Магнитная индукция бесконечно длинного соленоида. Магнитное поле соленоида

Магнитное поле соленоида.

В уточнённой модели соленоида конечной длины учтём более реальный вид навивки тонкого провода на каркас соленоида. Основным токонесущим элементом конструкции будем считать винтовую линию. Рассмотрим соленоид с каркасом в форме цилиндрической поверхности, поперечное сечение которой является окружностью радиуса . Пусть продольная ось соленоида, как в предыдущем примере, совпадает с осью аппликат, координаты конечных сечений соленоида на оси аппликат имеют значения и , тонкий проводник намотан на каркас равномерно с шагом , то есть число витков на единицу длины соленоида составляет величину , по проводнику течёт ток .


Радиус-вектор точки наблюдения М по условию определен координатами:

Радиус-вектор расположения элемента контура с током опишем с помощью параметрического представления:

Легко видеть, что при возрастании величины параметра на величину радиус-вектор совершит полный оборот вокруг продольной оси соленоида и сместится на шаг навивки относительно исходного положения в пространстве. Будем считать, что электрический ток течет по проводнику в направлении, определяемом увеличением параметра . Проекции вектора на оси декартовой системы координат имеют вид:

(3)

В соответствии с дифференциальной формой закона Био-Савара-Лапласа (1) раздела 6.2 получаем проекции вектора магнитной индукции на оси декартовых координат для произвольной точки наблюдения:

(3)

, (4) . (5)

Как это ни удивительно, но уточнённая модель приводит к более простым зависимостям для проекций дифференциала вектора магнитной индукции: для расчёта величин проекций искомого вектора понадобится только однократное интегрирование по параметру . Пределы интегрирования определяются при этом условием, что тонкий проводник достиг крайнего сечения соленоида:

Выпишем квадратуры для проекций вектора магнитной индукции на оси декартовой системы координат для произвольной точки наблюдения:

, (7)

, (8)

. (9)

Численные значения проекций вектора магнитной индукции на оси декартовой системы координат легко вычисляются с помощью пакета символьных вычислений Maple, если заданы характеристики системы токов и координаты точки наблюдения. Ниже для определенности положим Проведем вычисления осевой составляющей индукции магнитного поля в сечении z=0 в зависимости от координаты x (радиальное направление!). Результаты расчета представлены на рис. 2. Здесь имеет смысл обратить внимание на небольшую неоднородность магнитного поля внутри соленоида (|x|<1) и наличие осевой составляющей магнитного поля вне соленоида (последнее характерно для соленоида конечных размеров).


В качестве второго примера вычислим распределение осевой составляющей магнитной индукции вдоль оси соленоида при сохранении параметров системы токов (рис. 3). Здесь можно отметить качественное совпадение результатов расчета с подобными результатами упрощенной модели соленоида (рис.2 предыдущего раздела).


На практике чаще всего параметр навивки - отношение шага навивки к радиусу поперечного сечения соленоида - не играет существенной роли, но в отдельных случаях подробный расчет может оказаться полезным.

6.2.6. Поверхностная модель земного магнетизма .

У.Гильберт 400 лет тому назад установил, что Земля является «большим магнитом»: поведение стрелки компаса на земной поверхности похоже на поведение намагниченной стрелки в окрестности экспериментального магнитного шара. Во времена У.Гильберта ещё не было ни теории электричества, ни теории магнитного поля. В современных условиях интересно попробовать смоделировать образование магнитного поля Земли, играющего такую важную роль как обеспечении радиационной безопасности жизни на Земле, так и в практической навигации.

Допустим, что по поверхности сферы радиуса течёт ток постоянной по величине погонной плотности в азимутальном направлении. Величина погонной плотности тока определяется выражением

Здесь - дифференциал сила тока, - элемент дуги на поверхности сферы, перпендикулярный направлению тока, - дифференциал угловой координаты сферической системы координат.



Элемент длины «контура», связанного с описанным дифференциалом силы тока определяется выражением

, (2)

координаты точки расположения элемента имеют вид

, (3)

а его проекции на координатные направления декартовой системы координат

Если координаты точки наблюдения М определены проекциями радиус-вектора {x,y,z}, то не представляет труда выписать последовательно выражения для разности радиус-векторов точки наблюдения и точки расположения элемента контура с током, для модуля этой разности, для векторного произведения и получить зависимости для дифференциалов проекций вектора магнитной индукции в точке наблюдения:

(5)

Для реализации практических вычислений в приведенные соотношения вместо «штрихованных» величин необходимо подставить их выражения с использованием координат сферической системы координат (4).

В соответствии с принципом суперпозиции необходимо просуммировать вклад всех элементов «контуров» с током в величину каждой из проекций вектора магнитной индукции в точке наблюдения. Если декартовы координаты точки наблюдения записать с помощью сферических координат, то проекции вектора магнитной индукции на оси декартовой системы координат в точке наблюдения описываются следующими квадратурами:

Здесь , и - угловые координаты точки наблюдения в сферической системе координат.

Располагая полученными соотношениями, можно вычислить направляющие косинусы вектора магнитной индукции относительно исходной декартовой системы координат

, (7)

и записать уравнения для расчёта координат силовой линии в дифференциальной форме:

( для фиксированной точки силовой линии).

Интересно проанализировать зависимости «горизонтальной» и «вертикальной» составляющих вектора магнитной индукции над поверхностью несущей ток сферы от «северной широты» точки наблюдения. Численные результаты при этом таковы. На экваторе () горизонтальная составляющая поля направлена по меридиану в сторону «южного полюса», вертикальная составляющая равна нулю. На широте 45 0 () имеют место и горизонтальная, и вертикальная составляющие магнитного поля, причем абсолютная величина горизонтальной составляющей меньше, чем аналогичная величина на экваторе, а направленность в сторону южного полюса сохранилась. На «северном полюсе» () горизонтальная составляющая магнитного поля обращается в нуль, а вертикальная достигает максимального значения. Полученный результат объясняет причину трудностей определения местоположения в окрестности «северного полюса» сферы: компас теряет способность указывать направление на полюс.

6.2.7. Объёмная модель земного магнетизма .

Рассмотрим более сложную модель распределения электрического тока в земном шаре. Теперь нам предстоит рассчитать магнитное поле, образованное электрическим током, текущим в объёме сферы в азимутальном направлении с известной объёмной плотностью тока.

Допустим, что по объёму сферического тела радиуса течёт ток с постоянной по величине объёмно плотностью в азимутальном направлении. Элемент сила тока с учётом его направления в пространстве при этом можно описать с помощью выражения

В этом выражении - элемент объёма, в котором течёт ток, - координаты этого элемента объёма в сферической системе координат. Допустим, что координаты точки наблюдения имеют вид: { }. В соответствующей декартовой системе координат имеем

Найдем индукцию магнитного поля внутри соленоида – катушки, диаметр которой значительно больше ее длины l . Будем считать поле внутри катушки однородным, а вдали от катушки – пренебрежимо малым. Выберем контур обхода L в видепрямоугольника 1-2-3-4 (см. рис.). Найдем сначала циркуляцию вектора В. Запишем интеграл циркуляции в выражение . Разобьем интеграл по контуру L на четыре интеграла: 1-2, 2-3, 3-4, 4-1.

Контур 12341 охватывает N витков катушки в каждом из которых ток I . Таким образом, из теоремы следует, что B×l = m o NI . Отсюда найдем В .

Тема 9. Вопрос 8.

Поток вектора магнитной индукции (магнитный поток)

Представим себе некоторую замкнутую поверхность в магнитном поле. Линии магнитной индукции всегда замкнуты, они не имеют начала и конца, Поэтому количество входящих в поверхность линий будет равно количеству выходящих из нее линий. Магнитный поток пропорционален количеству линий индукции, следовательно, поток будет равен нулю. Равенство нулю магнитного потока через любую замкнутую поверхность свидетельствует о том, что магнитное поле не имеет источников этого поля (магнитных зарядов не существует). Таким образом, магнитное поле является вихревым , т.е. не имеющим источников его образования.

Тема 10. Вопрос 1.

Тема 10. Вопрос 2.

Магнитные силы.

Используя выражение для силы Ампера, найдем силу взаимодействия двух бесконечно длинных прямых проводников с токами I 1 и I 2 .

Мы рассматривали действие проводника с током I 1 на проводник с током I 2 . В соответствии с III законом Ньютона второй проводник действует на первый с такой же силой.

Тема 10. Вопрос 3.

Получение выражения для вращающего момента, действующего на контур с током в магнитном поле.

Учитывая векторный характер этих величин, можно записать общее выражение:

Тема 10. Вопрос 4.

Контур с током в магнитном поле.

Однородное поле.

Таким образом, во внешнемоднородном магнитном поле под действием магнитных сил:

1)свободно ориентированный контур с током будет поворачиваться до тех пор, пока плоскость контура не окажется перпендикулярной линиям индукции, т.е. пока магнитный момент не станет параллельным линиям индукции и

2)на контур будут действовать растягивающие силы.

Неоднородное поле.

В неоднородном магнитном поле кроме указанных выше сил, которые поворачивают и растягивают контур, появляется составляющая сил, которая стремится переместить контур. Если контур оказался ориентированным своим магнитным моментом по полю (как на рисунке), то составляющая силы F 1 будет растягивать контур, а составляющая F 2 будет втягивать контур в область более сильного поля. Если контур окажется в поле таким образом, что его магнитный момент будет направлен против поля, это положение контура будет неустойчивым. Контур развернется по полю, и будет втягиваться в область более сильного поля.

Приведем выражение для силы, действующей на контур с током в неоднородном магнитном поле, индукция которого изменяется только по одной координате х .

Тема 10. Вопрос 5.

Для создания магнитного поля в технике используется соленоид – цилиндрическая катушка, состоящая из большого числа витков, равномерно намотанных на общий сердечник (рис. 4.5).

Рассмотрим соленоид длиной L , имеющий N витков, по которому течет ток I . Длину соленоида считаем во много раз большей диаметров его витков. Магнитное поле такого соленоида целиком сосредоточено внутри него и однородно. Снаружи соленоида поле мало и его практически можно считать равным нулю.

Величину индукции магнитного поля соленоида можно найти, складывая магнитные индукции полей, создаваемых каждым витком соленоида. Так как витки соленоида намотаны вплотную друг к другу, на длине dx сосредоточено витков. Суммарный ток, протекающий по кольцу, толщиной dx , равен . В точке, находящейся на оси соленоида каждое такое кольцо создает магнитное поле, согласно (4.7), равное:

.

Суммарное поле:

(4.9)

При интегрировании соленоид считаем бесконечным. Как видно из (4.9) магнитное поле соленоида зависит от плотности намотки – числа витков на единицу длины соленоида .

Магнитный поток

Потоком вектора магнитной индукции (магнитным потоком) через площадку dS называется скалярная физическая величина, равная:

= В n dS = Bcos α × dS , (4.10)

где В n – проекция вектора В на направление, перпендикулярное к площадке dS ; α – угол между вектором нормали n и вектором В .

Положительное направление нормали связано правилом правого винта с током, текущим по контуру, ограничивающему площадку dS . Магнитный поток Ф через произвольную поверхность S можно представить в виде:

Действие магнитного поля на заряды



На электрический заряд q , движущийся в магнитном поле с индукцией В со скоростью V , действует сила Лоренца:

. (4.12)

Абсолютная величина магнитной силы:

F = qvB Sin α ,

где α – угол между векторами V и В .

По правилу векторного произведения магнитная сила F перпендикулярна плоскости, в которой лежат вектора V и B .

Если q >0, магнитная сила F совпадает с направлением векторного произведения [V,B ], если q <0, то противоположно.

Для положительного заряда, движущегося в магнитном поле, как показано на рисунке 4.6, сила F направлена вдоль отрицательного направления оси Z . Продольная компонента скорости V ll под действием магнитного поля изменяться не будет и движение заряженной частицы вдоль оси Х – равномерное. Результирующее движение частицы – по винтовой линии (рис.4.6). Спираль может быть как правой, так и левой в зависимости от знака заряда q .

Радиус спирали R найдем из условия, что при равномерном движении частицы по окружности сила F является центростремительной силой:

,

где m – масса заряженной частицы. Отсюда:

.

Время, за которое частица совершит полный оборот (период):

. (4.13)

Из формулы (4.13) следует, что период обращения частицы не зависит от ее скорости. Однако надо помнить, что этот вывод справедлив только при условии V <<c , где: с – скорость света.

Если движение частицы происходит как в магнитном поле с индукцией B , так и в электрическом поле с напряженностью Е , то на нее действует обобщенная сила Лоренца:

. (4.14)

Электромагнитная индукция

Если поток магнитной индукции сквозь контур изменяется со временем, то, согласно закону электромагнитной индукции Фарадея, в контуре возникает ЭДС индукции:

E = – , (4.15)

Знак (–) означает: индукционный ток всегда имеет такое направление, что создаваемое им магнитное поле стремиться скомпенсировать то изменение магнитного потока, которым вызван данный индукционный ток (правило Ленца).

Ток в замкнутом контуре создает в окружающем пространстве магнитное поле, индукция которого пропорциональна току: В ~ I. Поэтому сцепленный с контуром магнитный поток пропорционален силе тока в контуре I:

Ф = LI ,

гдеL коэффициент пропорциональности называют коэффициентом самоиндукции или индуктивностью контура.

Если по контуру протекает изменяющийся со временем ток I(t) , то изменяется магнитный поток, пронизывающий контур. В контуре возникает ЭДС самоиндукции:

Индуктивность контура L в общем случае зависит от геометрии контура и магнитной проницаемости среды µ. Если эти величины не изменяются, то L = const . Т.е., если контур жесткий и поблизости нет ферромагнетиков, то L = const .

Рассмотрим два контура 1 и 2, расположенных на некотором расстоянии друг от друга (рис. 4.7). Если по контуру 1 пропустить ток I 1 , то он создает поток магнитной индукции через контур 2:

Ф 21 = L 21 I 1 . (4.17)

Коэффициент пропорциональности L 21 называют коэффициентом взаимной индукции контуров (взаимная индуктивность контуров). Он зависит от формы и взаимного расположения контуров 1 и 2, а также от магнитных свойств окружающей среды.

При изменении силы тока в первом контуре магнитный поток сквозь второй контур изменяется; следовательно, в нем наводится ЭДС взаимной индукции:

. (4.18)

Формула справедлива в отсутствие ферромагнетиков.

Если поменять местами контуры 1 и 2 и повторить все предыдущие рассуждения, то получим:

. (4.19)

Коэффициенты взаимной индукции равны.

Рис. 6.23. Магнитные силовые линии поля: 1 - соленоида; 2 - полосового магнита

Магнитное поле соленоида напоминает поле полосового магнита (рис. 6.23-2).

Если витки намотаны вплотную, то соленоид - это система круговых токов, имеющих одну ось.

Если считать соленоид достаточно длинным, то магнитное поле внутри соленоида однородно и направлено параллельно оси. Вне соленоида вдали от краев магнитное поле также должно иметь направление параллельное оси и на большом расстоянии от соленоида должно быть очень слабым. Поле убывает по закону

Подсчитаем поле внутри соленоида. Возьмем элемент соленоида длиной dh , находящийся на расстоянии h от точки наблюдения. Если катушка имеет n витков на единицу длины, то в выделенном элементе содержится ndh витков. Согласно формуле (6.11), этот элемент создает магнитное поле

Интегрируя по всей длине соленоида, получаем

Таким образом, поле в бесконечно длинном соленоиде дается выражением

На практике соленоиды бесконечно длинными не бывают. Для иллюстрации рассмотрим некоторые примеры.

Пример 1. Найти магнитное поле в середине соленоида конечной длины l (рис. 6.24). Сравнить с полем бесконечно длинного соленоида. При каких условиях разница составляет менее 0,5 %?

Рис. 6.24. Магнитное поле катушки конечной длины
В центре соленоида магнитное поле практически однородно и значительно превышает по модулю поле вне катушки

Решение. Магнитное поле в средней точке оси соленоида конечной длины l дается тем же интегралом (6.19), но с другими пределами интегрирования

Если длина соленоида много больше его диаметра (l >> 2R ), мы возвращаемся к формуле для поля в бесконечно длинном соленоиде (6.20). Относительная разница этих двух значений равна

По условию эта разница мала: , то есть мало отношение диаметра соленоида к его длине: 2R /l << 1. Поэтому можно воспользоваться формулой разложения квадратного корня

Подставляя численное значение d , находим, что разница будет менее половины процента при выполнении соотношения

Иными словами, соленоид может рассматриваться как бесконечно длинный, если его длина в двадцать или более раз превышает радиус.

Пример 2. Найти магнитное поле В е в крайней торцевой точке оси соленоида конечной длины l . Сравнить с результатом предыдущего примера.

Решение. Магнитное поле в торцевой точке оси соленоида конечной длины l дается тем же интегралом (6.19), но теперь пределы интегрирования будут выглядеть иначе

Отношение полей в средней и крайней точках оси соленоида равно

Это отношение всегда меньше единицы (то есть поле на торце меньше поля в середине соленоида). При l >> R имеем

Этот результат легко понять. Представим себе бесконечный соленоид, который мысленно рассекаем пополам в точке наблюдения. Можно считать, что поле в этой точке создается двумя одинаковыми «полубесконечными» соленоидами, расположенными по разные стороны от нее. Ясно, что при удалении одного из них точка наблюдения становится торцом оставшегося «полубесконечного» соленоида, а магнитная индукция в ней уменьшиться именно в два раза.

Это - так называемый краевой эффект. Пример демонстрирует, что недостаточно выполнения соотношения l >> R , чтобы пользоваться формулами для бесконечно длинного соленоида; надо еще, чтобы точка наблюдения находилась далеко от его концов.

На рис. 6.25 представлен опыт по исследованию распределения силовых линий магнитного поля вокруг соленоида. Поле соленоида, ось которого лежит в плоскости пластинки, сосредоточено в основном внутри соленоида. Силовые линии внутри имеют вид параллельных прямых вдоль оси катушки, а поле снаружи практически отсутствует.

Рис. 6.25. Визуализация силовых линий магнитного поля