем выбрать из множества какое-то одно число.

Важно! На ноль нельзя разделить ноль.

Ноль и бесконечность

Бесконечность очень часто можно встретить в высшей математике. Так как школьникам просто не важно знать о том, что существуют еще математические действия с бесконечностью, то и объяснить детям, почему делить на ноль нельзя, учителя как следует не могут.

Основные математические секреты ученики начинают узнавать лишь на первом курсе института. Высшая математика предоставляет большой комплекс задач, которые не имеют решения. Самыми известными задачами являются задачи с бесконечностью. Их можно решить при помощи математического анализа.

К бесконечности также можно применить элементарные математические действия: сложение, умножение на число. Обычно еще применяют вычитание и деление, но в конечном итоге они все равно сводятся к двум простейшим операциям.

Число 0 можно представить, как некую границу, отделяющую мир реальных чисел от мнимых или отрицательных. Благодаря двусмысленному положению, многие операции с этой числовой величиной не подчиняются математической логике. Невозможность деления на нуль - яркий тому пример. А разрешенные арифметические действия с нулем могут быть выполнены с помощью общепринятых определений.

История нуля

Ноль является точкой отсчета во всех стандартных системах исчисления. Европейцы стали использовать это число сравнительно недавно, но мудрецы Древней Индии пользовались нулем за тысячу лет до того, как пустое число стало регулярно использоваться европейскими математиками. Ещё раньше индийцев ноль являлся обязательной величиной в числовой системе майя. Этот американский народ использовал двенадцатеричную систему исчисления, а нулем у них начинался первый день каждого месяца. Интересно, что у майя знак, обозначающий «ноль», полностью совпадал со знаком, определяющим «бесконечность». Таким образом, древние майя делали вывод о тождественности и непознаваемости этих величин.

Математические действия с нулем

Стандартные математические операции с нулем можно свести к нескольким правилам.

Сложение: если к произвольному числу добавить ноль, то оно не изменит своего значения (0+x=x).

Вычитание: при вычитании нуля из любого числа значение вычитаемого остается неизменным (x-0=x).

Умножение: любое число, умноженное на 0, дает в произведении 0 (a*0=0).

Деление: ноль можно разделить на любое число, не равное нулю. При этом значение такой дроби будет 0. А деление на ноль запрещено.

Возведение в степень. Это действие можно выполнить с любым числом. Произвольное число, возведенное в нулевую степень, даст 1 (x 0 =1).

Ноль в любой степени равен 0 (0 а =0).

При этом сразу возникает противоречие: выражение 0 0 не имеет смысла.

Парадоксы математики

О том, что деление на ноль невозможно, многие знают со школьной скамьи. Но объяснить причину такого запрета почему-то не получается. В самом деле, почему формула деления на ноль не существует, а вот другие действия с этим числом вполне разумны и возможны? Ответ на этот вопрос дают математики.

Все дело в том, что привычные арифметические действия, которые школьники изучают в начальных классах, на самом деле далеко не так равноправны, как нам кажется. Все простые операции с числами могут быть сведены к двум: сложению и умножению. Эти действия составляют суть самого понятия числа, а остальные операции строятся на использовании этих двух.

Сложение и умножение

Возьмем стандартный пример на вычитание: 10-2=8. В школе его рассматривают просто: если от десяти предметов отнять два, останется восемь. Но математики смотрят на эту операцию совсем по-другому. Ведь такой операции, как вычитание, для них не существует. Данный пример можно записать и другим способом: х+2=10. Для математиков неизвестная разность - это просто число, которое нужно добавить к двум, чтобы получилось восемь. И никакого вычитания здесь не требуется, нужно просто найти подходящее числовое значение.

Умножение и деление рассматриваются так же. В примере 12:4=3 можно понять, что речь идет о разделении восьми предметов на две равные кучки. Но в действительности это просто перевернутая формула записи 3х4=12.Такие примеры на деление можно приводить бесконечно.

Примеры на деление на 0

Вот тут и становится понемногу понятным, почему нельзя делить на ноль. Умножение и деление на ноль подчиняется своим правилам. Все примеры на деление этой величины можно сформулировать в виде 6:0=х. Но это же перевернутая запись выражения 6 * х=0. Но, как известно, любое число, умноженное на 0, дает в произведении только 0. Это свойство заложено в самом понятии нулевой величины.

Выходит, что такого числа, которое при умножении на 0 дает какую-либо осязаемую величину, не существует, то есть данная задача не имеет решения. Такого ответа бояться не следует, это естественный ответ для задач такого типа. Просто запись 6:0 не имеет никакого смысла, и она ничего не может объяснить. Кратко говоря, это выражение можно объяснить тем самым бессмертным «деление на ноль невозможно».

Существует ли операция 0:0? Действительно, если операция умножения на 0 законна, можно ли ноль разделить на ноль? Ведь уравнение вида 0х 5=0 вполне легально. Вместо числа 5 можно поставить 0, произведение от этого не поменяется.

Действительно, 0х0=0. Но поделить на 0 по-прежнему нельзя. Как было сказано, деление - это просто обратная операция умножения. Таким образом, если в примере 0х5=0, нужно определить второй множитель, получаем 0х0=5. Или 10. Или бесконечность. Деление бесконечности на ноль — как вам это понравится?

Но если в выражение подходит любое число, то оно не имеет смысла, мы не можем из бесконечного множества чисел выбрать какое-то одно. А раз так, это значит и выражение 0:0 не имеет смысла. Получается, что на ноль нельзя делить даже сам ноль.

Высшая математика

Деление на ноль — это головная боль для школьной математики. Изучаемый в технических вузах математический анализ немного расширяет понятие задач, которые не имеют решения. Например, к уже известному выражению 0:0 добавляются новые, которые не имеют решения в школьных курсах математики:

  • бесконечность, разделенная на бесконечность: ∞:∞;
  • бесконечность минус бесконечность: ∞−∞;
  • единица, возведенная в бесконечную степень: 1 ∞ ;
  • бесконечность, умноженная на 0: ∞*0;
  • некоторые другие.

Элементарными методами решить такие выражения невозможно. Но высшая математика благодаря дополнительным возможностям для ряда подобных примеров дает конечные решения. Особенно это видно в рассмотрении задач из теории пределов.

Раскрытие неопределенности

В теории пределов значение 0 заменяется условной бесконечно малой переменной величиной. А выражения, в которых при подставлении нужного значения получается деление на ноль, преобразовываются. Ниже представлен стандартный пример раскрытия предела при помощи обычных алгебраических преобразований:

Как видно в примере, простое сокращение дроби приводит ее значение к вполне рациональному ответу.

При рассмотрении пределов тригонометрических функций их выражения стремятся свести к первому замечательному пределу. При рассмотрении пределов, в которых знаменатель обращается в 0 при подставлении предела, используют второй замечательный предел.

Метод Лопиталя

В некоторых случаях пределы выражений можно заменить пределом их производных. Гийом Лопиталь - французский математик, основоположник французской школы математического анализа. Он доказал, что пределы выражений равны пределам производных этих выражений. В математической записи его правило выглядит следующим образом.