Котлы газовые водогрейные промышленные. Водотрубные газовые котлы квг

Котлы КВ-Г (котел водогрейный газовый) (рис. 71) выпускаются теплопроизводительностью 4 и 6,5 Гкал/ч (4,65 и 7,56 МВт) вместо котлов ТВГ. Это прямоточные секционные котлы, работающие на газовом топливе, и представляют собой трубную систему, скомпонованную в одном транспортабельном блоке. Трубная система состоит из радиационной и конвективной поверхностей нагрева, по типу подогревателей кожухотрубных и теплообменников.

К радиационной поверхности относятся четыре топочных экрана и потолочный. Трубы крайних односветных топочных экранов и потолочного по всей высоте (длине) соединены между собой металлическими пластинами. Каждый топочный экран представляет собой отдельную секцию, состоящую из прямых труб, вваренных в верхний и нижний коллекторы.

Для заданного направления движения воды по топочным экранам верхние коллекторы имеют смещенную от центра глухую перегородку (15 и 23 трубы). Топочные экраны соединяются между собой перепускными трубами.

Рис. 71. Трубная система (часть) котла водогрейного КВГ-6,5-150: коллекторы: 1 — входа обратной воды; 6 и 9 — задние; 8 и 10- верхние боковые конвективной части; 11 — выход горячей воды; 15 — верхние потолочные экраны; 16 — передний; 17 — нижние топочные экраны; перегородки: 2 — из труб; 3 — в трубах конвективной части; 13 — в верхних коллекторах топочных экранов; 4 — пакеты змеевиков; экраны: 5 — конвективные; 12 — потолочный, переходящий во фронтовой;
18 — боковой; 7 и 14- перепускные трубы

Конвективная поверхность нагрева состоит из двух секций — правой и левой, в каждой по семь труб 0 51 х2,5 мм, вваренных одними концами в верхние, а другими — в нижний коллекторы, т. е. представляют собой нижние и боковые части поверхности нагрева. В боковые трубы вварены четыре пакета трехтрубных змеевиков 0 28×3 мм. Для направления движения воды в змеевиках в боковых трубах установлены глухие перегородки.

Радиационную поверхность от конвективной отделяет перегородка из горизонтально размещенных труб 0 28×3 мм, соединенных между собой металлическими пластинами. Эта перегородка в верхней части находится на уровне верхних змеевиков. Таким образом, через оставленное сверху пространство продукты сгорания топлива из радиационной поверхности нагрева переходят в конвективную, обогревая змеевики, а затем через газоходы и дымовую трубу удаляются в атмосферу.

Для очистки от накипи и шлама все коллекторы вертикальных и потолочных экранов имеют съемные лючки на торцах, а верхние коллекторы топочных экранов — съемные лючки и сверху (по одному).

Котлы (водоподогреватели) оборудуются тремя подовыми, с прямой щелью горелками, которые устанавливаются между вертикальными топочными экранами. Горелка имеет два ряда отверстий 0 1,5 мм, размещенных в шахматном порядке.

В гарнитуру котла входят взрывные клапаны, лючки и лазы. Для осмотра и ремонта внутри топки на фронте котла есть три люка-лаза. Для периодического осмотра состояния поверхности нагрева можно использовать отверстия двух взрывных клапанов, которые находятся в верхней части задней стены конвективной поверхности нагрева.
Циркуляция воды в котлах КВ-Г. Обратная вода из тепловой сети после циркуляционного насоса поступает во входной коллектор конвективной поверхности нагрева. Из коллектора вода двумя потоками, вправо и влево, проходит по стоякам и змеевикам и попадает в выходные коллекторы (правый и левый).

Вода из этих коллекторов по перепускным трубам попадает в крайние задние коллекторы потолочного экрана, из которых по 11 крайним трубам проходит по потолку, переходя во фронтовой экран и по нему в передний коллектор. В коллекторе потоки смешиваются и по 11 средним трубам вода попадает в задний (средний) » коллектор потолочного экрана. Из этого коллектора вода двумя перепускными трубами подается в заднюю часть верхнего коллектора левого топочного экрана. Затем по 16 трубам вода опускается вниз и попадает в нижний коллектор. По нему вода проходит вперед и по 24 трубам поднимается в переднюю часть верхнего коллектора.

Вода, двигаясь последовательно по всем экранам, нагревается и из задней части верхнего коллектора правого экрана поступает в выходной коллектор котла. На коллекторе установлены манометр, термометр, предохранительный и обратный клапаны, и из коллектора вода поступает в тепловую сеть.

Общие сведения о паровых котлах

Паровые стационарные котлы в соответствии с ДСТ 3619 регламентируются по паропроизводительности — от 0,16 до 2 500 т/ч и давлению от 9 до 255 кгс/см2.

Простейшим паровым котлом может быть чугунный или стальной секционный водогрейный котел с установленным над ним паросборником с соответствующей арматурой. Такие котлы вырабатывают насыщенный пар с давлением до 0,7 кгс/см2.

Вертикально-цилиндрические котлы ММЗ, ВГД и ТМЗ отличались простотой конструкции, компактностью, транспортабельностью, отсутствием тяжелой огнеупорной обмуровки. К их недостаткам можно отнести сложность очистки от накипи и сажи, сложность ремонта кипятильных и газовых труб, ненадежность их соединения с помощью упорных колец, плохую циркуляцию воды, высокую температуру выходящих дымовых газов и др.
Поэтому паровые котлы старых конструкций сняты с производства и заменены новыми усовершенствованными автоматизированными котлами.

Циркуляция — это беспрерывное движение воды в паровом котле для обеспечения его нормальной работы (рис. 72). Циркуляция — естественная и искусственная.
Искусственная происходит с помощью циркуляционного насоса, а естественная — вследствие того, что пароводяная смесь, которая образуется на обогревочных участках, легче, чем вода на необогреваемых.
Для естественной циркуляции основной характеристикой является кратность циркуляции — отношение расходов жидкости, которая проходит по циркуляционному контуру, к паропроизводительности этого контура. Для котлов малой и средней производительности кратность циркуляции 8-50.

Рис. 72. Схема естественной циркуляции в простейшем контуре парового котла: 1 — коллектор; 2 — опускная труба; 3 — барабан котла; 4 — подъемная труба

КВ-Г-0,4-0,8-95Н

1. Назначение

Водогрейные котлы предназначены для получения горячей воды давлением 0,6 МПа и температурой 95°С, используемой в системах отопления и горячего водоснабжения жилых, общественных и производственных зданий.

2. Устройство и работа изделия и его составных частей.

2.1. Котел состоит из стального цилиндрического корпуса, внутри которого расположен циркуляционный контур, снаружи корпуса закреплен газоотводящий короб, снизу к корпусу крепится охлаждаемая циклонная топка. Верхнее отверстие корпуса закрыто охлаждаемой крышкой. С наружи корпус котла обшит листом, между которым и стенкой корпуса проложен теплоизолирующий материал.

2.2. Циркуляционный контур котла включает в себя циркуляционные контура топки и корпуса.

2.3. Циркуляционный контур топки образован делением цилиндров топки на две камеры (верхнюю и нижнюю) с помощью перегородки. Подвод воды осуществляется через патрубок, вваренный в нижнюю камеру. Вода из нижней камеры перетекает в верхнюю через отверстие в перегородке.С помощью перепускного трубопровода вода поступает в контур корпуса.

2.4. Циркуляционный контур корпуса состоит из двух сварных кольцевых гидрокамер прямоугольного сечения, соединенных вертикальными трубами O51x3. Трубы приварены к кольцевым гидрокамерам по двум концентрическим окружностям. Во внутренней окружности -33 трубы, в наружной -43 трубы, c целью равномерного распределения воды по трубам в котле выполнена многоходовая схема движения воды. Для этого в верхней и нижней гидрокамерах установлено по шесть радиальных перегородок, делящих гидрокамеры на шесть секций каждую, при этом перегородки в одной из гидрокамер установлены в шахматном порядке относительно перегородок другой гидрокамеры. Таким образом, создано одиннадцать ходов для движения воды в циркуляционном контуре котла. Вода поступает в семь труб (три трубы внутренней окружности и четыре трубы наружной окружности труб) первой секции нижней гидрокамеры, поднимается по этим трубам в первую секцию верхней гидрокамеры, опускается по семи трубам во вторую секцию нижней гидрокамеры, опять поднимается по семи трубам во вторую секцию верхней гидрокамеры и т. п. поднимается по шести трубам в шестую секцию верхней гидрокамеры котла, откуда по трубопроводу "прямой" воды поступает в теплосеть. Вода в гидрокамерах движется против часовой стрелки. Сверху на крышке установлены два штуцера для подвода и отвода охлаждающей воды. Вода для охлаждения крышки используется в основном циркуляционном контуре. Трубы в котле между собой соединены стальными перегородками, плавниками 12. Плавники привариваются к каждым двум соседним по ряду трубам. При этом все плавники привариваются сплошным швом. Между одиннадцатью трубами внутреннего ряда плавники не устанавливаются для возможности выхода продуктов сгорания из топки котла в первый газоход Первый газоход образован внутренним и наружным рядами труб. Второй газоход образован наружным рядом труб и обечайкой котла. Продукты сгорания, выходя из топки, последовательно проходят через первый и второй газоходы и через дымоотводящий патрубок направляются в трубу для выброса в атмосферу.

2.5. Котлы могут быть оборудованы любыми зарубежными и отечественными газовыми горелками соответствующей производительности (имеющие соответствующие технические характеристики и сертификат соответствия Госстандарта РФ, разрешение Ростехнадзора).

2.6. Диаметр трубопроводов подвода/отвода воды - Ду 80.

При необходимости по согласованию с заказчиком котлы могут быть укомплектованы автоматизированными горелками, насосами и др. оборудованием

Технические характеристики

КВ-Г-0,4-95Н

КВ-Г-0,8-95Н

Вид топлива

Рабочее давление воды, МПа

Температурный режим, ° C

Гидравлическое сопротивление, МПа

Диапазон регулирования теплопроизводительности по отношению к номинальной, %

Масса котла, кг

Расход воды, т/ч

Расход топлива (газ), м 3 /ч

Средняя наработка на отказ, ч, не менее

КПД котла, %, не менее, газ

Удельный выброс оксидов азота, мг/м?

Удельный выброс оксида углерода, мг/м?

Температура наружной (изолированной) поверхности нагрева котла, ° C

КВ-Г-4,65-7,56-95Н(115H)

1.Назначение.

1.1. Водогрейные котлы предназначены для получения горячей воды давлением 0,6 (6) МПа (кгс/см 2) и номинальной температурой 95 ° С либо 115 ° С, используемой в системах отопления жилых, общественных и производственных зданий. В качестве основного топлива используется природный газ, резервное - дизельное топливо.

2. Состав и работа котла.

2.1. Котлы выполнены в газоплотном исполнении, имеют горизонтальную компоновку, состоят из топочной камеры и конвективного газохода.

Топочная камера, имеющая горизонтальную компоновку, экранирована трубами O60х3 с шагом 90мм, входящими в коллекторы O159х4,5 мм. Конвективная поверхность нагрева состоит из U-образных ширм из труб O28х3 с шагом S1=64мм и S2=40 мм. Боковые стены конвективного газохода закрыты трубами O83х3,5 мм и являются одновременно стояками конвективных ширм.

2.2. Котлы могут быть оборудованы любыми зарубежными и отечественными газовыми горелками соответствующей производительности, имеющими соответствующие технические характеристики и сертификат соответствия Госстандарта РФ (см. табл.)

2.3. Несущий каркас у котлов отсутствует. Котлы имеют опоры, приваренные к нижним коллекторам.

2.4. Котлы изолируются теплоизоляционным материалом и поставляются в обшивке из металлического листа.

3. Качество сетевой подпиточной воды.

3.1.Качество сетевой подпиточной воды должно соответствовать РД 24.031.120-91.

* Котел поставляется одним транспортабельным блоком.

4. Технические характеристики

Технические характеристики

КВ-Г-4,65-95Н

КВ-Г-7,56-95Н

КВ-Г-4,65-95Н
(режим 70-115)

КВ-Г-7,56-95Н
(режим 70-115)

Номинальная теплопроизводительность, МВт

Вид топлива

Рабочее давление воды, МПа

Температурный режим, ° C

Расчетное гидравлическое сопротивление, МПа

Расход воды, т/ч на

Расход топлива (расчетный), м?/ч

Расход воздуха, м?/с (м?/ч)

Средний срок службы до списания, лет,

КПД котла, %не менее, газ

Температура уходящих газов, ° C

Расчетное аэродинамическое сопротивление, Па

Лучевоспринимающая поверхность нагрева, м 2

Конвективная поверхность нагрева, м 2

5. Комплектность поставки котлов серии КВ-Г

Котлы комплектуются (по желанию заказчика):

• Автоматикой, вентиляторами - в соответствии с вышеприведённой таблицей;

• Запорной арматурой.

), факт остаётся фактом - из 17 единиц, построенных для отечественного ВМФ, в настоящий момент боеспособны только три (18% ), причём боеспособны ограниченно. Об этом говорит тот факт, что их предпочитают не выпускать за пределы "домашних" морей - Баренцева, Японского, Балтийского. В то же самое время, аналогичный "показатель выживаемости" газотурбинных ровесников "Сарычей" - БПК пр. 1155, составляет 62% (8 из13) - в 3,5 раза выше. И это при том, что "Фрегаты" почти не бывают дома, неустанно демонстрируя Андреевский флаг по всему земному шару.


Эсминец пр. 956 "Настойчивый" в Гдыне, 14.07.2008 (фото Tomasz с shipspotting.com, 3010 пикс.). Причинами чёрного дыма - явления досадного, но поправимого, могут быть : недостаток воздуха в топке, неправильная работа топочных устройств (форсунок), низкие температура и давление подаваемого топлива, неисправность системы автоматического регулирования.

Бытуют две распространённых точки зрения на причины неприятностей кораблей 956-го проекта: "виновата ГЭУ" и "виноват личный состав". Попробуем разобраться, какая из них ближе к действительности.


Вариант 1: виновата ГЭУ

Мнение об ущербности ГЭУ, наверное, лучше всего обосновал один из участников Морского форума Авиабазы : "напряжение топочного объёма котлов конструкторы увеличили, а там мучайтесь как хотите. На пр. 56 напряжение было в 2,5 раза ниже, и трубки летели гораздо меньше, хотя сталь трубок была проще и дешевле" (процитировано в вольном изложении, ссылка 2 ). Для справки: тепловое напряжение топочного объёма характеризует степень совершенства парового котла и представляет собой количество тепла (в Ккал), выделяющегося в одном кубическом метре топочного объёма в единицу времени (в час) при сжигании подаваемого в топку топлива [ 1 -14].

С эсминцами пр. 56 сравнивают "Сарычей" и Кузин с Никольским : "Решение [применить КТУ] было обоснованным, но реализовано оно было без учёта многих особенностей эксплуатации КТУ с ещё более напряжёнными котлами, чем на пр. 56 ... Установка требовала квалифицированного ухода при эксплуатации и дефицитных расходных материалов, которых на флотах не всегда было в достатке. В результате при нарушении правил эксплуатации... начались аварии и стало складываться явное предубеждение к установкам такого типа. В своё время, внедрив высокие параметры пара на пр. 56, была "закрыта" подача воздуха в котлы, теперь... [был сделан] следующий шаг по повышению напряжённости котлов..." [ 2 -150].

Если не дочитать монографию КиН до конца (по крайней мере, до стр. 415-421), может сложиться впечатление, что в течение без малого 20 лет, прошедших между вступлением в строй последнего ЭМ пр. 57-бис (развития пр. 56) и головного ЭМ пр. 956, боевые корабли с котлотурбинными установками в СССР вообще не строились, а ГЭУ "Сарыча" стала едва ли не технической авантюрой. Чтобы убедиться в обратном, придётся заглянуть в историю, начав издалека.

На первых послевоенных советских эсминцах пр. 30-бис стояли котлы с низкими параметрами пара (28 атм, 370 ° C ) и вентиляторным дутьём воздуха в котельное отделение (они были аналогичны тем, что применялись на довоенных пр. 7 и 7У). Высокие параметры пара (64 атм, 470 ° C ) были впервые применены в котлах 2-го поколения на ЭМ пр. 41 (прототипе пр. 56 и 57). Достигались они, в числе прочего, за счёт закрытого дутья непосредственно в топку котла (того самого "закрытия" подачи воздуха, о котором говорилось выше).

В высоконапорных котлах 3-го поколения, впервые установленных на РКР пр. 58, помимо высоких параметров пара были применены турбонаддувочные агрегаты (ТНА), которые позволили увеличить теплонапряжение топочного объёма по одним данным - в два [ 3 ], по другим - в три [ 2 -419] раза. И параметры пара, и теплонапряжение повышались главным образом ради увеличения агрегатной мощности ГТЗА (в конечном итоге - для поддержания заданной скорости хода при растущем водоизмещении) при сохранении приемлемых массогабаритных характеристик и экономичности (за счёт снижения удельной массы котлов и удельного расхода топлива).

Краткая история послевоенного отечественного котлостроения представлена в таблице :

Как видно из таблицы, в КТУ эсминцев пр. 956 нет ничего принципиально нового - это всего лишь усовершенствованный вариант силовой установки, созданной 18 годами ранее. От своей предшественницы - КТУ БПК пр. 1134А и ТАВКР пр. 1143, она отличается форсированием до 50000 л.с. (возможность которого определилась ещё при создании ГЭУ РКР пр. 58 [ 3 ]) и более экономичным ТНА. Конструкция котла КВН 98/64 аналогична конструкции КВН 95/64 [ 2 -419] - самого первого высоконапорного котла обр. 1962 г., а КВГ-3 отличается от КВН 98/64 лишь количеством трубок, их диаметром (30 мм вместо 25 мм), толщиной их стенок и слегка изменённой конструкцией экономайзера (ссылка 3 ).

Никакого " возврата к высоконапорным агрегатам, к которому отечественный ВМФ оказался технически и организационно неподготовленным" (о чём, противореча сами себе, пишут Кузин и Никольский [ 2 -418]), на самом деле не было - была ярко выраженная преемственность. К моменту передачи флоту "Современного" (25.12.1980) в состав ВМФ входили и активно эксплуатировались 23 корабля с высоконапорными котлами КВН 95/64 и 98/64 : 4 РКР пр. 58 (списаны в 1990-2002 г.г.), 2 ПКР пр. 1123 (1991-1996), 4 РКР пр. 1134 (1989-1994), 10 БПК пр. 1134А (1991-1993), последний из которых вступил в строй всего на три года раньше головного "Сарыча" и, наконец, 3 ТАВКР пр. 1143 (1993).

Ко дню распада СССР (26.12.1991) в составе ВМФ (с учётом списания) было уже 33 корабля 1-го ранга с высоконапорными котлами - почти столько же, сколько с газовыми турбинами (35 ). Учитывая многолетний опыт массовой эксплуатации котлов КВН 98/64, отработанную технологию их ремонта, действующую производственную базу и доступный ЗИП, можно утверждать, что по крайней мере в 1980-1990 г.г. эсминцы пр. 956 не испытывали серьёзных проблем с ГЭУ, что подтверждается их высокой наплаванностью в этот период времени. По этой причине версия о врождённой ущербности КТУ с высоконапорными котлами представляется несостоятельной.

Вариант 2: виноват личный состав

Данная точка зрения на причины бед пр. 956 является самой распространённой. Вот лишь некоторые высказывания : 1) "Все наши проблемы... - это неумение эксплуатировать технику... Лень экипажа может доконать любую установку... По своему опыту знаю, до какого состояния некоторые экипажи доводят корабли и технику отсутствием предусмотренных ППО и ППР... А [китайские] кораблики ходят и не ломаются, потому что существует такое понятие "культура обслуживания"; 2) "для идеальной эксплуатации [КТУ пр. 956] нужна идеальная водоподготовка и идеальные матросы... это то, что китайский ВМФ смог обеспечить, в отличии от нас"; 3) "на... ЭМ "Безбоязненный" котлы губили сами моряки, причин этому масса... "Сарычи" ходили бы и ходили, если бы матчасть эксплуатировали специалисты и по регламенту".

Ругают в основном матросов (за невнимательность, непонимание автоматики и т. д.), хотя плохая подготовка котельных машинистов автоматически подразумевает вину командиров КГ и БЧ-5, которые вряд ли станут заниматься самобичеванием (лично я таких откровений не слышал). Ругают наших матросов и хвалят китайских, хотя о том, что на самом деле творится в ВМС НОАК никто не знает - судят исключительно по фотографиям, сделанным неизвестно где и когда (о дальних походах китайских 956-х, кроме переходов с Балтики к местам базирования, также ничего не известно). Наконец, есть очень большие сомнения в том, что падение уровня подготовки личного состава при переходе от ВМФ СССР к ВМФ РФ было столь катастрофическим, что привело к почти полному исчезновению целого подкласса боевых кораблей.

Вместо того, чтобы возлагать всю вину на котельных машинистов - чернорабочих флота, следовало бы ответить на вопрос : почему при одинаково низком уровне подготовки флотских специалистов корабли с газотурбинными силовыми установками понесли гораздо меньшие потери на переходе к рыночной экономике? Тезис о простоте эксплуатации ГТУ по причине "высокой автоматизации процессов управления и малой трудоёмкости технического обслуживания" [ 5 ] здесь не подходит - системные непрофессионализм и халатность личного состава не могли быть узконаправленными, они должны были в равной степени сказаться и на КТУ, и на ГТУ. По мнению автора, ответ надо искать в другом .

Высоконапорный водотрубный паровой котёл КВГ-3: общий вид и принципиальная схема (илл. с официального сайта СКБК - Специального конструкторского бюро котлостроения). Обозначения: 1 - опускные трубы, 2 - топочное устройство, 3 - турбонаддувочный агрегат, 4 - газоочистное устройство, 5 - экономайзер, 6 - пароперегреватель, 7 - парообразущие трубы.

Вариант 3: виноват дефицит ЗИПа

Любой корабль, даже с самыми надёжными и неприхотливыми механизмами, не может эксплуатироваться бесконечно долго без аварий и поломок - ему необходимо регулярное сервисное обслуживание (СО) и запасные части (буква "З" в аббревиатуре ЗИП) для замены исчерпавших ресурс и вышедших из строя агрегатов, узлов и деталей. Агрегатный ресурс КТУ очень велик - 100 000 час. (11 лет непрерывной работы), что в разы больше по сравнению с ГТУ и среднеоборотными ДЭУ (30 000 - 40 000 час. = 3,5-4,5 года) [ 6 ], однако ресурс водогрейных трубок котлов составляет всего 8 000 час. ( ссылка 3 ). Замена трубок считается заурядной типовой операцией - когда они есть . В постперестроечные годы котельные трубки стали настоящей ахиллесовой пятой корабельных КТУ, о чём (в числе прочих) говорят два следующих факта.

1. На госиспытаниях ТАВКР "Адмирал Кузнецов" в 1992-1994 г.г. паропроизводительность котлов КВГ-4 (в основном, той же конструкции, что и КВГ-3) не превышала 1/3 от номинальной, а скорость хода - 18 уз (полная проектная - 29 уз), причиной чего являлось низкое давление пара (45 вместо 66 атм) - то и дело "летели трубки". Трубки прогорали из-за того, что их поставляли ржавыми, а потом и вовсе перестали поставлять. Узнав о том, что на Урале есть необходимый ЗИП, начальник ГШ ВМФ адмирал В. Селиванов послал туда самолёт , после чего самолётом же трубки отправили в Николаев на гибку. В результате предпринятых экстраординарных мер на авианосце удалось привести в порядок сначала первый эшелон котлов, а зимой 1994-1995 г.г. - и второй эшелон, сделав корабль более-менее боеспособным (ссылка 4 ).

2. С момента вступления в строй (26.03.1988 [ 7 ]) эсминец "Окрылённый" нёс службу всего 6 лет - к 09.03.1994, когда он был выведен в резерв 2-й категории, на корабле было заглушено максимальное количество лопнувших трубок в котлах (при числе заглушенных трубок, превышающем значения, указанные в нормативных документах, должна производиться полная замена трубок пучка - ссылка 5 , ссылка 6 ). Запасные трубки на эсминце были, однако по распоряжению командования их передали на ТАВКР "Баку", что и предопределило судьбу "Окрылённого" (исключён из состава ВМФ в 1998 г.) (ссылка 7 ).

Таким образом, в условиях острого дефицита запчастей и в отсутствие надлежащего сервисного обслуживания выдающийся 100-тысячный ресурс КТУ сводился к 8000 часов (1 году непрерывной работы) водогрейных трубок - её самого слабого звена. После заглушения нормативного количества трубок и вывода корабля в резерв, он автоматически становился "донором" для тех, кто ещё оставался на ходу (включая ТАВКР) и быстро терял последние шансы вернуться в строй. Здесь же кроется и причина лучшей "выживаемости" газотурбинных БПК пр. 1155 - при минимум 2,5-кратном преимуществе в агрегатном ресурсе КТУ эсминцев пр. 956 имела фактический ресурс (по трубкам) в 5 раз ниже . Как это ни прискорбно сознавать, но один из самых мощных и красивых проектов боевых кораблей второй половины XX века погубил низкотехнологичный металлопрокат .

Источники (через дефис может быть указан номер страницы).

1. А. Гусаров "Особенности устройства и эксплуатации паровых котлов корабельных КТЭУ", ДВГТИ, Владивосток, 2006 ().
2. В. Кузин, В. Никольский "Военно-морской флот СССР 1945-1991", Историческое морское общество, СПб, 1996.
3. В. Кузин "Ракетные крейсера проекта 58", военно-технический альманах "Tайфун", выпуск №1, стр. 2-9, СПб, 1996.
4. Интернет-справочник RussianShips . ).
7. А. Павлов "Эсминцы первого ранга", Якутск, 2000.

Водогрейные котлы типа КВГ

Водогрейные котлы КВГ-0,3-95, КВГ-0,7-115 и КВГ-1,1-115 предназначены для получения горячей воды, используемой в системах отопления и горячего водоснабже­ния объектов промышленного и бытового назначения. Котлы рассчитаны для работы на природном газе.

Котлы поставляются в полностью собран­ном виде, готовыми к эксплуатации. Котлы ра­ботают под избыточным давлением, создавае­мым дутьевым вентилятором. Для установки котлов не требуются специальные фундаменты. Водогрейные котлы типа КВГ - авто­матизированные, вертикально-водотрубные, газоплотные и состоят из трубной системы, горелочного устройства, вентилятора, газо­провода и системы автоматики. Топливо в горелку подается по газопро­воду от газораспределительного устройства котельной. Вентилятор создает избыточное давление воздуха, и весь газовоздушный тракт работает под наддувом. В горелке происходит смешение газа и воздуха с по­следующим сжиганием в топке.

Топка котла типа КВГ образована вну­тренней газоплотной стенкой трубной систе­мы котла. Газоплотность топочной камеры обеспечивается приварными мембранами, установленными в зазорах между трубами.

Трубная система предназначена для по­догрева воды и организации движения про­дуктов сгорания в теплообменной поверх­ности. Состоит из двух кольцевых коллек­торов, соединенных между собой прямыми вертикальными трубами, расположенными по двум концентрическим окружностям в шахматном порядке.

Верхний и нижний коллекторы имеют штампованные трубные решетки, к кото­рым приварены трубы. Кольцевые коллек­торы закрыты съемными крышками.

Предохранительные клапаны установле­ны на верхней крышке, продувочный вен­тиль - на нижней крышке.

Изоляция и обмуровка котла выполнена в амбразуре горелки, поде топки и боковой поверхности верхней камеры.

Горелочное устройство с дутьевым венти­лятором и воздуховодом предназначены для подготовки и сжигания природного газа в го­релке. Горел очное устройство состоит из газо­вой горелки, воздушного регистра и смесителя.

Газопровод обеспечивает подвод и отсеч­ку газа от горелки. Газопровод оснащен за­порной арматурой, быстрозапорными кла­панами с электромагнитным приводом. От­крытие и закрытие соответствующих клапа­нов при изменении мощности и розжиге происходит одновременно под действием системы автоматики.

Котлы типа КВГ оснащены комплектом средств управления: КСУ-7 (КВГ-0,7-115 и КВГ-1,1-115) и КСУ-14 (КВГ-0,3-95).

Комплект средств управления обеспечи­вает два режима управления котлом - авто­номный и с верхнего уровня управления (с диспетчерского пункта или от общекотель­ного управляющего устройства) через блок управления котлом.

Комплект обеспечивает выполнение сле­дующих функций:

Автоматический пуск и останов котла;

Позиционное управление производи­тельностью котла путем включения режим; «большого» и «малого» горения;

Аварийную защиту, обеспечивающук останов котла при возникновении аварий ных ситуаций, включение звукового сигна ла и запоминание первопричины останова;

Световую сигнализацию о работе автг матики и состоянии параметров котла;

Предшественниками котлов КВГ-34К были котлы КВГ-25 и КВГ- 25К(корректированного проекта) паропроизводительностью 25 т/ч и выра- батывающие пар тех же параметров. Эти котлы устанавливались на большой серии (24 единицы) отечественных сухогрузных судов типа «Ленинский комсомол» с паротурбинной установкой 9550 кВт, строящихся в конце 50-х - начале 60-х годов. Котлы судов типа «Ленинский комсомол» и танкеров типа «София» имеют аналогичные компоновку и поверхности нагрева, выполненные из труб одинаковых размеров. Примерно равны и их экономические показатели, КПД 93%. Основное отличие котлов в паропроиэводительности, незначительных отличиях общих размеров хвостовых поверхностей нагрева и числе и типе форсунок.

После замены у котлов КВГ-34К газового воздухоподогревателя на паровой была устранена коррозия его труб, а после замены шести механических центро­бежных форсунок на четыре паро­механические упростилась конструкция и эксплуатация агрегата. На 10.2 для сравнения приведены компоновок котлов КВГ-25 и КВГ-34К.

Наиболее современные и экономичные главные пароэнергетические установки выполняют с промежуточным перегревом пара. Перегретый пар от основного пароперегревателя направляется в турбину, частично со­вершает в ней работу (температура его при этом понижается), возвра­щается в промежуточный пароперег- реватель, приобретает первоначальную температуру и поступает в последующие ступени турбины, что позволяет общий процесс расширения пара в ней приблизить к наиболее экономичному - изотермическому. Для осуществления промежуточного, перегрева пара потребовались существенные изменения в конструкции и компоновке котлов, которые стали называть агрегатами шахтного типа. Обычно такие котлы входят в состав так называемой полутора- котельной установки, в которой котел шахтного типа используется как главный, а другой (однопроточный обычного типа) - в качестве вспомо­гательного для обеспечения судна па­ром на стоянке, а также для работы главной турбины на ходу в случае выхода из строя главного котла. Кот­лы шахтного типа оборудуют паро­образующими элементами только радиационного типа, которые обра­зуют полностью экранированную топку. Средними экранными стенка­ми, образованными из испаритель­ных труб, котлы делятся на две час­ти: топочную камеру и камеру в виде шахты, где размещаются конвектив­ные поверхности нагрева пароперег­ревателей (основного и промежуточ­ного) и экономайзера. Подобная ус­тановка применена на серии крупно­тоннажных танкеров типа «Крым», где установлены в качестве главного котел КВГ-80/80 паропроизводительностью 80 т/ч при давлении перегре­того пара 8 МПа и температуре 515 0 С, имеющий КПД 96%, в качетве вспомогательного - котел КВ-35/25-1 паропроизводительностью 35 т/ч,

Котел показан на рис. 10.3 и 10.4 (номера позиций на рисунках совпа­дают) . Правая часть агрегата, пред­ставляющая топочную камеру 12, об­разована экранами 11, 13, 15. Трубы торцевых экранов закреплены в кол­лекторах 5 и 14. Топочная камера оборудована четырьмя паромеханическими форсунками 7, расположен­ными в верхней части топки. Опуск­ными являются трубы 10, соединяю­щие паровой коллектор 2 с водяным коллектором 16. Образующиеся в топке продукты сгорания топлива проходят через разреженный участок труб 15, называемый фестоном, и поступают в шахту 18, где размещены конвективные змеевиковые поверхности нагрева основного пароперегревателя 19, промежуточного пароперегревателя 25, экономайзера 29 и трубчатые поверхности нагрева воздухоподогревателя 1 .

Пар из парового коллектора паропроводу 8 поступает в основной

Рис 10 3. Схема компоновки котла КВГ-80/80

пароперегреватель 19, состоящий из двух секций. Часть пара после пер­вой секции может быть направле­на по паропроводу 17 в главный пароохладитель 5 для возможности регулирования температуры перегре­того пара. Из основного пароперег­ревателя (после второй секции) пар но паропроводу 21 поступает к глав­ной паровой турбине. Предусмотре­ны также частичный отвод пара по паропроводу 20 во вспомогательный пароохладитель 4 и подача его в магистраль охлажденного пара 3. Частично отработавший в главной ТВД пар по паропроводу 27 посту­пает в

промежуточный пароперегре­ватель 25, откуда вновь перегретый по паропроводу 23 снова направля­ется в главную турбину. На схеме также обозначено: 6, 22,24, 26,28 - трубопроводы; 30 - подогреватель.

Регулирование температуры пе­регретого пара в промежуточном па­роперегревателе осуществляется с помощью перепускного паропровода 24, который предназначен для пода­чи насыщенного пара в Промежуточ­ный пароперегреватель (для защиты от пережога) и сброса его по паро­проводу 26 в систему охлажденного пара.

Питательная вода подается в эко­номайзер 29 по трубопроводу 28, а в котел - по трубопроводу 6. Воз­духоподогреватель трехходовой по газу и одноходовой по воздуху. По­следний пучок труб (третьего хода), где температура уходящих газов наи­более низкая, с газовой стороны име­ет защитное покрытие фторопластом против химической (низкотемпера­турной) коррозии. На режимах ма­лых нагрузок также для защиты воз­духоподогревателя от химической (низкотемпературной) коррозии предусмотрен предварительный по­догрев воздуха питательной водой в подогревателе 30.

На судах зарубежной постройки в качестве главных применяют котлы, конструктивно и по характеристикам мало отличающиеся от рассмотрен­ных котлов отечественной постройки.

Это тоже, как правило, вертикальные водотрубные однопроточные котлы с естественной циркуляцией, развитыми хвостовыми поверхностями нагрева и часто с полностью экранированной топкой. Секционные котлы, являющиеся единственными представителями горизонтальных водотрубных котлов, в свое время пришедшие на смену газотрубным (огнетрубным) оборотным как более совершенные и экономичные, в настоящее время как главные не применяются.