Как наматывать повышающий трансформатор эл удочку. Импульсный трансформатор

После ряда статьей про электрошоковые устройства я заметил, что у начинающих радиолюбителей возникает много вопросов связанные с намоткой катушек и трансформаторов, и вот решил об этом подробно написать.

Для начала нужно поискать старый блок питания, самый лучший вариант бп от компьютера, в нем как раз есть трансформаторы нужной величины.

Итак выпаиваем для начала трансформатор, снимаем сердечик (если трудно снимается, желательно подогреть феррит зажигалкой), после чего с каркаса нужно снять все заводские обмотки.


Обмотка содержит 12 витков с отводом от середине. Как это делают: Сначала аккуратно мотаем 6 витков, затем провод скручиваем и делаем отвод, потом мотаем еще 6. Старайтесь все витки мотать в одном ряду, виток к витку!


После намотки первичной обмотки, ее нужно изолировать. Изоляцию лично в делаю при помощи прозрачного скотча, хотя можно использовать тонкую изоляционную ленту или конденсаторную бумагу. В общей сложности на первичку ставим 5- 6 слоев изоляции.


Вторичная обмотка намотана в том же направлении, что и первичная (важно!). Содержит обмотка от 400 до 600 витков, если мотать больше, то возрастает опасность пробоя. Обмотку мотаем по слоям, в каждом слою 50 - 70 витков, после завершении намотки первого слоя ставим изоляция скотчем ии мотаем второй слой.

Для преобразования тока используются различные вид специальных устройств. Тороидальный трансформатор ТПП для сварочного аппарата и других приборов, можно намотать своими руками в домашних условиях, он является идеальным преобразователем энергии.

Конструкция

Первый двухполярный трансформатор был изготовлен еще Фарадеем, и согласно данным, это было именно тороидальное устройство. Тороидальный автотрансформатор (марка Штиль, ТМ2, ТТС4)– это прибор, предназначенный для преобразования переменного тока одного напряжения в другое. Они используется в различных линейных установках. Этот электромагнитный прибор может быть однофазным и трехфазным. Конструктивно состоит из:

  1. Металлического диска, изготовленного из рулонной магнитной стали для трансформаторов;
  2. Резиновой прокладки;
  3. Выводов первичной обмотки;
  4. Вторичной обмотки;
  5. Изоляции между обмотками;
  6. Экранирующей обмотки;
  7. Дополнительным слоем между первичной обмоткой и экранирующей;
  8. Первичной обмотки;
  9. Изоляционного покрытия сердечника;
  10. Тороидального сердечника;
  11. Предохранителя;
  12. Крепежных элементов;
  13. Покрывной изоляции.

Для соединения обмоток используется магнитопровод.

Этот тип преобразователей может классифицироваться по назначению, охлаждению, типу магнитопровода, обмоткам. По назначению бывает импульсный, силовой, частотный преобразователь (ТСТ, ТНТ, ТТС, ТТ-3). По охлаждению – воздушный и масляный (ОСТ, ОСМ, ТМ). По количеству обмоток – двухобмоточный и более.


Фото – принцип работы трансформатора

Устройство этого типа используется в различных аудио- и видеоустановках, стабилизаторах, системах освещения. Главным отличием этой конструкции от других устройств является количество обмоток и форма сердечника. Физиками считается, что кольцевая форма – это идеальное исполнения якоря. В таком случае, намотка тороидального преобразователя выполняется равномерно, как и распределение тепла. Благодаря такому расположению катушек, преобразователь быстро охлаждается и даже при интенсивной работе не нуждается в использовании кулеров.


Фото – тороидальный кольцевой преобразователь

Достоинства тороидального трансформатора :

  1. Небольшие габариты;
  2. Выходной сигнал на торе очень сильный;
  3. Обмотки имеют небольшую длину, и как результат уменьшенное сопротивление и повышенный КПД. Но также из-за этого при работе слышен определенный звуковой фон;
  4. Отличные характеристики энергосбережения;
  5. Простота в самостоятельной установке.

Преобразователь используется как сетевой стабилизатор, зарядное устройство, в качестве блока питания галогенных ламп, лампового усилителя УНЧ.


Фото – готовый ТПН25

Видео: назначение тороидальных трансформаторов

Принцип работы

Самый просто тороидальный трансформатор состоит из двух обмоток на кольце и сердечнике из стали. Первичная обмотка подключается к источнику электрического тока, а вторичная – к потребителю электроэнергии. За счет магнитопровода осуществляется соединение отдельных обмоток между собой и усиления их индуктивной связи. При включении питания в первичной обмотке создается переменный магнитный поток. Сцепляясь с отдельными обмотками, этот поток создает в них электромагнитную силу, которая зависит от количества витков намотки. Если изменять число обмоток, то можно сделать трансформатор для преобразования любого напряжения.


Фото – Принцип действия

Также преобразователи такого типа бывают понижающими и повышающими. Тороидальный понижающий трансформатор имеет высокое напряжение на выводах вторичной обмотки и низкое на первичной. Повышающий наоборот. Помимо этого, обмотки могут быть высшего напряжения или низшего, в зависимости от характеристик сети.

Как сделать

Изготовление тороидального трансформатора под силу даже молодым электрикам. Намотка и расчет не представляют собой ничего сложного. Предлагаем рассмотреть, как правильно мотать тороидальный магнитопровод для полуавтомата:


Учитывая, что 1 виток переносит 0,84 Вольт, схема намотки тороидального трансформатора выполняется по такому принципу:

Так можно с легкостью самостоятельно сделать тороидальный трансформатор 220 на 24 вольта. Описанную схему можно подключить как к дуговой сварке, так и к полуавтоматической. Параметры рассчитываются исходя из сечения провода, количества витков, размера кольца. Характеристики этого устройства позволяют производить ступенчатую регулировку. Среди достоинств принципа сборки: простота и доступность. Среди недостатков: большой вес.

Обзор цен

Купить тороидальный трансформатор HBL-200 можно в любом городе Российской Федерации и стран СНГ. Он используется для различной аудиоаппаратуры. Рассмотрим, сколько стоит преобразователь.

Процесс намотки трансформатора испытал на себе наверное каждый радиолюбитель, а небольшие радиолюбительские технологии и хитрости помогут вам справится с этой задачей.

Устройство дает возможность наматывать трансформаторные или дроссельные обмотки на круглых каркасах с внутренним диаметром 10 мм и на каркасах прямоугольного или квадратного сечения размером от 10х10 мм. Максимальная длина намотки при этом составляет 180 -200 мм. Намотку провода можно совершать вручную при диаметре до 3,2 мм, в режиме «полуавтомат» проводом диаметром от 0,31 до 2,0 мм. «Полуавтоматический» режим осуществляет намотку и укладку слоя синхронно с намоткой, с дальнейшей ручной укладкой изоляции и сменой направления укладки. Для работы с проводом различных диаметров имеется набор сменных шкивов, позволяющих задать 27 шагов намотки в интервале от 0,31 до 1,0 мм или 54 шага в пределах 0,31 – 3,2 мм. Станок с легкостью размещается на типовой табуретке и не использует дополнительных элементов крепления.

Принцип работы. Вал, на котором размещен трансформаторный каркас, кинематически сцеплен с валом, по которому передвигается укладчик провода. Он имеет втулку, внутри которой резьба. В случае вращения вала втулка движет за собой направляющее приспособление для провода. Скорость движения вала задается размерами шкивов, на верхнем и нижнем валах, а скорость движения втулки еще и шагом резьбы укладчика вала. Набор из трех тройных шкивов дает возможность составить до 54 вероятных комбинаций шага укладки. Направление укладки реверсируется перестановкой пассика. Вращение вала с каркасом можно осуществлять как вручную так и приладить шуроповерт в роли привода.

Станина устройства изготовлено из стальных листов. Основание взято толщиной 15 мм, боковины – 6 мм. Выбор обусловлен устойчивостью намоточного станка. Перед процессом сварки боковины станины следует сложить вместе и выполнить сверление отверстий сразу в двух боковинах. После этого станины монтируют на основание и приваривают к нему. В верхние и средние отверстия вставляются втулки, в нижние отверстия – подшипники, позаимствованные из старого пяти дюймового дисковода и с внешней стороны фиксируются специальными крышками.


Верхний и средний вал, на котором размещен каркас катушки, сделан из металлического прута диаметром 12 мм. В данной конструкции все валы сделаны из подходящих валов от старых и морально устаревших матричных принтеров, они выполнены из хорошей стали, закалены, хромированы и отшлифованы. Выбор диаметра самого нижнего (подающего) вала – обусловлен необходимостью в шаге резьбы минимум 1 мм. Рекомендуется изготовить этот вал тем же диаметром.

Втулка укладчика D=20 мм и такой-же длиной, с внутренней резьбой как и на нижнем валу М12х1,0 (в оригинале - М10х1,0).

Шкивы сделаны тройными их диаметры выбраны так, чтобы максимально возможно перекрыть необходимый интервал различных сечений провода. Они выточены на токарном станке из стали, их комбинация позволяет использовать 54 различных шага намотки в радиолюбительской практике. Ширина канавки для пассика задается исходя из уже имеющихся пассиков, в моем примере 6 мм. Учтите: общая толщина шкивов должна быть не выше 20 мм. Если она более – нужно увеличить длину левых хвостовиков валов (диаметр 8 мм, длина 50 мм). Кроме того можно сделать и одинарные шкивы соответствующих размеров.

Приблизительная таблица шагов

В строках указаны диаметры ведущих шкивов, в колонках – диаметры ведомых шкивов. В ячейках таблицы – шпаг намотки провода.

Укладчик провода для намотки трансформатора . Сделан из трех пластин соединенных винтами М4. С диаметром отверстий 20 мм. Отверстие в верхней части 6 мм предназначена для регулировочного винта натяжения. Внутренняя пластина выполнена из стали, в нижнее отверстие вварена стальная втулка D = l=20 ммс внутренней резьбой 12х1,0. В верхнее отверстие вбита втулка из фторопласта с внешним диаметром 20мм и внутренним диаметром 12,5 мм, Длина втулки также 20 мм. Пластины стянуты двумя винтами М4, на рисунке отверстия для них не помечены. В паз между внешними пластинами вклеен желоб из кожи толщиной от 1,8 до 2 мм, он используется для выпрямления и натяжения провода. Для регулировки натяжения в верхней части имеется винт или министрубцина, стягивающая верхнюю часть внешних пластин в зависимости от диаметра провода и нужного натяжения. В тыловой части станины монтируется откидной кронштейн под катушку с проводом, очень удобный девайс.

В роли привода для намотки трансформатора используем шестеренку большого диаметра с рукояткой. На правой боковине станины монтируется узел фиксации и вспомогательный привод, из вала с шестерёнкой, закрепленный на отдельном кронштейне с цанговым зажимом. Выступающую ось можно при желании закрепить в патроне шуруповерта. Цанговый зажим дает возможность хорошо зафиксировать вал с наматываемой катушкой, если требуется прерваться в процессе намотки.


Счётчик витков работает по следующей схеме: На шестерне верхнего вала имеется магнит, а на правой боковине – , выводы которого подклечены к контактам кнопки «=» любого калькулятора (На нем предварительно нажимают 1 + 1). Катушка с проводом размещена на отдельном валу. Вал закреплен на двух рычагах, которые можно поднять немного вверх, тогда они смогут сложиться внутрь станка для намотки трансформаторов.


Если мотать трансформаторы очень часто, то можно собрать приладу на подобию, той которая показана выше, а если раз в год, то лучше использовать следующие секреты.

Намотать прокладку на кольцевой сердечник малых размеров импульсных трансформаторов процесс достаточно сложный и утомительный, а мотать провод на голый сердечник неудобно. Изоляция медного провода может повредиться об острые грани кольца магнитопровода. Чтобы исключить возможное повреждение изоляции, необходимо очистить острые кромки магнитопровода. При помощи обычной наждачной бумаги скругляем наружные и внутренние острые грани.

Чтобы исключить пробой между обмоткой и сердечником, на кольцо следует намотать изоляционную прокладку из лакоткани, стеклолакоткани, киперной ленты и т.п. Если ничего этого нет, можно взять фторопластовую ленту, известную как ФУМ, которая широко используется в сантехнике. Работать с ней одно удовольствие, но фторопласты имеют холодную текучесть, а давление провода в области острых краёв кольца может быть достаточно велико. Поэтому рекомендуется проложить по краю кольца полоску из электрокартона или самой обычной бумаги.


При намотке на маленькие кольца очень удобно использовать монтажный крючок, который легко изготовить из куска стальной проволоки или сломанной велосипедной спицы.

Аккуратно наматываем изолирующую ленту так, чтобы каждый виток перехлёстывал предыдущий с наружной части кольца. Т.о, изоляция снаружи кольца будет двухслойной, а внутри – четырёх или даже пятислойной.

Для намотки первичной обмотки импульсного трансформатора можно использовать челнок. Его достаточно просто изготовить из двух отрезков медной проволоки. В соответствии с рисунком.


Если для обмотки используется провод диаметром меньше, чем 0,1мм, то классическая зачистка изоляции с помощью скальпеля не желательна. Изоляцию легко удалить с помощью паяльника и таблетки аспирина.

Если для обмотки применяется провод диаметром меньше 0,5мм, то выводы лучше сделать из многожильного провода, для этого припаиваем к началу первичной обмотки кусочек многожильного изолированного провода. Изолируем место пайки бумагой толщиной 0,05… 0,1мм. Наматываем начало обмотки так, чтобы место соединения было хорошо зафиксировано. Ту же операцию проделываем и с выводом конца обмотки, только на этот раз фиксируем место монтажными нитками, а концы нити закрепляем каплей канифоли или клея.


Если используется провод толще более 0,5мм, то выводы можно изготовить из этого же провода, а на концы натянуть кусочки полихлорвиниловой трубки или термокембрика. Затем выводы вместе фиксируем монтажной нитью. Поверх первичной обмотки наматываем два слоя лакоткани или ФУМ ленты.


Если под рукой нет нужного для намотки трансформатора провода, то можно использовать несколько проводов, соединенных параллельно.

Импульсные трансформаторы (ИТ) являются востребованным прибором в хозяйственной деятельности. Часто устанавливают в блоки питания бытовой, компьютерной, специальной техники. Импульсный трансформатор своими руками создают мастера с минимальным опытом работы в области радиотехники. Что это за устройство, а также принцип работы будут рассмотрены далее.

Область применения

Задача импульсного трансформатора заключается в защите электрического прибора от короткого замыкания, чрезмерного увеличения значения напряжения, нагрева корпуса. Стабильность блоков питания обеспечена импульсными трансформаторами. Подобные схемы применяются в триодных генераторах, магнетронах. Импульсник применяется при работе инвертора, газового лазера. Данные приборы устанавливают в схемах в качестве дифференцирующего трансформатора.

Радиоэлектронная аппаратура основана на трансформаторной способности импульсных преобразователей. При использовании импульсного блока питания организовывается работа цветного телевизора, обычного компьютерного монитора и т. д. Помимо обеспечения потребителя током требуемой мощности и частоты, трансформатором выполняется стабилизация значения напряжения при работе оборудования.

Видео: Как работает импульсный трансформатор?

Требования к приборам

Преобразователи в блоках питания обладают рядом характеристик. Это функциональные устройства, имеющие определенную габаритную мощность. Они обеспечивают правильное функционирование элементов в схеме.

Импульсный бытовой трансформатор обладает надежностью и высоким перегрузочным порогом. Преобразователь отличается стойкостью к механическим, климатическим воздействиям. Поэтому схема импульсного блока питания телевизоров, компьютеров, планшетов. отличается повышенной электрической устойчивостью.

Приборы обладают небольшой габаритной характеристикой. Стоимость представленных агрегатов зависит от области применения, трудозатрат на изготовление. Отличие представленных трансформаторов от иных подобных приборов заключается в их высокой надежности.

Принцип работы

Рассматривая, как работает агрегат представленного типа, нужно понять отличия между обычными силовыми установками и устройствами ИТ. Намотка трансформатора имеет разную конфигурацию. Это две катушки, связанные магнитоприводом. В зависимости от количества витков первичной и вторичной намотки, на выходе создается электричество с заданной мощностью. Например, в трансформаторе преобразовывается напряжение 12 в 220 В.

На первичный контур подаются однополярные импульсы. Сердечник остается в состоянии постоянного намагничивания. На первичной намотке определяются импульсные сигналы прямоугольной формы. Интервал между ними во времени короткий. При этом появляются перепады индуктивности. Они отражаются импульсами на вторичной катушке. Эта особенность является основой принципов функционирования подобного оборудования.

Разновидности

Выделяют разные типы импульсной схемы силового оборудования. Агрегаты отличаются в первую очередь формой конструкции. От этого зависят эксплуатационные характеристики. По виду обмотки различают агрегаты:


Поперечное сечение сердечника бывает прямоугольное, круглое. Маркировка обязательно содержит информацию об этом факте. Также различают тип обмоток. Катушки бывают:

  • Спиральные.
  • Цилиндрические.
  • Конические.

В первом случае индуктивность рассеивания будет минимальной. Представленный тип преобразователя применяется для автотрансформаторов. Намотка при этом выполняется из фольги или тенты из специального материала.

Цилиндрический тип обмотки характеризуется низким показателем рассеивания индуктивности. Это простая, технологичная конструкция.

Конические разновидности значительно уменьшают рассеивание индуктивности. Емкость обмоток при этом мало увеличивается. Изоляция между двумя слоями обмоток пропорциональна напряжению между первичными витками. Толщина контуров увеличивается от начала к концу.

Представленное оборудование отличается различными эксплуатационными характеристиками. В их число входят габаритная мощность, напряжение на первичной, вторичной обмотке, масса и размер. При указании маркировки учитываются перечисленные характеристики.

Преимущества

Блоки питания с импульсным устройством обладают массой достоинств перед аналоговыми приборами. Именно по этой причине их подавляющее большинство изготавливается по представленной схеме.

Трансформаторы импульсного типа отличаются следующими преимуществами:

  1. Малый вес.
  2. Низкая цена.
  3. Повышенный уровень КПД.
  4. Расширенный диапазон напряжения.
  5. Возможность встроить защиту.

Меньшим весом конструкция обладает из-за увеличения частоты сигнала. Конденсаторы уменьшаются в объеме. Схема их выпрямления наиболее простая.

Сравнивая обычные и импульсные блоки питания, видно, что в последних потери энергии сокращаются. Они наблюдаются при переходных процессах. КПД при этом может составлять 90-98%.

Меньшие габариты агрегатов позволяют снизить затраты на производство. Материалоемкость конечного продукта значительно уменьшается. Запитывать представленные аппараты можно от тока с различными характеристиками. Цифровые технологии, которые применяются при создании малогабаритных моделей, позволяют применять в конструкции специальные защитные блоки. Они предотвращают появление короткого замыкания, прочие аварийные ситуации.

Единственным недостатком импульсных разновидностей устройств является появление высокочастотных помех. Их приходится подавлять различными методами. Поэтому в некоторых разновидностях точных цифровых приборов подобные схемы не используются.

Разновидности материалов

Представленное оборудование изготавливается из различных материалов. Создавая блоки питания представленного типа, потребуется рассмотреть все возможные варианты. Применяются следующие материалы:

  1. Электротехническая сталь.
  2. Пермаллой.
  3. Феррит.

Одним из лучших вариантов является альсифер. Однако его практически не найти в свободной продаже. Поэтому, желая создать оборудование самостоятельно, его не рассматривают в качестве возможного варианта.

Чаще всего для создания сердечника применяется электротехническая сталь марок 3421-3425, 3405-3408. Магнитно-мягкими характеристиками известен пермаллой. Это сплав, который состоит из никеля и железа. Его легируют в процессе обработки.

Для импульсов, интервал которых находится в пределах наносекунды, используется феррит. Этот материал имеет высокое удельное сопротивление.

Расчет

Чтобы создать и намотать трансформаторные контуры самостоятельно, потребуется произвести расчет импульсного трансформатора. Применяется специальная методика. Сначала определяют ряд исходных характеристик оборудования.

Например, на первичной обмотке установлено напряжение 300 В. Частота преобразования равняется 25 кГц. Сердечник выполнен из ферритового кольца типоразмером 31 (40х25х11). Сначала потребуется определить площадь сердечника в поперечном сечении:

П = (40-25)/2*11 = 82,5 мм².

На основе полученных данных можно найти диаметр сечения провода, который потребуется для создания контуров:

Д = 78/181 = 0,43 мм.

Площадь сечения в этом случае равняется 0,12 м². Максимально допустимый ток на первичной катушке при таких параметрах не должен превышать 0,6 А. Габаритную мощность можно определить по следующей формуле:

ГМ = 300 * 0,6 = 180 Вт.

На основе полученных показателей можно самостоятельно рассчитать параметры всех составляющих будущего прибора. Создать трансформатор этого типа станет увлекательным занятием для радиолюбителя.

Подобный аппарат является надежным и качественным при правильной последовательности всех действий. Расчет проводится для каждой схемы индивидуально. При изготовлении подобного оборудования вторичная обмотка должна замыкаться на нагрузку потребителя. В противном случае прибор не будет считаться безопасным.

От типа сборки, материалов и прочих параметров зависит работа трансформатора. Качество схемы напрямую зависит от импульсного блока. Поэтом расчетам, выбору материалов уделяется высокое значение.

Интересное видео: Импульсный трансформатор своими руками

Рассмотрев особенности импульсных трансформаторов, можно понять их важность для многих радиоэлектронных схем. Создать подобное устройство самостоятельно можно только после соответствующего расчета.

Намотать трансформатор своими руками – процесс не столько сложный, сколько длительный, требующий постоянной концентрации внимания.

Тем, кто приступает к такой работе в первый раз, бывает трудно разобраться, какой материал использовать и как проверить готовый прибор. Пошаговая инструкция, представленная ниже, даст новичкам ответы на все вопросы.

Прежде чем приступить непосредственно к намотке, необходимо запастись всеми необходимыми для выполнения работы приспособлениями и инструментами:

Виды и способы, направления намотки обмоток трансформатора представлены на фото:

Изоляция слоев обмотки

В некоторых случаях между проводами требуется вставить прокладки для изоляции. Чаще всего для этого используют конденсаторную или кабельную бумагу.

Середину соседних трансформаторных обмоток следует изолировать сильнее. Для изоляции и выравнивания поверхности под следующий слой обмотки потребуется специальная лакоткань , которую нужно обернуть с обеих сторон бумагой. Если лакоткани не найдется, то решить проблему можно с помощью все той же бумаги, сложенной в несколько слоев.

Бумажные полосы для изоляции должны быть шире обмотки на 2-4 мм.

Для проверки , прежде всего надо определить выводы всех его обмоток. Полезные советы о том, как проверить трансформатор мультиметром на работоспособность, читайте в следующей статье.

Алгоритм действий

  1. Провод с катушкой закрепить в устройстве намотке , а каркас трансформатора – в устройстве намотки. Вращения делать мягкие, умеренные, без срывов.
  2. Провод с катушки опустить на каркас.
  3. Между столом и проводом оставить минимум 20 см , чтобы можно было расположить на столе руку и фиксировать провод. Также на столе должны находиться все сопутствующие материалы: наждачная бумага, ножницы, бумага для изоляции, включенный паяльный инструмент, карандаш или ручка.
  4. Одной рукой плавно вращать намоточное устройство, а второй – фиксировать провод. Необходимо, чтобы провод ложился ровно, виток к витку.
  5. Трансформаторный каркас заизолировать , а выведенный конец провода продеть сквозь каркасное отверстие и ненадолго зафиксировать на оси намоточного устройства.
  6. Намотку следует начинать без спешки: необходимо «набить руку», чтобы получалось укладывать обороты друг рядом с другом.
  7. Нужно следить, чтобы угол провода и натяжение были постоянными. Мотать каждый последующий слой «до упора» не следует, т. к. провода могу соскользнуть и провалиться в каркасные «щечки».
  8. Счетное устройство (если есть) установить на ноль либо внимательно считать витки устно.
  9. Изолирующий материал склеить или прижать мягким кольцом из резины.
  10. Каждый последующий оборот на 1-2 витка делать тоньше предыдущего.

О намотке катушек трансформатора своими руками смотрите в видео-ролике:

Соединение проводов

Если в ходе наматывания произойдет разрыв, то:

  • тонкие провода (тоньше 0,1 мм) скрутить и заварить;
  • концы проводов средней толщины (менее 0,3 мм) следует освободить от изоляционного материала на 1-1.5 см, скрутить и спаять;
  • концы толстых проводов (толще 0,3 мм) нужно немного зачистить и спаять без скрутки;
  • место спайки (сварки) заизолировать.

Важные моменты

Если для намотки используется тонкий провод, то количество витков должно превышать несколько тысяч . Сверху обмотку необходимо защитить бумагой для изоляции или дерматином.

Если трансформатор обмотан толстым проводом, то наружная защита не требуется.

Испытание

После того, как с намоткой будет закончено, необходимо испытать трансформатор в действии , для этого следует подключить к сети его первичную обмотку.

Чтобы проверить прибор на возникновение коротких замыканий, следует последовательно подключить к источнику питания первичную обмотку и лампу.

Степень надежности изоляции проверяется посредством поочередного касания выведенным концом провода каждого выведенного конца сетевой обмотки.

Проводить испытание трансформатора следует очень внимательно и осторожно, дабы не попасть под напряжение повышающей обмотки.

Если неукоснительно следовать предложенной инструкции и не пренебрегать ни одним из пунктов , то намотка трансформатора вручную не будет представлять никаких сложностей, и справиться с ней сможет даже новичок.