Индукционная плавильная печь схема. Печь индукционная для плавки металла

Индукционные нагреватели работают по принципу “получение тока из магнетизма”. В специальной катушке генерируется переменное магнитное поле высокой мощности, которое порождает вихревые электрические токи в замкнутом проводнике.

Замкнутым проводником в индукционных плитах является металлическая посуда, которая разогревается вихревыми электрическими токами. В общем, принцип работы таких приборов не сложен, и при наличии небольших познаний в физике и электрике, собрать индукционный нагреватель своими руками не составит большого труда.

Самостоятельно могут быть изготовлены следующие приборы:

  1. Приборы для нагрева в котле отопления.
  2. Мини-печи для плавки металлов.
  3. Плиты для приготовления пищи.

Индукционная плита своими руками, должна быть изготовлена с соблюдением всех норм и правил для эксплуатации данных приборов. Если за пределы корпуса в боковых направлениях будет выделяться опасное для человека электромагнитное излучение, то использовать такой прибор категорически запрещается.

Кроме этого большая сложность при конструировании плиты заключается в подборе материала для основания варочной поверхности, которое должно удовлетворять следующим требованиям:

  1. Идеально проводить электромагнитное излучение.
  2. Не являться токопроводящим материалом.
  3. Выдерживать высокую температурную нагрузку.

В бытовых варочных индукционных поверхностях используется дорогая керамика, при изготовлении в домашних условиях индукционной плиты, найти достойную альтернативу такому материалу – довольно сложно. Поэтому, для начала следует сконструировать что-нибудь попроще, например, индукционную печь для закалки металлов.

Инструкция по изготовлению

Чертежи


Рисунок 1. Электрическая схема индукционного нагревателя
Рисунок 2. Устройство. Рисунок 3. Схема простого индукционного нагревателя

Для изготовления печи понадобятся следующие материалы и инструменты:

  • припой;
  • текстолитовая плата.
  • мини-дрель.
  • радиоэлементы.
  • термопаста.
  • химические реагенты для травления платы.

Дополнительные материалы и их особенности:

  1. Для изготовления катушки , которая будет излучать необходимое для нагрева переменное магнитное поле, необходимо приготовить отрезок медной трубки диаметром 8 мм, и длиной 800 мм.
  2. Мощные силовые транзисторы являются самой дорогой частью самодельной индукционной установки. Для монтажа схемы частотного генератора необходимо приготовить 2 таких элемента. Для этих целей подойдут транзисторы марок: IRFP-150; IRFP-260; IRFP-460. При изготовлении схемы используются 2 одинаковых из перечисленных полевых транзисторов.
  3. Для изготовления колебательно контура понадобятся керамические конденсаторы ёмкостью 0,1 mF и рабочим напряжением 1600 В. Для того, чтобы в катушке образовался переменный ток высокой мощности, потребуется 7 таких конденсаторов.
  4. При работе такого индукционного прибора , полевые транзисторы будут сильно разогреваться и если к ним не будут присоединены радиаторы из алюминиевого сплава, то уже через несколько секунд работы на максимальной мощности, данные элементы выйдут из строя. Ставить транзисторы на теплоотводы следует через тонкий слой термопасты, иначе эффективность такого охлаждения будет минимальна.
  5. Диоды , которые используются в индукционном нагревателе, обязательно должны быть ультрабыстрого действия. Наиболее подходящими для данной схемы, диоды: MUR-460; UF-4007; HER – 307.
  6. Резисторы, которые используются в схеме 3: 10 кОм мощностью 0,25 Вт – 2 шт. и 440 Ом мощностью – 2 Вт. Стабилитроны: 2 шт. с рабочим напряжением 15 В. Мощность стабилитронов должна составлять не менее 2 Вт. Дроссель для подсоединения к силовым выводам катушки используется с индукцией.
  7. Для питания всего устройства понадобится блок питания мощностью до 500. Вт. и напряжением 12 – 40 В. Запитать данное устройство можно от автомобильного аккумулятора, но получить наивысшие показания мощности при таком напряжении не получится.


Сам процесс изготовления электронного генератора и катушки занимает немного времени и осуществляется в такой последовательности:

  1. Из медной трубы делается спираль диаметром 4 см. Для изготовления спирали следует медную трубку накрутить на стержень с ровной поверхностью диаметром 4 см. Спираль должна иметь 7 витков, которые не должны соприкасаться. На 2 конца трубки припаиваются крепёжные кольца для подключения к радиаторам транзистора.
  2. Печатная плата изготавливается по схеме. Если есть возможность поставить полипропиленовые конденсаторы, то благодаря тому, что такие элементы обладают минимальными потерями и устойчивой работой при больших амплитудах колебания напряжений, устройство будет работать намного стабильнее. Конденсаторы в схеме устанавливаются параллельно образуя с медной катушкой колебательный контур.
  3. Нагрев металла происходит внутри катушки, после того как схема будет подключена к блоку питания или аккумулятору. При нагреве металла необходимо следить за тем, чтобы не было короткого замыкания обмоток пружины. Если коснуться нагреваемым металлом 2 витка катушки одновременно, то транзисторы выходят из строя моментально.

Нюансы


  1. При проведении опытов по нагреву и закалке металлов , внутри индукционной спирали температура может быть значительна и составляет 100 градусов Цельсия. Этот теплонагревательный эффект можно использовать для нагрева воды для бытовых нужд или для отопления дома.
  2. Схема нагревателя рассмотренного выше (рисунок 3) , при максимальной нагрузке способна обеспечить излучение магнитной энергии внутри катушки равное 500 Вт. Такой мощности недостаточно для нагрева большого объёма воды, а сооружение индукционной катушки высокой мощности потребует изготовление схемы, в которой необходимо будет использовать очень дорогие радиоэлементы.
  3. Бюджетным решением организации индукционного нагрева жидкости , является использование нескольких устройств описанных выше, расположенных последовательно. При этом, спирали должны находиться на одной линии и не иметь общего металлического проводника.
  4. В качестве используется труба из нержавеющей стали диаметром 20 мм. На трубу «нанизываются» несколько индукционных спиралей, таким образом, чтобы теплообменник оказался в середине спирали и не соприкасался с её витками. При одновременном включении 4 таких устройств, мощность нагрева будет составлять порядка 2 Квт, что уже достаточно для проточного нагрева жидкости при небольшой циркуляции воды, до значений позволяющих использовать данную конструкцию в снабжении тёплой водой небольшого дома.
  5. Если соединить такой нагревательный элемент с хорошо изолированным баком , который будет расположен выше нагревателя, то в результате получится бойлерная система, в которой нагрев жидкости будет осуществляться внутри нержавеющей трубы, нагретая вода будет подниматься вверх, а её место будет занимать более холодная жидкость.
  6. Если площадь дома значительна , то количество индукционных спиралей может быть увеличено до 10 штук.
  7. Мощность такого котла можно легко регулировать путём отключения или включения спиралей. Чем больше одновременно включённых секций, тем больше будет мощность работающего таким образом отопительного устройства.
  8. Для питания такого модуля понадобится мощный блок питания. Если есть в наличии инверторный сварочный аппарат постоянного тока, то из него можно изготовить преобразователь напряжения необходимой мощности.
  9. Благодаря тому, что система работает на постоянном электрическом токе , который не превышает 40 В, эксплуатация такого устройства относительно безопасна, главное обеспечить в схеме питания генератора блок предохранителей, которые в случае короткого замыкания обесточат систему, там самым исключив возможность возникновения пожара.
  10. Можно таким образом организовать “бесплатное” отопление дома , при условии установки для питания индукционных устройств аккумуляторных батарей, зарядка которых будет осуществляться за счёт энергии солнца и ветра.
  11. Аккумуляторы следует объединить в секции по 2 шт., подключённые последовательно. В результате, напряжение питания при таком подключении будет не менее 24 В., что обеспечит работу котла на высокой мощности. Кроме этого, последовательное подключение позволит снизить силу тока в цепи и увеличить срок эксплуатации аккумуляторов.


  1. Эксплуатация самодельных устройств индукционного нагрева , не всегда позволяет исключить распространение вредного для человека электромагнитного излучения, поэтому индукционный котёл следует устанавливать в нежилом помещении и экранировать оцинкованной сталью.
  2. Обязательно при работе с электричеством следует соблюдать правила техники безопасност и, особенно это касается сетей переменного тока напряжением 220 В.
  3. В качестве эксперимента можно изготовить варочную поверхность для приготовления пищи по схеме указанной в статье, но эксплуатировать данный прибор постоянно не рекомендуется по причине несовершенства самостоятельного изготовления экранирования данного устройства, из-за этого возможно воздействие на организм человека вредного электромагнитного излучения, способного негативно сказаться на здоровье.

На протяжении многих лет люди проводят плавку металла. Каждый материал имеет свою температуру плавления, достигнуть которую можно только при применении специального оборудования. Первые печи для плавки металла были довольно большими и устанавливались исключительно в цехах крупных организаций. Сегодня современная индукционная печь может устанавливаться в небольших мастерских при налаживании производства ювелирных изделий. Она небольшая, проста в обращении и обладает высокой эффективностью.

Принцип действия

Плавильный узел индукционной печи применяется для нагрева самых различных металлов и сплавов. Классическая конструкция состоит из следующих элементов:

  1. Сливной насос .
  2. Индуктор, охлаждающийся водой.
  3. Каркас из нержавеющей стали или алюминия.
  4. Контактная площадка.
  5. Подина из жаропрочного бетона.
  6. Опора с гидравлическим цилиндром и подшипниковым узлом.

Принцип действия основан на создании вихревых индукционных токов Фуко. Как правило, при работе бытовых приборов подобные токи вызывают сбои, но в этом случае они применяются для нагрева шихты до требуемой температуры. Практически вся электроника во время работы начинает нагреваться. Этот негативный фактор применения электричества используется на полную мощность.

Преимущества устройства

Печь плавильная индукционная стала применяться относительно недавно. На производственных площадках устанавливаются знаменитые мартены, доменные печи и другие разновидности оборудования. Подобная печь для плавки металла обладает следующими преимуществами:

Именно последнее преимущество определяет распространение индукционной печи в ювелирном деле, так как даже небольшая концентрация посторонней примеси может негативно сказаться на полученном результате.

В зависимости от особенностей конструкции выделяют напольные и настольные индукционные печи. Независимо от того, какой именно вариант был выбран, выделяют несколько основных правил по установке:

Во время работы устройство может серьезно нагреваться. Именно поэтому поблизости не должно быть никаких легковоспламеняющихся или взрывчатых веществ. Кроме этого, по технике пожарной безопасности вблизи должен быть установлен пожарный щит .

Широкое применение получили только два типа печи: тигельные и канальные. Они обладают сходными преимуществами и недостатками, отличия заключаются лишь в применяемом методе работы:

Большей популярностью пользуется тигельная разновидность индукционных печей. Это связано с их высокой производительностью и простотой в эксплуатации. Кроме этого, подобную конструкцию при необходимости можно изготовить самостоятельно.

Самодельные варианты исполнения встречаются довольно часто . Для их создания требуются:

  1. Генератор.
  2. Тигель.
  3. Индуктор.

Опытный электрик при необходимости может сделать индуктор своими руками. Этот элемент конструкции представлен обмоткой из медной проволоки. Тигель можно приобрести в магазине, а вот в качестве генератора используется ламповая схема, собранная своими руками батарея их транзисторов или сварочный инвертор.

Использование сварочного инвертора

Печь индукционная для плавки металла своими руками может быть создана при применении сварочного инвертора в качестве генератора. Этот вариант получил самое широкое распространение, так как прилагаемые усилия касаются лишь изготовления индуктора:

  1. В качестве основного материала применяется тонкостенная медная трубка. Рекомендуемый диаметр составляет 8-10 см.
  2. Трубка изгибается по нужному шаблону, который зависит от особенностей применяемого корпуса.
  3. Между витками должно быть расстояние не более 8 мм.
  4. Индуктор располагают в текстолитовом или графитовом корпусе.

После создания индуктора и его размещения в корпусе остается только установить на свое место приобретенный тигель.

Подобная схема довольно сложна в исполнении, предусматривает применение резисторов, нескольких диодов, транзисторов различной емкости, пленочного конденсатора, медного провода с двумя различными диаметрами и колец от дросселей. Рекомендации по сборке следующие:

Созданная схема помещается в текстолитовый или графитовый корпус, которые являются диэлектриками. Схема, предусматривающая применение транзисторов , довольно сложна в исполнении. Поэтому браться за изготовление подобной печи следует исключительно при наличии определенных навыков работы.

Печь на лампах

В последнее время печь на лампах создают все реже, так как она требует осторожности при обращении. Применяемая схема проще в сравнении со случаем применения транзисторов. Сборку можно провести в несколько этапов:

Применяемые ламы должны быть защищены от механического воздействия.

Охлаждение оборудования

При создании индукционной печи своими руками больше всего проблем возникает с охлаждением. Это связано со следующими моментами:

  1. Во время работы нагревается не только расплавляемый металл, но и некоторые элементы оборудования. Именно поэтому для длительной работы требуется эффективное охлаждение.
  2. Метод, основанный на применении воздушного потока, характеризуется низкой эффективностью. Кроме этого, не рекомендуется проводить установку вентиляторов вблизи печи. Это связано с тем, что металлические элементы могут оказывать воздействие на генерируемые вихревые токи.

Как правило, охлаждение проводится при подаче воды. Создать водяной охлаждающий контур в домашних условиях не только сложно, но и экономически невыгодно. Промышленные варианты печи имеют уже встроенный контур, к которому достаточно подключить холодную воду.

Техника безопасности

При использовании индукционной печи нужно соблюдать определенную технику безопасности. Основные рекомендации:

При установке оборудования следует рассмотреть то, как будет проводиться погрузка шихты и извлечение расплавленного металла. Рекомендуется отводить отдельное подготовленное помещение для установки индукционной печи.

В статье рассмотрены схемы промышленных индукционных плавильных печей (канальных и тигельных) и индукционных закалочных установок с питанием от машинных и статических преобразователей частоты.

Схема индукционной канальной печи

Почти все конструкции промышленных индукционных канальных печей выполняются с отъемными индукционными единицами. Индукционная единица представляет собой электропечной трансформатор с футерованным каналом для размещения расплавленного металла. Индукционная единица состоит из следующих элементов, кожуха, магнитопровода, футеровки, индуктора.

Индукционные единицы выполняются как однофазными, так и двухфазными (сдвоенными) с одним или двумя каналами на один индуктор. Индукционная единица подключается ко вторичной стороне (стороне НН) электропечного трансформатора с помощью контакторов, имеющих дугогасящие устройства. Иногда включаются два контактора с параллельно работающими силовыми контактами в главной цепи.

На рис. 1 приведена схема питания однофазной индукционной единицы канальной печи. Реле максимального тока РМ1 и РМ2 служат для контроля и отключения печи при перегрузках и коротких замыканиях.

Трехфазные трансформаторы используются для питания трехфазных или двухфазных печей, имеющих либо общий трехфазный магнитопровод, либо два или три отдельных магнитопровода стержневого типа.

Для питания печи в период рафинирования металла и для поддержания режима холостого хода служат автотрансформаторы для более точного регулирования мощности в период доводки металла до нужного химического состава (при спокойном, без бурления, режиме расплавления), а также для начальных пусков печи при первых плавках, которые проводятся при малом объеме металла в ванне для обеспечения постепенной сушки и спекания футеровки. Мощность автотрансформатора выбирают в пределах 25-30% мощности основного трансформатора.

Для контроля температуры воды и воздуха, охлаждающих индуктор и кожух индукционной единицы, устанавливают электроконтактные термометры, выдающие сигнал при превышении температуры свыше допустимой. Питание печи автоматически отключается при повороте печи для слива металла. Для контроля положения печи служат конечные выключатели, сблокированные с приводом электропечи. У печей и миксеров непрерывного действия при сливе металла и загрузке новых порций шихты отключение индукционных единиц не производится.


Рис. 1. Принципиальная схема питания индукционной единицы канальной печи: ВМ - выключатель мощности, КЛ - контактор, Тр - трансформатор, С - конденсаторная батарея, И - индуктор, ТН1, ТН2 - трансформаторы напряжения, 777, ТТ2 - трансформаторы тока, Р - разъединитель, ПР - предохранители, РМ1, РМ2 - реле максимального тока.

Для обеспечения надежного питания при эксплуатации и в аварийных случаях приводные двигатели механизмов наклона индукционной печи, вентилятора, привод загрузочно-разгрузочных устройств и системы управления питаются от отдельного трансформатора собственных нужд.

Схема индукционной тигельной печи

Промышленные индукционные тигельные печи емкостью более 2 т и мощностью свыше 1000 кВт питаются от трехфазных понижающих трансформаторов с регулированием вторичного напряжения под нагрузкой, подключаемых к высоковольтной сети промышленной частоты.

Печи выполняют однофазными, и для обеспечений равномерной нагрузки фаз сети в цепь вторичного напряжения подключают симметрирующее устройство, состоящее из реактора L с регулированием индуктивности методом изменения воздушного зазора в магнитной цепи и конденсаторной батареи Сс, подключаемых с индуктором по схеме треугольника (см. АРИС на рис. 2). Силовые трансформаторы мощностью 1000, 2500 и 6300 кВ-А имеют 9 - 23 ступени вторичного напряжения с автоматическим регулированием мощности на желаемом уровне.

Печи меньших емкости и мощности питаются от однофазных трансформаторов мощностью 400 - 2500 кВ-А, при потребляемой мощности свыше 1000 кВт также устанавливают симметрирующие устройства, но на стороне ВН силового трансформатора. При меньшей мощности печи и питании от высоковольтной сети 6 или 10 кВ можно отказаться от симметрирующего устройства, если колебания напряжения при включении и выключении печи будут находиться в допустимых пределах.

На рис. 2 приведена схема питания индукционной печи промышленной частоты. Печи снабжаются регуляторами электрического режима АРИР, которые в заданных пределах обеспечивают поддержание напряжения, мощности Рп и cosфи путем изменения числа ступеней напряжения силового трансформатора и подключения дополнительных секций конденсаторной батареи. Регуляторы и измерительная аппаратура размещены в шкафах управления.


Рис. 2. Схема питания индукционной тигельной печи от силового трансформатора с симметрирующим устройством и регуляторами режима печи: ПСН - переключатель ступеней напряжения, С - симметрирующая емкость, L - реактор симметрирующего устройства, С-Ст - компенсирующая конденсаторная батарея, И - индуктор печи, АРИС - регулятор симметрирующего устройства, АРИР - регулятор режима, 1K-NK - контакторы управления емкостью батареи, ТТ1, ТТ2 - трансформаторы тока.

На рис. 3 приведена принципиальная схема питания индукционных тигельных печей от машинного преобразователя средней частоты. Печи оснащены автоматическими регуляторами электрического режима, системой сигнализации «проедания» тигля (для высокотемпературных печей), а также сигнализацией о нарушении охлаждения в водоохлаждаемых элементах установки.


Рис. 3. Схема питания индукционной тигельной печи от машинного преобразователя средней частоты со структурной схемой автоматического регулирования режима плавки: М - приводной двигатель, Г -генератор средней частоты, 1K-NK - магнитные пускатели, ТИ - трансформатор напряжения, ТТ - трансформатор тока, ИП - индукционная печь, С - конденсаторы, ДФ - датчик фазы, ПУ - переключающее устройство, УФР - усилитель-фазорегулятор, 1КЛ, 2КЛ - линейные контакторы, БС - блок сравнения, БЗ - блок защиты, ОВ - обмотка возбуждения, РН - регулятор напряжения.

Схема индукционной закалочной установки

На рис. 4 приведена принципиальная электрическая схема питания индукционного закалочного станка от машинного преобразователя частоты. Помимо источника питания М-Г схема включает в себя силовой контактор К, закалочный трансформатор ТрЗ, на вторичную обмотку которого включен индуктор И, компенсирующую конденсаторную батарею Ск, трансформаторы напряжения и тока ТН и 1TT, 2ТТ, измерительные приборы (вольтметр V, ваттметр W, фазометр) и амперметры тока генератора и тока возбуждения, а также реле максимального тока 1РМ, 2РМ для защиты источника питания от коротких замыканий и перегрузок.

Рис. 4. Принципиальная электрическая схема индукционной закалочной установки: М -приводной двигатель, Г - генератор, ТН, ТТ - трансформаторы напряжения и тока, К - контактор, 1PM, 2РМ, ЗРМ - реле тока, Рк - разрядник, А, V, W - измерительные приборы, ТрЗ - закалочный трансформатор, OВГ -обмотка возбуждения генератора, РР - разрядный резистор, РВ - контакты реле возбуждения, PC - регулируемое сопротивление.

Для питания старых индукционных установок для термообработки деталей используют электромашинные преобразователи частоты - приводной двигатель синхронного или асинхронного типа и генератор средней частоты индукторного типа, в новых индукционных установках - статические преобразователи частоты.

Схема промышленного тиристорного преобразователя частоты для питания индукционной закалочной установки показана на рис. 5. Схема тиристорного преобразователя частоты состоит из выпрямителя, блока дросселей, преобразователя (инвертора), цепей контроля и вспомогательных узлов (реакторов, теплообменников и пр.). По способу возбуждения инверторы выполняются с независимым возбуждением (от задающего генератора) и с самовозбуждением.

Тиристорные преобразователи могут устойчиво работать как с изменением частоты в широком диапазоне (при самонастраивающемся колебательном контуре в соответствии с изменяющимися параметрами нагрузки), так и при неизменной частоте с широким диапазоном изменения параметров нагрузки в связи с изменением активного сопротивления нагреваемого металла и его магнитных свойств (для ферромагнитных деталей).


Рис. 5. Принципиальная схема силовых цепей тиристорного преобразователя типа ТПЧ-800-1: L - сглаживающий реактор, БП - блок пуска, ВА - выключатель автоматический.

Преимуществами тиристорных преобразователей являются отсутствие вращающихся масс, малые нагрузки на фундамент и малое влияние коэффициента использования мощности на снижение КПД, КПД составляет 92 - 94% при полной нагрузке, а при 0,25 снижается только на 1 - 2%. Кроме того, поскольку частота может быть легко изменена в определенном диапазоне, нет необходимости регулирования емкости для компенсации реактивной мощности колебательного контура.

Принцип индукционного нагрева заключается в преобразовании энергии электромагнитного поля, поглощаемой электропроводным нагреваемым объектом, в тепловую энергию.

В установках индукционного нагрева электромагнитное поле создают индуктором, представляющим собой многовитковую цилиндрическую катушку (соленоид). Через индуктор пропускают переменный электрический ток, в результате чего вокруг индуктора возникает изменяющееся во времени переменное магнитное поле. Это — первое превращение энергии электромагнитного поля, описываемое первым уравнением Максвелла .

Нагреваемый объект помещают внутрь индуктора или рядом с ним. Изменяющийся (во времени) поток вектора магнитной индукции, созданной индуктором, пронизывает нагреваемый объект и индуктирует электрическое поле. Электрические линии этого поля расположены в плоскости, перпендикулярной направлению магнитного потока, и замкнуты, т. е. электрическое поле в нагреваемом объекте носит вихревой характер. Под действием электрического поля, согласно закону Ома, возникают токи проводимости (вихревые токи). Это — второе превращение энергии электромагнитного поля, описываемое вторым уравнением Максвелла .

В нагреваемом объекте энергия индуктированного переменного электрического поля необратимо переходит в тепловую. Такое тепловое рассеивание энергии, следствием чего является нагрев объекта, определяется существованием токов проводимости (вихревых токов). Это — третье превращение энергии электромагнитного поля, причем энергетическое соотношение этого превращения описывается законом Ленца-Джоуля .

Описанные превращения энергии электромагнитного поля дают возможность:
1) передать электрическую энергию индуктора в нагреваемый объект, не прибегая к контактам (в отличие от печей сопротивления)
2) выделить тепло непосредственно в нагреваемом объекте (так называемая «печь с внутренним источником нагрева» по терминологии проф. Н. В. Окорокова), в результате чего использование тепловой энергии оказывается наиболее совершенным и скорость нагрева значительно увеличивается (по сравнению с так называемыми «печами с внешним источником нагрева»).

На величину напряженности электрического поля в нагреваемом объекте оказывают влияние два фактора: величина магнитного потока, т. е. число магнитных силовых линий, пронизывающих объект (или сцепленных с нагреваемым объектом), и частота питающего тока, т. е. частота изменений (во времени) магнитного потока, сцепленного с нагреваемым объектом.

Это дает возможность выполнить два типа установок индукционного нагрева, которые различаются и по конструкции и по эксплуатационным свойствам: индукционные установки с сердечником и без сердечника.

По технологическому назначению установки индукционного нагрева подразделяют на плавильные печи для плавки металлов и нагревательные установки для термической обработки (закалки, отпуска), для сквозного нагрева заготовок перед пластической деформацией (ковкой, штамповкой), для сварки, пайки и наплавки, для химико-термической обработки изделий и т. д.

По частоте изменения тока, питающего установку индукционного нагрева, различают:
1) установки промышленной частоты (50 Гц), питающиеся от сети непосредственно или через понижающие трансформаторы;
2) установки повышенной частоты (500-10000 Гц), получающие питание от электромашинных или полупроводниковых преобразователей частоты;
3) высокочастотные установки (66 000-440 000 Гц и выше), питающиеся от ламповых электронных генераторов.

Установки индукционного нагрева с сердечником

В плавильной печи (рис. 1) цилиндрический многовитковый индуктор, изготовленный из медной профилированной трубки, насаживают на замкнутый сердечник, набранный из листовой электротехнической стали (толщина листов 0,5 мм). Вокруг индуктора размещают огнеупорную керамическую футеровку с узким кольцевым каналом (горизонтальным или вертикальным), где находится жидкий металл. Необходимым условием работы является замкнутое электропроводное кольцо. Поэтому невозможно расплавить отдельные куски твердого металла в такой печи. Для пуска печи приходится в канал заливать порцию жидкого металла из другой печи или оставлять часть жидкого металла от предыдущей плавки (остаточная емкость печи).

Рис.1. Схема устройства индукционной канальной печи: 1 - индикатор; 2 - металл; 3 - канал; 4 - магнитопровод; Ф - основной магнитный поток; Ф 1р и Ф 2р - магнитные потоки рассеяния; U 1 и I 1 - напряжение и ток в цепи индуктора; I 2 - ток проводимости в металле

В стальном магнитопроводе индукционной канальной печи замыкается большой рабочий магнитный поток и лишь небольшая часть полного магнитного потока, создаваемого индуктором, замыкается через воздух в виде потока рассеяния. Поэтому такие печи успешно работают на промышленной частоте (50 Гц).

В настоящее время существует большое число типов и конструкций таких печей, разработанных во ВНИИЭТО (однофазные и многофазные с одним и несколькими каналами, с вертикальным и горизонтальным закрытым каналом разной формы). Эти печи применяют для плавки цветных металлов и сплавов со сравнительно низкой температурой плавления, а также для получения высококачественного чугуна. При плавке чугуна печь используют либо в качестве копильника (миксера), либо в качестве плавильного агрегата. Конструкции и технические характеристики современных индукционных канальных печей приведены в специальной литературе.

Установки индукционного нагрева без сердечника

В плавильной печи (рис. 2) расплавляемый металл находится в керамическом тигле, помещенном внутрь цилиндрического многовиткового индуктора. изготовляют из медной профилированной трубки, через которую пропускают охлаждающую воду. Узнать подробнее о конструкции индуктора можно .

Отсутствие стального сердечника приводит к резкому увеличению магнитного потока рассеяния; число магнитных силовых линий, сцепляемых с металлом в тигле, будет крайне мало. Это обстоятельство требует соответствующего увеличения частоты изменения (во времени) электромагнитного поля. Поэтому для эффективной работы индукционных тигельных печей приходится питать их токами повышенной, а в отдельных случаях и высокой частоты от соответствующих преобразователей тока. Подобные печи имеют очень низкий естественный коэффициент мощности (cos φ=0,03-0,10). Поэтому необходимо применять конденсаторы для компенсации реактивной (индуктивной) мощности.

В настоящее время имеется несколько типов индукционных тигельных печей, разработанных во ВНИИЭТО в виде соответствующих размерных рядов (по емкости) высокой, повышенной и промышленной частоты, для плавки стали (тип ИСТ).


Рис. 2. Схема устройства индукционной тигельной печи: 1 - индуктор; 2 - металл; 3 - тигель (стрелками показана траектория циркуляции жидкого металла в результате электродинамических явлений)

Преимуществами тигельных печей являются следующие: выделяющееся непосредственно в металле тепло, высокая равномерность металла по химическому составу и температуре, отсутствие источников загрязнения металла (помимо футеровки тигля), удобство управления и регулирования процесса плавки, гигиеничность условий труда. Кроме этого, для индукционных тигельных печей характерны: более высокая производительность вследствие высоких удельных (на единицу емкости) мощностей нагрева; возможность плавить твердую шихту, не оставляя металл от предыдущей плавки (в отличие от канальных печей); малая масса футеровки по сравнению с массой металла, что уменьшает аккумуляцию тепловой энергии в футеровке тигля, снижает тепловую инерцию печи и делает плавильные печи этого типа исключительно удобными для периодической работы с перерывами между плавками, в частности для фасонно-литейных цехов машиностроительных заводов; компактность печи, что позволяет достаточно просто изолировать рабочее пространство от окружающей среды и осуществлять плавку в вакууме или в газовой среде заданного состава. Поэтому в металлургии широко применяют вакуумные индукционные тигельные печи (тип ИСВ).

Наряду с преимуществами у индукционных тигельных печей имеются следующие недостатки: наличие относительно холодных шлаков (температура шлака меньше температуры металла), затрудняющих проведение рафинировочных процессов при выплавке качественных сталей; сложное и дорогое электрооборудование; низкая стойкость футеровки при резких колебаниях температуры вследствие небольшой тепловой инерции футеровки тигля и размывающего действия жидкого металла при электродинамических явлениях. Поэтому такие печи применяют для переплава легированных отходов с целью снижения угара элементов.

Использованная литература:
1. Егоров А.В., Моржин А.Ф. Электрические печи (для производства сталей). М.: «Металлургия», 1975, 352 с.

Выплавка металла индукционным способом активно применяется в различных отраслях, например машиностроении, металлургическом и ювелирном производстве. Материал нагревается под воздействием электрического тока, что позволяет использовать тепло с максимальной эффективностью. На крупных фабриках для этого имеются специальные промышленные агрегаты, тогда как в домашних условиях можно собрать простенькую и небольшую индукционную печь своими руками.

Подобные печи популярны на производстве

Самостоятельная сборка печи

В интернете и журналах представлено множество технологий и схематичных описаний этого процесса, но при выборе стоит остановиться на какой-то одной модели, наиболее эффективной в работе, а также доступной и лёгкой в выполнении.

Самодельные плавильные печки имеют довольно простую конструкцию и обычно состоят лишь из трёх основных частей, помещённых в крепкий корпус. К ним относятся:

  • элемент, генерирующий переменный ток высокой частоты;
  • спиралевидная деталь, созданная из медной трубки или толстой проволоки, называемая индуктором;
  • тигель – ёмкость, в которой будет осуществляться прокаливание или плавка, изготовленная из огнеупорного материала.

Конечно, такое оборудование нечасто используют в быту, ведь не все мастера нуждаются в подобных агрегатах. Но технологии, встречающиеся в этих приспособлениях, присутствуют в бытовой технике, с которой многие люди имеют дело практически каждый день. Сюда можно отнести микроволновки, электрические духовки и индукционные плиты. Своими руками по схемам можно изготовить разное оборудование, если имеются необходимые знания и умения.

В этом видео вы узнаете из чего состоит данная печь

Нагрев в подобной технике осуществляется благодаря индукционным вихревым токам. Повышение температуры происходит мгновенно в отличие от других приспособлений аналогичного предназначения.

Например, индукционные плиты обладают КПД в 90%, а газовые и электрические не могут похвастаться этим значением, оно составляет лишь 30-40% и 55-65%, соответственно. Однако у ТВЧ плит есть недостаток: для их эксплуатации придётся подготовить специальную посуду.

Конструкция из транзисторов

Существует множество различных схем по сборке индукционных плавилен в домашних условиях. Простая и проверенная печь из полевых транзисторов собирается довольно легко, многие мастера, знакомые с основами радиотехники, справятся с её изготовлением по схеме, представленной на рисунке. Для создания установки нужно подготовить следующие материалы и детали:

  • два транзистора IRFZ44V;
  • медные провода (для обмотки) в изоляции из эмали, толщиной 1,2 и 2 мм (по одной штуке);
  • два колечка от дросселей, их можно снять с блока питания старого компьютера;
  • один резистор 470 Ом на 1 Вт (можно последовательно соединить два по 0,5 Вт);
  • два диода UF4007 (спокойно заменяются на модель UF4001);
  • плёночные конденсаторы по 250 Вт - одна штука ёмкостью 330 нФ, четыре - 220 нФ, три - 1 мкФ, 1 штука - 470 нФ.

Перед сборкой подобной печи не забываем про инструмент

Сборка происходит по схематическому рисунку, также рекомендуется сверяться с пошаговой инструкцией, это убережёт от ошибок и порчи элементов. Создание индукционной плавильной печи своими руками производится по следующему алгоритму:

  1. Транзисторы помещают на довольно большие радиаторы. Дело в том, что схемы могут сильно греться во время работы, поэтому так важно подобрать детали подходящего размера. Все транзисторы можно разместить и на одном радиаторе, но в таком случае придётся изолировать их, избавив от соприкосновения с металлом. В этом помогут шайбы и прокладки из пластика и резины. Правильная распиновка транзисторов показана на картинке.
  2. Затем приступают к изготовлению дросселей, их понадобится две штуки. Для этого берут медную проволоку 1,2 миллиметра в диаметре и обматывают ею кольца, взятые с блока питания. В состав этих элементов входит ферромагнитное железо в виде порошка, поэтому необходимо сделать не меньше 7-15 витков, оставляя между ними небольшое расстояние.
  3. Полученные модули собирают в одну батарею с ёмкостью 4,6 мкФ, конденсаторы соединяют параллельно.
  4. Медную проволоку толщиной 2 мм используют для обмотки индуктора. Её оборачивают 7-8 раз вокруг любого предмета цилиндрической формы, его диаметр должен соответствовать размеру тигля. Лишнюю проволоку обрезают, но оставляют довольно длинные концы: они понадобятся для подключения к другим деталям.
  5. Все элементы соединяют на плате, как показано на рисунке.

При необходимости можно соорудить корпус для агрегата, в этих целях используют только термостойкие материалы, например текстолит. Мощность аппарата можно регулировать, для чего достаточно поменять количество витков проволоки на индукторе и их диаметр.


Есть несколько вариации индукционной печи, которую можно собрать

С графитовыми щётками

Главный элемент этой конструкции собирают из графитовых щёток, пространство между которыми заполняют гранитом, измельчённым до порошкового состояния. Затем готовый модуль соединяют с понижающим трансформатором. При работе с подобным оборудованием можно не опасаться удара током, так как оно не испытывает необходимости в использовании 220 вольт.

Технология изготовления индуктивной печи из графитовых щёток:

  1. Сначала собирают корпус, для этого огнеупорный (шамотный) кирпич размером 10×10×18 см укладывают на плитку, способную переносить высокую температуру. Готовый бокс оборачивают асбестокартоном. Чтобы придать этому материалу необходимую форму, его достаточно смочить небольшим количеством воды. Размер основы напрямую зависит от мощности трансформатора, используемого в конструкции. При желании бокс можно покрыть проволокой из стали.
  2. Отличным вариантом для графитных печей станет трансформатор мощностью 0,063 кВт, взятый от сварочного аппарата. Если он рассчитан на 380 В, то в целях обеспечения безопасности можно подвергнуть его обмотке, хотя многие опытные радиотехники считают, что от этой процедуры можно отказаться без какого-либо риска. Однако рекомендуется обвить трансформатор тонким алюминием, чтобы готовый аппарат не нагревался во время работы.
  3. На дно короба устанавливают глиняную подложку, чтобы жидкий металл не растекался, после чего в бокс помещают графитовые щётки и гранитный песок.


Главным преимуществом подобных приборов считается высокая температура плавления, которая способна изменить агрегатное состояние даже палладия и платины. К недостаткам можно отнести слишком быстрый нагрев трансформатора, а также небольшую площадь печи, которая не позволит выплавить больше 10 г металла за один раз. Поэтому каждый мастер должен понимать, что если прибор собирается для обработки больших объёмов, то лучше изготовить печь иной конструкции.

Прибор на лампах

Мощную печку для плавки можно собрать из электронных лампочек. Как видно на схеме, для получения высокочастотного тока нужно параллельно соединить лучевые лампы. Вместо индуктора в этом приборе используют трубку из меди диаметром 10 мм. Также конструкцию оснащают подстроечным конденсатором, чтобы иметь возможность регулировать мощность печи. Для сборки нужно подготовить:

  • четыре лампы (тетроды) L6, 6П3 или Г807;
  • подстроечный конденсатор;
  • 4 дросселя на 100-1000 мкГн;
  • неоновую лампочку-индикатор;
  • четыре конденсатора на 0,01 мкФ.


Для начала медной трубке придают форму спирали - это будет индуктор прибора. При этом между витками оставляют расстояние не менее 5 мм, а их диаметр должен составлять 8-15 см. Концы спирали обрабатывают для прикрепления к схеме. Толщина получившегося индуктора должна быть больше, чем у тигля (его помещают внутрь), на 10 мм.

Готовую деталь размещают в корпусе. На его изготовление следует использовать материал, который обеспечит электро- и термоизоляцию начинки прибора. Затем из ламп, дросселей и конденсаторов собирают каскад, как показано на рисунке, последние соединяют в прямую линию.

Пришло время подключать неоновый индикатор: он нужен, чтобы мастер мог узнавать о готовности прибора к работе. Эту лампочку выводят на корпус печи вместе с ручкой конденсатора переменной ёмкости.

Оборудование охлаждающей системы

Промышленные агрегаты для плавления металла оснащены специальными системами охлаждения на антифризе или воде. Для оборудования этих важных установок в самодельных ТВЧ печках потребуются дополнительные затраты, из-за чего сборка может существенно ударить по кошельку. Поэтому лучше обеспечить бытовой агрегат более дешёвой системой, состоящей из вентиляторов.

Воздушное охлаждение этими устройствами возможно при их удалённом расположении от печи. В противном случае металлическая обмотка и детали вентилятора могут послужить контуром для замыкания вихревых токов, что существенно снизит эффективность оборудования.

Ламповые и электронные схемы также склонны активно нагреваться во время работы агрегата. Для их охлаждения обычно используют теплоотводящие радиаторы.

Правила использования

Опытным радиотехникам сборка индукционной печи по схемам своими руками может показаться лёгким занятием, поэтому прибор будет готов довольно быстро, а мастер захочет испробовать своё творение в деле. Стоит помнить, что при работе с самодельной установкой важно соблюдать технику безопасности и не забывать об основных угрозах, которые могут возникнуть во время эксплуатации инерционной печи:

  1. Жидкий металл и нагревательные элементы приспособления могут стать причиной сильных ожогов.
  2. Ламповые схемы состоят из деталей с высоким напряжением, поэтому во время сборки агрегата их необходимо поместить в закрытый бокс, исключив таким образом вероятность случайного прикосновения к этим элементам.
  3. Электромагнитное поле способно оказывать влияние даже на те вещи, что находятся вне короба установки. Поэтому перед включением прибора нужно убрать подальше все сложнотехнические устройства, такие как мобильные телефоны, цифровые фотоаппараты, MP3 плееры, а также снять все металлические украшения. Опасности подвергаются также люди с кардиостимуляторами: им ни в коем случаем нельзя пользоваться таким оборудованием.

Эти печи можно использовать не только для плавки, но и для быстрого нагрева металлических предметов при формовке и лужении. Меняя выходной сигнал установки и параметры индуктора, можно настроить прибор для конкретной задачи.

Для плавки небольших объёмов железа пойдут самодельные печки, эти эффективные устройства способны работать от обычных розеток. Прибор не занимает много места , его можно расположить на рабочем столе в мастерской или гараже. Если человек умеет читать простенькие электрические схемы, то ему не нужно приобретать подобное оборудование в магазине, ведь он сможет собрать небольшую печку своими руками всего за несколько часов.

Радиолюбители давно выяснили, что можно изготовить индукционные печи для плавки металла своими руками. Эти простые схемы помогут сделать твч установку для домашнего использования. Однако все описанные конструкции правильней будет назвать лабораторными инверторами Кухтецкого, так как самостоятельно собрать полноценную печку этого типа просто невозможно.