Классификация нейронов. По количеству цитоплазматических отростков принято различать униполярные, биполярные и мультиполярные нейроны

Предполагается, что ЦНС человека состоит примерно из 10“ нейронов. Их форма и размеры разнообразны, однако все нейроны имеют некоторые общие структурные особенности (рис. 1.1). Внешнее строение нейрона - это сома (тело) и отростки: аксон и дендри- ты. Аксон - длинный отросток, проводящий возбуждение от тела клетки к другим нейронам или к периферическим органам. Аксон отходит от сомы в месте, которое называется аксонным холмиком. На протяжении нескольких десятков микрон аксон не имеет миели- новой оболочки. Этот участок аксона вместе с аксонным холмиком называют начальным сегментом.

Схема 1. Отделы нервной системы

Далее аксон может быть покрыт миелиновой оболочкой. Мие- линовая оболочка состоит из белково-липидного комплекса - миелина и образуется вследствие многократного обертывания аксона швановскими клетками (разновидность клеток олигодендроглии).

По ходу миелиновой оболочки встречаются узловые перехваты Ранвье, соответствующие границам между шва- новскими клетками. Миели- новая оболочка выполняет изолирующую, опорную, барьерную и, по-видимому, трофическую и транспортную функции. Скорость проведения импульсов в миелинизи- рованных (мякотных) волокнах выше, чем в немиелини- зированных (безмякотных), поскольку распространение нервного импульса в них происходит скачкообразно от перехвата к перехвату, где внеклеточная жидкость оказывается в непосредственном контакте с мембраной аксона. Эволюционный смысл миелиновой оболочки состоит в экономии метаболической энергии нейрона. Мякотные волокна входят в состав чувствительных и двигательных нервов, снабжающих органы чувств и скелетную мускулатуру, принадлежат в основном к симпатическому отделу вегетативной нервной системы.

Рис. 1.1.

Мотонейрон спинного мозга. Указаны функции отдельных структурных элементов нейрона (по Р. Эккерт, Д. Рэнделл,

Дж. Огастин, 1991)

Короткие отростки (дендриты) нейрона ветвятся вокруг тела клетки. Их функция состоит в восприятии нервных импульсов, приходящих от других нейронов, и последующем проведении возбуждения к соме. Тела нейронов (сомы) в ЦНС сосредоточены в сером веществе больших полушарий головного мозга, в подкорковых ядрах, в стволе мозга, в мозжечке и в спинном мозге. Безмякотные волокна иннервируют мускулатуру, также они входят в состав вегетативной нервной системы. Миелинизированные волокна образуют белое вещество различных отделов спинного и головного мозга. Форма и размеры тел нейронов и их отростков даже в одних и тех же отделах ЦНС могут существенно различаться. Так, диаметр клеток-зерен коры больших полушарий не превышает 4 мкм, а диаметр гигантских пирамидных клеток в коре больших полушарий или в передних рогах спинного мозга может колебаться в пределах от 50 до 100 мкм и более.

Ход, длина и ветвистость отростков нервных клеток также очень варьируют. Так, аксоны большинства клеток имеют ветвления только на уровне начального сегмента (коллатерали аксона) и в конце при подходе к другой клетке или иннервируемому органу. В основной своей части они не ветвятся, в отличие от дендри- тов, ветвящихся очень интенсивно и в основном ближе к телу клетки. Длина аксонов различных клеток может измеряться как микронами (в сером веществе больших полушарий), так и десятками сантиметров (в проводящих путях спинного мозга).

Морфологическая классификация нейронов учитывает количество отростков у нейронов и подразделяет все нейроны на следующие типы (рис. 1.2):

  • униполярные нейроны имеют один отросток; отмечены у человека в период раннего эмбрионального развития, а в постнатальном онтогенезе они встречаются лишь в мезэнцефалическом ядре тройничного нерва, обеспечивая проприоцептивную чувствительность жевательных мышц;
  • биполярные нейроны имеют два отростка (аксон и дендрит), обычно отходящие от различных полюсов клетки. У человека такой тип нейронов встречается обычно в периферических отделах слуховой, зрительной и обонятельной сенсорных систем (биполярные клетки спирального ганглия, сетчатка глаза). Биполярные клетки дендритом связаны с рецептором, а аксоном - с нейроном вышележащего уровня. Разновидностью биполярных нейронов являются псевдоуниполярные нейроны. Аксон и дендрит этих клеток отходят от сомы в виде Т-образного выроста, который далее делится на два отростка. Один из них (дендрит) направляется к рецепторам, а второй (аксон) - в центральную нервную систему. Такой тип клеток отмечен в сенсорных спинальных и краниальных ганглиях и обеспечивает восприятие температурной, проприоцептивной, болевой, тактильной, барорецептивной и вибрационной чувствительности;
  • мультиполярные нейроны имеют один аксон и более двух дендритов. Они широко распространены в нервной системе человека.

Согласно функциям, клетки ЦНС разделяют на афферентные (чувствительные), эфферентные (эффекторные), вставочные (промежуточные) нейроны.

Рис. 1.2. Виды нейронов в зависимости от количества отростков: 1 -униполярный; 2 - биполярный; 3 - мультиполярный;

4 - псевдоуниполярный

Сома афферентных нейронов имеет простую округлую форму с одним отростком, который Т-образно делится на два волокна. Одно волокно отправляется на периферию и образует там чувствительные окончания (в коже, мышцах, сухожилиях), второе идет в ЦНС (в центры спинного мозга или мозгового ствола), где ветвится на окончания, которые заканчиваются на других клетках. Периферический отросток - это, скорее всего, видоизмененный дендрит, а тот отросток, который направлен в ЦНС - аксон. Сома чувствительного нейрона расположена вне ЦНС в спинномозговых ганглиях или в ганглиях черепно-мозговых нервов. К чувствительным нейронам относят некоторые нейроны в ЦНС, которые получают импульсы не непосредственно от рецепторов, а через другие, ниже расположенные нейроны, примером могут служить нейроны зрительного бугра.

Строение эфферентных нейронов аналогично строению афферентных. Однако через их аксоны осуществляется проведение возбуждения на периферию. Те из эфферентных нейронов, которые образуют двигательные нервные волокна, идущие к скелетным мышцам, называют мотонейронами. Их тела лежат в среднем, продолговатом мозге, в передних рогах спинного мозга. Многие эфферентные нейроны передают возбуждение не непосредственно на периферию, а через ниже расположенные клетки. Например, эфферентные нейроны больших полушарий или красного ядра среднего мозга, чьи импульсы идут к мотонейронам спинного мозга.

Вставочные (промежуточные) нейроны - особый тип нейронов. Главное их отличие от афферентных и эфферентных нейронов заключается в том, что они находятся внутри ЦНС и их отростки не покидают ее пределов. Эти нейроны не устанавливают непосредственной связи с чувствительными или эффекторными структурами. Они как бы вставлены между чувствительными и двигательными клетками и объединяют их между собой, иногда через очень длинные цепочки переключений. Разнообразие их форм и размеров велико, но в целом их строение соответствует строению афферентных и эфферентных нейронов. Различия определяются в основном формой сомы, а также длиной и степенью разветвленности отростков. Некоторые классификации включают до 10 и более видов вставочных нейронов. Согласно этим характеристикам выделяют пирамидные, звездчатые, корзинчатые, веретенообразные, полиморфные нейроны, клетки-зерна и т. д.

Морфологическая поляризация нейронов (дендрит - сома - аксон) связана с их функциональной поляризацией. Она проявляется в том, что только аксон клетки имеет на своих разветвлениях структуры, предназначенные для передачи активности на другие клетки. На поверхности сомы и дендритов таких структур нет. Поэтому в системе связанных друг с другом нейронов возбуждение передается только в одном направлении через отростки их нейронов.

Аксоны каждого нейрона, подходя к другим нервным клеткам, ветвятся, образуя многочисленные окончания на дендритах этих клеток, на их телах и на конечных разветвлениях - герминалях аксонов. На теле крупной пирамидной клетки коры больших полушарий может располагаться до тысячи нервных окончаний, образованных нервными отростками других нейронов, а одно нервное волокно может образовывать до 10 тысяч таких контактов на многих нервных клетках. С помощью метода электронной микроскопии исследователи детально изучили области связи между нервными клетками (межклеточные контакты), еще в 1897 г. названные Ч. Шер- рингтоном синапсами (синаптическими соединениями).

КЛАССИФИКАЦИЯ НЕЙРОНОВ

Классификация нейронов осуществляется по трем признакам: морфологическим, функциональным и биохимическим.

Морфологическая классификация нейронов учитывает количество их отростков и подразделяет все нейроны на три типа (рис.8.6): униполярные, биполярные и мультиполярные.

Рис. 8.6. Морфологическая классификация нейронов. УН – униполярный нейрон, БН – биполярный нейрон, ПУН – псевдоуниполярный нейрон, МН – мультиполярный нейрон, ПК – перикарион, А – аксон, Д – дендрит.

1. Униполярные нейроны имеют один отросток. По мнению боль­шинства исследователей, в нервной системе человека и других млеко­питающих они не встречаются. Некоторые авторы к таким клеткам все же относят амакринные нейроны сетчатки глаза и межклубочковые нейроны обонятельной луковицы.

2. Биполярные нейроны имеют два отростка - аксон и дендрит обычно отходящие от противоположных полюсов клетки. В нервной системе человека встречаются редко. К ним относят биполярные клетки сетчатки глаза, спирального и вестибулярного ганглиев.

Псевдоуниполярные нейроны - разновидность биполярных, в них оба клеточных отростка (аксон и дендрит) отходят от тела клетки в виде единого выроста, который далее Т-образно делится. Эти клетки встречаются в спинальных и краниальных ганглиях.

3. Мультиполярные нейроны имеют три или большее число отростков: аксон и несколько дендритов. Они наиболее распространены и нервной системе человека. Описано до 80 вариантов этих клеток: веретенообразные, звездчатые, грушевидные, пирамидные, корзинчатые и др. По длине аксона выделяют клетки Гольджи I типа (с длинным аксоном) и клетки Гольджи II типа (с коротким аксоном).

Функциональная классификация нейронов разделяет их по характеру выполняемой ими функции (в соответствии с их местом в рефлекторной дуге) на три типа: чувствительные, двигательные и ассоциативные .

1. Чувствительные (афферентные) нейроны генерируют нервные импульсы под влиянием изменений внешней или внутренней среды.

2. Двигательные (эфферентные) нейроны передают сигналы на рабочие органы (скелетные мышцы, железы, кровеносные сосуды).

3. Ассоциативные (вставочные) нейроны (интернейроны) осуществляют связи между нейронами и количественно преобладают над нейронами других типов, составляя в нервной системе около 99.98% от общего числа этих клеток.

Биохимическая классификация нейронов основана на химических особенностях нейромедиаторов, используемых нейронами в синаптической передаче нервных импульсов. Выделяют много различных групп нейронов, в частности, холинергические (медиатор – ацетилхолин), адренергические (медиатор – норадреналин), серотонинергические (медиатор – серотоиин), дофаминергические (медиатор – дофамин), ГАМК-ергические (медиатор - гамма-аминомасляная кислота, ГАМК), пуринергические (медиатор – АТФ и его производные), пептидергические (медиаторы - субстанция Р, энкефалины, эндорфины, вазоактивный интестинальный пептид, холецистокинин, нейротензин, бомбезин и другие нейропептиды). В некоторых нейронах терминали содержат одновременно два типа нейромедиатора.

Распределение нейронов, использующих различные медиаторы, в нервной системе неравномерно. Нарушение выработки некоторых медиаторов в отдельных структурах мозга связывают с патогенезом ряда нервно-психических заболеваний. Так, содержание дофамина снижено при паркинсонизме и повышено при шизофрении, снижение уровней норадреналина и серотонина типично для депрессивных состояний, а их повышение - для маниакальных.

НЕЙРОГЛИЯ

Нейроглия - обширная гетерогенная группа элементов нервной ткани, обеспечивающая деятельность нейронов и выполняющая неспецифические функции: опорную, трофическую, разграничительную, барьерную, секреторную и защитную функции. Является вспомагательным компанентом нервной ткани.

Мультиполярный нейрон содержит:

1.один отросток аксон

4.один отросток дендрит

Биполярный нейрон содержит:

1.один отросток аксон

2.два отростка – аксон и дендрит

3.несколько отростков, один из которых аксон, остальные - дендриты

4.один отросток дендрит

5.один отросток, отходящий от тела, который затем Т-образно делится на два отростка

Псевдоуниполярный нейрон содержит:

1.один отросток аксон

2.два отростка – аксон и дендрит

3.несколько отростков, один из которых аксон, остальные - дендриты

4.один отросток дендрит

5.один отросток, отходящий от тела, который затем Т-образно делится на два отростка

Униполярный нейрон содержит:

1.один отросток аксон

2.два отростка – аксон и дендрит

3.несколько отростков, один из которых аксон, остальные - дендриты

4.один отросток дендрит

5.один отросток, отходящий от тела, который затем Т-образно делится на два отростка

Униполярную форму имеют нейроны:

1.нейроны органов чувств

2.нейробласты

4.нейроны органов чувств и спинальных ганглиев

Псевдоуниполярные нейроны встречаются в:

1.органах чувств

3.спинномозговых ганглиях

4.органах чувств и спинальных ганглиях

5.вегетативных ганглиях

Биполярные нейроны встречаются в:

1.органах чувств

2.спинномозговых и вегетативных ганглиях

3.органах чувств, спинномозговых и вегетативных ганглиях

4.органах чувств и вегетативных ганглиях

5.вегетативных ганглиях

К секреторным нейронам относят:

1.нейроны органов чувств

2.нейробласты

3.нейроны спинномозговых узлов

4.нейроны гипоталамуса

5.нейробласты и нейроны органов чувств

Большинство нейронов организма человека является:

1.псевдоуниполярными

2.униполярными

3.биполярными

4.секреторными

5.мультиполярными

Какие из перечисленных нейронов обладают способностью синтезировать нейрогормоны

1.нейроны органов чувств

2.нейроны вегетативных ганглиев

3.нейроны спинномозговых узлов

4.нейроны гипоталамуса

5.нейроны спинномозговых узлов и нейроны органов чувств

Локализация хроматофильного вещества нейрона:

1.перикарион

2.дендриты

4.перикарион и дендриты

5.аксон и дендриты

Хроматофильное вещество представляет собой скопления:

1.гранулярной и агранулярной ЭПС

2.свободных рибосом и агранулярной ЭПС



3.полисом и комплекса Гольджи

4.гранулярной ЭПС, свободных рибосом и полисом

5.комплекса Гольджи и ЭПС

Сколько аксонов можно определить у каждого из перечисленных нейронов:

1.у каждого нейрона – по одному аксону

2.у мультиполярного нейрона – несколько аксонов

3.у биполярного нейрона – два аксона

4.у псевдоуниполярного нейрона – один или два аксона

5.у каждого нейрона – по два аксона

Назовите основную функцию нейронов:

1.транспортная

2.участие в иммунных реакциях

3.генерация и проведение нервного импульса

4.гомеостатическая

5.защитная

Какие из перечисленных нейронов не входят в морфологическую классификацию:

1.псевдоуниполярные

2.униполярные

3.биполярные

4.рецепторные

5.мультиполярные

Назовите специфические морфологические особенности цитоплазмы нейронов:

1.отсутствие немембранных органелл

2.слабое развитие ЭПС

3.большое количество пигментных включений

4.наличие хроматофильного вещества и нейрофибрилл

5.хорошо развит аппарат Гольджи, много лизосом

Рецепторные нейроны выполняют функцию:

1.восприятия импульса

3.секреторную

Эффекторные нейроны выполняют функцию:

1.восприятия импульса

2.передачи импульса на ткани рабочих органов

3.секреторную

4.обеспечения существования и функционирования нервных клеток

5.осуществления связи между нейронами

Ассоциативные нейроны выполняют функцию:

1.восприятия импульса

2.передачи импульса на ткани рабочих органов

3.секреторную

4.обеспечения существования и функционирования нервных клеток

5.осуществления связи между нейронами

Макроглия развивается из:

1.нейробластов

2.мезенхимы

3.глиобластов нервной трубки

4.нервного гребня

5.кожной эктодермы

Микроглия развивается из:

1.нейробластов

2.мезенхимы

3.глиобластов нервной трубки

4.нервного гребня

5.кожной эктодермы

Какие клетки нейроглии обладают фагоцитарной активностью:

1.эпендимоциты

2.астроциты

3.олигодендроциты

4.все виды макроглии

5.микроглия

Функция эпендимоцитов:

1.опорная и разграничительная

Функция астроцитов:

1.опорная и разграничительная

2.секреция спинномозговой жидкости

3.трофическая, участие в обмене веществ нейронов, образование миелиновых оболочек

4.защита от инфекции и повреждения, удаление продуктов разрушения нервной ткани

5.генерация и проведение нервного импульса

Функция олигодендроцитов:

1.опорная и разграничительная

2.секреция спинномозговой жидкости

3.трофическая, участие в обмене веществ нейронов, образование миелиновых оболочек

4.защита от инфекции и повреждения, удаление продуктов разрушения нервной ткани

5.генерация и проведение нервного импульса

Функция клеток микроглии:

1.опорная и разграничительная

2.секреция спинномозговой жидкости

3.трофическая, участие в обмене веществ нейронов, образование миелиновых оболочек

4.защита от инфекции и повреждения, удаление продуктов разрушения нервной ткани

5.генерация и проведение нервного импульса

Нейроглия, выстилающая желудочки мозга и спинномозговой канал, представлена:

1.протоплазматическими астроцитами

2.эпендимоцитами

3.волокнистыми астроцитами

4.микроглиоцитами

5.олигодендроцитами

Какие из перечисленных нейронов не входят в функциональную классификацию?

1.рецепторные

2.биполярные

3.вставочные

4.моторные

5.рецепторные, вставочные

Цереброспинальную жидкость секретируют:

1.астроциты

2.эпендимоциты

3.олигодендроциты

4.астроциты и микроглиоциты

5.микроглиоциты

Функцию изоляции нейронов от внешних влияний выполняют:

1.астроциты

2.эпендимоциты

3.олигодендроциты

4.астроциты и микроглиоциты

5.микроглиоциты

Какие клетки нервной ткани являются глиальными макрофагами?

1.астроциты

2.эпендимоциты

3.олигодендроциты

4.астроциты и эпендимоциты

5.микроглиоциты

Глиоциты ганглия представлены клетками:

1.астроцитами

2.эпендимоцитами

3.олигодендроцитами

4.астроциты и микроглиоцитами

5.микроглиоцитами

Какие клетки нейроглии происходят от промоноцитов костного мозга?

1.астроциты

2.эпендимоциты

3.олигодендроциты

4.астроциты и эпендимоциты

5.микроглиоциты

В образовании оболочек нервных волокон участвуют:

1.астроциты

2.эпендимоциты

3.олигодендроциты

4.астроциты и микроглиоциты

5.микроглиоциты

При раздражении клетки теряют отростчатую форму и округляются, образуя зернистые шары. Какие это клетки?

1.астроциты

2.эпендимоциты

3.олигодендроциты

4.астроциты и микроглиоциты

5.микроглиоциты

В процессах дегенерации и регенерации нервных волокон основная роль принадлежит:

1.эпендимоцитам

2.волокнистым астроцитам

3.протоплазматическим астроцитам

4.нейролеммоцитам

5.микроглии

Определите тип синапса: терминальные ветви аксона одного нейрона оканчиваются на теле другого нейрона:

1.аксоаксональный

2.аксосоматический

3.аксодендритический

4.соматосоматический

5.дендродендрический

Определите тип синапса: терминальные ветви аксона одного нейрона контактируют с дендритом другого нейрона:

1.аксоаксональный

2.аксосоматический

3.аксодендритический

4.соматосоматический

5.дендродендрический

Определите тип синапса: терминальные ветви аксона одного нейрона оканчиваются на аксоне другого нейрона:

1.аксоаксональный

2.аксосоматический

3.аксодендритический

4.соматосоматический

5.дендродендрический

Мезенхимное происхождение имеют клетки нейроглии:

1.астроциты

2.эпендимоциты

3.олигодендроциты

4.все макроглиоциты

Организм человека представляет собой сложную систему, в работе которой принимает участие множество отдельных блоков и компонентов. Внешне устройство тела видится элементарным и даже примитивным. Однако если заглянуть глубже и попытаться выявить схемы, по которым происходит взаимодействие между разными органами, то на первый план выйдет нервная система. Нейрон, являющийся основной функциональной единицей этой структуры, выступает в качестве передатчика химических и электрических импульсов. Несмотря на внешнее сходство с другими клетками, он выполняет более сложные и ответственные задачи, поддержка которых важна для психофизической деятельности человека. Для понимания особенностей данного рецептора стоит разобраться с его устройством, принципами работы и задачами.

Что такое нейроны?

Нейрон является специализированной клеткой, которая способна принимать и обрабатывать информацию в процессе взаимодействия с другими структурно-функциональными единицами нервной системы. Количество данных рецепторов в мозге составляет 10 11 (сто миллиардов). При этом один нейрон может содержать более 10 тысяч синапсов - чувствительных окончаний, посредством которых и происходят С учетом того, что данные элементы могут рассматриваться в качестве блоков, способных хранить информацию, можно сделать вывод о содержать огромные объемы информации. Также нейроном называется структурная единица нервной системы, обеспечивающая работу органов чувств. То есть рассматривать данную клетку следует как многофункциональный элемент, предназначенный для решения различных задач.

Особенности нейронной клетки

Виды нейронов

Основная классификация предполагает разделение нейронов по структурному признаку. В частности, ученые выделяют безаксонные, псевдоуниполярные, униполярные, мультиполярные и биполярные нейроны. Надо сказать, что некоторые из этих видов пока мало изучены. Это относится к безаксонным клеткам, которые группируются в области спинного мозга. Также ведутся споры в отношении униполярных нейронов. Есть мнения, что подобные клетки и вовсе не присутствуют в теле человека. Если же говорить о том, какие нейроны преобладают в организме высших существ, то на первый план выйдут мультиполярные рецепторы. Это клетки, располагающие сетью дендритов и одним аксоном. Можно сказать, это классический нейрон, наиболее часто встречающийся в нервной системе.

Заключение

Нейронные клетки являются неотъемлемой составляющей человеческого организма. Именно благодаря этим рецепторам обеспечивается ежедневное функционирование сотен и тысяч химических передатчиков в теле человека. На современном этапе развития наука дает ответ на вопрос о том, что такое нейроны, но при этом оставляет и пространство для будущих открытий. К примеру, на сегодняшний день есть разные мнения относительно некоторых нюансов работы, роста и развития клеток этого типа. Но в любом случае изучение нейронов является одной из главнейших задач нейрофизиологии. Достаточно сказать, что новые открытия в этой области способны пролить свет на более эффективные способы лечения многих психических заболеваний. Кроме того, глубокое понимание принципов работы нейронов позволит разрабатывать средства, стимулирующие умственную деятельность и улучшающие память в новом поколении.

а Биполярные нейроны

У этих нейронов один отросток (дендрит), ведущий в тело клетки, и аксон - ведущий из него. Этот тип нейронов в основном находится в сетчатке глаза.

б Однополярные нейроны

Однополярные нейроны (иногда их называют псевдооднополярными) изначально являются биполярными, но в процессе развития их два отростка соединяются в один. Они находятся в нервных узлах (ганглиях), преимущественно в периферической нервной системе, вдоль спинного мозга.

в Мультиполярные нейроны

Это самый частый тип нейронов. У них несколько (три или более) отростков (аксонов и дендритов), исходящих от тела клетки, и они находятся во всей центральной нервной системе. Хотя большинство из них имеет один аксон и несколько дендритов, есть и такие, у которых только одни дендриты.

г Промежуточные (вставочные) нейроны

Промежуточные (вставочные) нейроны, или ассоциативные нейроны, являются линией связи между сенсорными и двигательными нейронами. Промежуточные нейроны находятся в центральной нервной системе. Они мультиполярные и обычно имеют короткие отростки.

Нейрон Строение Функция
Центростремительные
(сенсорные нейроны)
Тело клетки находится в ПНС
Короткий аксон, ведущий в ЦНС
Длинные дендриты (разветвленные отростки) находятся в ПНС
Передает сигналы к ЦНС со всего тела
Центробежные
(двигательные нейроны)
Тело клетки находится в ЦНС
Длинный аксон, ведущий в ПНС
Отсылают сигналы от ЦНС к телу
Промежуточные нейроны Длинный или короткий аксон, находящийся в ЦНС
Короткие дендриты (разветвленные отростки) находятся в ЦНС
Передает импульсы между
центростремительными и центробежными нейронами

Нейроны по функциям

Нейроны (нервные клетки) образуют особую сеть. Самые простые из этих сетей контролируют рефлекторные действия (см. стр. 24-25), которые являются полностью автоматическими и бессознательными. Более сложные сети управляют сознательными движениями.

Рефлекторные дуги

Нервные пути часто называют нервным током, так как они несут электрический импульс. Импульс обычно появляется в одно- полярном центростремительном нейроне, который соединен с каким-либо рецептором в периферической нервной системе. Импульс передается вдоль аксона клетки в центральную нервную систему (ЦНС). Этот импульс может пройти через один аксон, а может, что более вероятно, через несколько центростремительных нейронов по пути. Центростремительные импульсы обычно попадают в ЦНС в спинном мозге через один из спинномозговых нервов.

Соединения

Как только импульс попадает в ЦНС, он переходит к другому нейрону. Из электрического импульса, проходящего между клетками, сигналы химическим путем передаются через крошечную щель, называемую синапсом. В самых простых рефлекторных путях центростремительный нейрон переходит к промежуточному нейрону. Затем он переходит к центробежному нейрону, который несет сигнал из ЦНС к эффектору (нервному окончанию) — например, мышце.

Более сложные пути включают прохождение импульсов через несколько частей ЦНС. В этом случае импульс передается сначала мультиполярному нейрону. (Большинство нейронов в ЦНС являются мультиполярными.) Отсюда импульс может пройти еще к нескольким мультиполярным нейронам, пока его будут перенаправлять к головному мозгу. Один из этих многополярных нейронов связан с одним или несколькими нервными окончаниями, которые передают ответный импульс через периферическую систему к соответствующему эффектору (мышце).