Понижение парциального давления кислорода. Парциальное давление и напряжение газов

Хотелось бы обобщить информацию о принципах дайвинга в части газов для дыхания в формате keynotes, т.е. когда понимание нескольких принципов избавляет от необходимости запоминания множества фактов.

Итак, для дыхания под водой необходим газ. Как наиболее простой вариант — запас воздуха , представляющий собой смесь кислорода (∼21%), азота (∼78%) и других газов (∼1%).

Главным фактором является давление окружающей среды. Из всех возможных единиц измерения давления мы будем использовать «абсолютную техническую атмосферу» или АТА. Давление на поверхности составляет ∼1 АТА, каждые 10 метров погружения в воду добавляют к нему ∼1 АТА.

Для дальнейшего разбора важным является понимание, что такое парциальное давление , т.е. давление отдельно взятого компонента газовой смеси. Общее давление газовой смеси является суммой парциальных давлений её компонентов. Парциальное давление и растворение газов в жидкостях описываются законами Дальтона и имеют самое прямое отношение к дайвингу, ибо человек на большую часть состоит из жидкости. Хотя парциальное давление пропорционально молярному соотношению газов в смеси, для воздуха можно считать парциальное давление по объемной или весовой концентрации, погрешность составит менее 10% .

При погружении давление воздействует на нас всеобъемлюще. Регулятор поддерживает давление воздуха в системе дыхания, примерно равное давлению окружающей среды, меньшее ровно на столько, на сколько необходимы для «вдыхания». Так, на глубине в 10 метров вдыхаемый из баллона воздух имеет давление около 2 АТА. Аналогичное абсолютное давление будет наблюдаться во всем нашем организме. Таким образом, парциальное давление кислорода на этой глубине составит ∼0,42 АТА, азота ∼1,56 АТА

Воздействие давления на организм заключается в следующих ключевых факторах.

1. Механическое воздействие на органы и системы

Его мы рассматривать подробно не будем, вкратце — человеческий организм имеет ряд заполненных воздухом полостей и резкое изменение давления в любую сторону вызывает нагрузку на ткани, мембраны и органы вплоть до механических повреждений — баротравм .

2. Насыщение тканей газами

При погружении (увеличении давления) парциальное давление газов в дыхательном тракте — выше чем в тканях. Таким образом газы насыщают кровь, а через кровоток насыщаются все ткани организма. Скорость насыщения различна для разных тканей и характеризуется «периодом полунасыщения», т.е. временем, в течение которого при постоянном давлении газа разница парциальных давлений газа и тканей уменьшается вдвое. Обратный процесс называют «рассыщением», он происходит при всплытии (уменьшении давления). В этом случае парциальное давление газов в тканях выше, чем давление в газа в легких, идет обратный процесс — газ из крови выделяется в легких, кровь с уже меньшим парциальным давлением циркулирует по организму, из тканей газы переходят в кровь и снова по кругу. Газ всегда движется от большего парциального давления к меньшему.

Принципиально важно, что разные газы имеют разную скорость насыщения/рассыщения, обусловленную их физическими свойствами.

Растворимость газов в жидкостях тем больше, чем выше давление. В случае, если количество растворенного газа больше предела растворимости при данном давлении — происходит выделение газа, в том числе концентрация в виде пузырьков. Мы это наблюдаем каждый раз, как вскрываем бутылку газированной воды. Так как скорость выведения газа (рассыщения тканей) ограничена физическими законами и газовым обменом через кровь, слишком быстрое падение давления (быстрое всплытие) может привести к образованию пузырьков газа непосредственно в тканях, сосудах и полостях организма, нарушая его работу вплоть до летального исхода. Если давление падает медленно, то организм успевает вывести «лишний» газ за счет разницы парциальных давлений.

Для расчетов этих процессов используются математические модели тканей организма, наиболее популярной является модель Альберта Бюльмана , которая учитывает 16 видов тканей (компартментов) со временем полунасыщения/полурассыщения от 4 до 635 минут.

Наибольшую опасность представляет инертный газ, имеющий максимально большое абсолютное давление, чаще всего это — азот, который составляет основу воздуха и не участвует в метаболизме. По этой причине основные расчеты в массовом дайвинге проводятся по азоту, т.к. воздействие кислорода в плане насыщения на порядки меньше, при этом оперируют понятием «азотная нагрузка», т.е. остаточное количество растворенного в тканях азота.

Таким образом, насыщение тканей зависит от состава газовой смеси, давления и продолжительности его воздействия. Для начальных уровней дайвинга практикуются ограничения по глубине, продолжительности погружения и минимальному времени между погружениями, заведомо не допускающие ни при каких условиях насыщения тканей до опасных уровней, т.е. бездекомпрессионные погружения , и даже в этом случае принято выполнять «остановки безопасности » .

«Продвинутые» дайверы используют дайв-компьютеры , которые динамически рассчитывают насыщение по моделям в зависимости от газа и давления, в том числе рассчитывают «компрессионный потолок» — глубину, всплытие выше которой потенциально опасно исходя из текущего насыщения. При сложных погружениях компьютеры дублируются, не говоря уже о том, что одиночные погружения как правило не практикуются.

3. Биохимическое воздействие газов

Наш организм максимально адаптирован к воздуху при атмосферном давлении. При увеличении давления газы, даже не участвующие в метаболизме воздействуют на организм самым разным образом, при этом воздействие зависит от парциального давления конкретного газа. Для каждого газа существуют свои пределы безопасности.

Кислород

Являясь ключевым участником нашего метаболизма, кислород — единственный газ, имеющий не только верхний, но и нижний предел безопасности.

Нормальное парциальное давление кислорода ∼0,21 АТА. Потребность в кислороде сильно зависит от состояния организма и физических нагрузок, теоретический минимально необходимый уровень для поддержания жизнедеятельности здорового организма в состоянии полного покоя оценивается в ∼0,08 АТА, практический — в ∼0,14 АТА. Снижение уровня кислорода от «номинального» в первую очередь сказывается на способности к физической активности и может вызвать гипоксию, или кислородное голодание .

В то же время высокое парциальное давление кислорода вызывает широкий спектр негативных последствий — кислородное отравление или гипероксию . Особую опасность при погружении имеет ее судорожная форма, выражающуюся в поражении нервной системы, судорогах, что влечет за собой риск утопления.

Для практических целей дайвинга принято считать пределом безопасности ∼1,4 АТА, пределом умеренного риска — ∼1,6 АТА. При давлении выше ∼2,4 АТА в течение длительного времени вероятность кислородного отравления стремиться к единице.

Таким образом, несложным делением предельного уровня кислорода 1,4 АТА на парциальное давление кислорода в смеси можно определить максимальное безопасное давление среды и установить, что абсолютно безопасно дышать чистым кислородом (100%, 1 АТА) можно на глубинах до ∼4 метров (!!!), сжатым воздухом (21%, 0,21 АТА) — до ∼57 метров, стандартным «нитрокс-32» с содержанием кислорода 32% (0,32 АТА) — до ∼34 метров. Аналогично можно посчитать пределы для умеренного риска.

Говорят, именно этому явлению обязан своим именем «нитрокс» , так как изначально это слово обозначало дыхательные газы с пониженным содержанием кислорода для работы на больших глубинах, «nitrogen enriched», и только потом оно стало расшифровываться как «nitrogen-oxigen» и обозначать смеси с повышенным содержанием кислорода.

Необходимо принимать во внимание, что повышенное парциальное давление кислорода в любом случае оказывает воздействие на нервную систему и легкие, причем это разные виды воздействия. Кроме того, воздействие имеет свойство накапливаться при серии погружений. Для учета воздействия на ЦНС используется понятие «кислородного лимита» как расчетной единицы, с помощью которой определяются безопасные лимиты для разового и суточного воздействия. Подробно с таблицами и расчетами можно ознакомиться .

Помимо этого, повышенное давление кислорода негативно воздействует на легкие, для учета этого явления используются «единицы кислородной выносливости», которые рассчитываются по специальным таблицам, соотносящим парциальное давление кислорода и количество «единиц в минуту». Для примера, 1.2 АТА дает нам 1.32 OTU в минуту. Признанный лимит безопасности составляет 1425 единиц в сутки.

Из вышесказанного в частности должно быть понятно, что для безопасного пребывания на больших глубинах требуется смесь с пониженным содержанием кислорода, которая непригодна для дыхания при меньшем давлении. Например, на глубине 100 метров (11 АТА) концентрация кислорода в смеси не должна превышать 12%, а на практике будет еще ниже. Дышать такой смесью на поверхности невозможно.

Азот

Азот не метаболизируется организмом и не имеет нижней границы. При повышенном давлении азот оказывает отравляющее воздействие на нервную систему, сходное с наркотическим или алкогольным опьянением, известное как «азотный наркоз «.

Механизмы воздействия точно не выяснены, границы воздействия сугубо индивидуальны, и зависят как от особенностей организма, так и от его состояния. Так, известно, что усиливает воздействие состояние усталости, похмелья, все виды угнетенного состояния организма типа простудных заболеваний и т.д.

Незначительные проявления в виде состояния, сравнимого с легким опьянением возможны на любых глубинах, действует эмпирическое «правило мартини», согласно которому воздействие азота сравнимо с бокалом сухого мартини натощак на каждые 10 метров глубины, что не представляет опасности и добавляет хорошего настроения. Накопленный при регулярных погружениях азот так же влияет на психику сродни легким наркотикам и алкоголю, чему автор сам свидетель и участник. Проявляется в ярких и «наркотических» снах, в частности, действует в пределах нескольких часов. И таки да, дайверы — немного наркоманы. Азотные.

Опасность представляют сильные проявления, которые характеризуются стремительным нарастанием вплоть до полной потери адекватности, ориентации в пространстве и времени, галлюцинаций, что может привести к гибели. Человек может запросто рвануть на глубину, потому что там клево или он там что-то якобы увидел, забыть, что он под водой и «вдохнуть полной грудью», выплюнув загубник и т.д. Само по себе воздействие азота не летально и даже не вредно, однако последствия в условиях погружения могут быть трагичны. Характерно, что при снижении давления эти проявления так же стремительно проходят, иногда достаточно подняться всего на 2..3 метра чтобы «резко протрезветь».

Вероятность сильного проявления на глубинах, принятых для рекреационного дайвинга начального уровня (до 18 м, ∼2,2 АТА) оценивается как очень низкая. По имеющейся статистике случаи тяжелого отравления становятся довольно вероятны с 30 метров глубины (∼3,2 АТА), и далее вероятность растет по мере роста давления. В то же время люди с индивидуальной устойчивостью могут не испытывать проблем и на куда больших глубинах.

Единственным способом противодействия является постоянный самоконтроль и контроль напарника с немедленным уменьшением глубины в случае подозрения на азотное отравление. Использование «нитрокса» снижает вероятность азотного отравления, естественно, в пределах ограничений по глубинам, обусловленных кислородом.

Гелий и другие газы

В техническом и профессиональном дайвинге используют и другие газы, в частности, гелий. Известны примеры использования в глубинных смесях водорода, и даже неона. Эти газы отличаются высокой скорость насыщения/рассыщения, отравляющие эффекты гелия наблюдаются при давлении более 12 АТА и могут быть, как ни парадоксально, компенсированы азотом. Однако широкого применения они не имеют за счет высокой стоимости, поэтому столкнуться с ними дайверу средней руки фактически невозможно, а уж если читателя действительно интересуют такие вопросы — то ему уже надо использовать профессиональную литературу, а не этот скромный обзор.

При использовании любых смесей логика расчетов остается такой же, как описано выше, только используются специфические для каждого газа лимиты и параметры, а для глубоких технических погружений обычно используются несколько разных составов: для дыхания на пути вниз, работы внизу и поэтапного пути вверх с декомпрессией, составы этих газов оптимизируются исходя из описанной выше логики их движения в организме.

Практическое заключение

Понимание этих тезисов позволяет придать осмысленность многим даваемым на курсах ограничениям и правилам, что совершенно необходимо как для дальнейшего развития, так и для правильного их нарушения.

Нитрокс рекомендован к использованию при обычных погружениях, ибо он снижает азотную нагрузку на организм даже если Вы остаетесь полностью в пределах ограничений рекреационного дайвинга, это лучшее самочувствие, больше удовольствия, легче последствия. Однако, если Вы собираетесь нырять глубоко и часто — надо помнить не только о его преимуществах, но и о возможной кислородной интоксикации. Всегда лично проверяйте уровни кислорода и определяйте свои лимиты.

Азотное отравление — наиболее вероятная из проблем, с которыми можно столкнуться, всегда будьте внимательны к себе и партнеру.

Отдельно хотелось бы обратить внимание, что прочтение данного текста не означает, что читатель освоил полный набор информации для понимания работы с газами при сложных погружениях. Для практического применения этого совершенно недостаточно. Это только стартовая точка и базовое понимание, не более того.

Основными параметрами воздуха, определяющими физиологи­ческое состояние человека, являются:

    абсолютное давление;

    процентное содержание кислорода;

    температура;

    относительная влажность;

    вредные примеси.

Из всех перечисленных параметров воздуха решающее значение для человека имеют абсолютное давление и процентное содержа­ние кислорода. Абсолютное давление определяет парциальное давление кислорода.

Парциальное давление любого газа в газовой смеси представляет собой часть общего давления газовой смеси, приходящаяся на долю этого газа в соответствии с его процентным содержанием.

Так для парциального давления кислорода имеем

где
− процентное содержание кислорода в воздухе (
);

Р H давление воздуха на высоте Н;

−парциальное давление водяных паров в легких (противодав­ление для дыхания
).

Парциальное давление кислорода имеет особое значение для физиологического состояния человека, так как оно определяет про­цесс газообмена в организме.

Кислород, как и всякий газ, стремится перейти из пространства, в котором его парциальное давление больше, в пространство с меньшим давлением. Следовательно, процесс насыщения организ­ма кислородом происходит лишьв том случае, когда парциальное давление кислорода в легких (в альвеолярном воздухе) будет больше парциального давления кислорода в крови, притекающей к альвеолам, а это последнее будет больше парциального давле­ния кислорода в тканях организма.

Для удаления из организма углекислого газа необходимо иметь соотношение его парциальных давлений, обратное описанному, т.е. наибольшее значение парциального давления углекислого газа должно быть в тканях, меньшее − в венозной крови и еще мень­шее − в альвеолярном воздухе.

На уровне моря при Р H = 760 мм рт. ст. парциальное давление ки­слорода равно ≈150 мм рт. ст. При таком
обеспечивается нор­мальное насыщение крови человека кислородом в процессе дыхания. При увеличении высоты полета
уменьшается в связи с уменьше­ниемP H (рис. 1).

Специальными физиологическими исследованиями установлено, что минимальное парциальное давление кислорода во вдыхаемом воздухе
Эту цифру принято называть физиологи­ческой границей пребывания человека в отрытой кабине по величине
.

Парциальному давлению кислорода 98 мм рт. ст. соответствует высота Н = 3 км. При
< 98 мм рт. ст. возможно нарушение зрения, слуха, замедление реакции и потеря человеком сознания.

Для предотвращения этих явлений на ЛA используются системы кислородного питания (СКП), обеспечивающие
> 98 мм рт. ст. во вдыхаемом воздухе на всех режимах полета и в аварийных ситуациях.

Практически в авиации принята высота Н = 4 км в качестве гра­ницы полетов без кислородных приборов, то есть ЛA, имеющие прак­тический потолок менее 4 км могут не иметь СКП.

      1. Парциальное давление кислорода и углекислого газа в организме человека в наземных условиях

При изменении указанных в таблице значений
и
на­рушается нормальный газообмен в легких и во всем организме че­ловека.

1.8 Парциальное напряжение кислорода в крови

PaO2- парциональное напряжение кислорода в артериальной крови. Это напряжение физически распространённого кислорода в плазме артериальной крови под влиянием парциального давления, равного 100мм рт.ст.(PaO2 = 100мм рт.ст). В каждых 100 мл плазмы содержится 0,3 мл кислорода. Содержание О2 в артериальной крови у тренированных спортсменов в условиях покоя не отличается от содержания его у неспортсменов. При физической нагрузке в артериальной крови, притекающей к мышцам происходит ускоренный распад оксигемоглобина с выделением свободного О2, поэтому PaO2 увеличивается

PвO2 - парциальное напряжение кислорода в венозной крови. Это напряжение физически растворённого кислорода в плазме венозной крови, оттекающей от ткани (мышцы). Характеризует способность ткани к утилизации кислорода. В покое равно 40-50 мм рт.ст. При максимальной работе, из-за интенсивной утилизации О2 работающими мышцами, снижается до 10-20 мм рт. ст.

Разница между PaO2 и PвO2 есть величина АВР-О2- артериально-венозная разность по кислороду. Характеризует способность ткани к утилизации кислорода. АВР-О2 - разность между содержанием кислорода в артериальной крови, выбрасываемой в системные артерии из левого желудочка, и в венозной крови, притекающей к правому предсердию.

При развитии аэробной выносливости происходит выраженная саркоплазматическая гипертрофия скелетной мускулатуры, что приводит к снижению кислорода в венозной крови (РвО2), и соответствующему увеличению АВР-О2. Так если в покое РвО2 у мужчин и женщин составляет 30мм рт.ст, то после упражнения на выносливость у нетренированных мужчин РвО2=13мм рт.ст, у нетренированных женщин 14мм рт.ст. Соответственно у тренированных мужчин и женщин-10 и 11мм рт.ст. У женщин содержание гемоглобина, ОЦК и содержание кислорода в артериальной крови меньше, поэтому при равном содержании кислорода в венозной крови суммарная системная АВР-О2 у женщин меньше. В покое она равна 5,8мл О2 на 100мл крови, против 6,5 у мужчин. После выполнения упражнения у нетренированных женщин АВР-О2=11,1мл О2/100мл крови, против 14 у нетренированных мужчин. В результате тренировки АВР-О2 увеличивается как у женщин, так и у мужчин в результате снижения содержания кислорода в венозной крови (соответственно 12,8 и 15,5).

Согласно формуле Фика (ПО2(МПК)=СВ*АВР-О2), произведение СВ на АВР-О2 определяет максимальное потребление кислорода и является важным показателем аэробной выносливости. Спортсмены, тренирующие выносливость более эффективно реализуют свои кислородтранспортные возможности, так как используют больше кислорода, содержащегося в каждом миллилитре крови, чем нетренированные люди.

1.9 Влияние оздоровительной тренировки на гемодинамику организма

В результате оздоровительной тренировки повышаются функциональные возможности сердечно-сосудистой системы. Происходит экономизация работы сердца в состоянии покоя и повышение резервных возможностей аппарата кровообращения при мышечной деятельности. Один из важнейших эффектов физической тренировки - урежение ЧСС в покое (брадикардия) как проявление экономизации сердечной деятельности и более низкой потребности миокарда в кислороде. Увеличение продолжительности фазы диастолы (расслабления) обеспечивает больший кровоток и лучшее снабжение сердечной мышцы кислородом. У лиц с брадикардией случаи заболевания ишемической болезнью сердца (ИБС) выявлены значительно реже, чем у людей с частым пульсом. Считается, что увеличение ЧСС в покое на 15 уд/мин повышает риск внезапной смерти от инфаркта на 70 % .Такая же закономерность наблюдается и при мышечной деятельности.

При выполнении стандартной нагрузки на велоэргометре у тренированных мужчин объем коронарного кровотока почти в 2 раза меньше, чем у нетренированных (140 против 260 мл/мин на 100 г ткани миокарда), соответственно в 2 раза меньше и потребность миокарда в кислороде (20 против 40 мл/мин на 100г ткани). Таким образом, с ростом уровня тренированности потребность миокарда в кислороде снижается как в состоянии покоя, так и при субмаксимальных нагрузках, что свидетельствует об экономизации сердечной деятельности. По мере роста тренированности и снижения потребности миокарда в кислороде повышается уровень пороговой нагрузки, которую испытуемый может выполнить без угрозы ишемии миокарда и приступа стенокардии.

Наиболее выражено повышение резервных возможностей аппарата кровообращения при напряженной мышечной деятельности: увеличение максимальной ЧСС, СО и МОК, АВР-О2, снижение общего периферического сосудистого сопротивления, что облегчает механическую работу сердца и увеличивает его производительность. Адаптация периферического звена кровообращения сводится к увеличению мышечного кровотока при предельных нагрузках (максимально в 100 раз), артериовенозной разницы по кислороду, плотности капиллярного русла в работающих мышцах, росту концентрации миоглобина и повышению активности окислительных ферментов.

Защитную роль в профилактике сердечно-сосудистых заболеваний играет также повышение фибринолитической активности крови при оздоровительной тренировке (максимум в 6 раз) и снижение тонуса симпатической нервной системы. В результате снижается реакция на нейрогормоны в условиях эмоционального напряжения, т.е. повышается устойчивость организма к стрессорным воздействиям.

Помимо выраженного увеличения резервных возможностей организма под влиянием оздоровительной тренировки чрезвычайно важен также ее профилактический эффект. С ростом тренированности (по мере повышения уровня физической работоспособности) наблюдается отчетливое снижение всех основных факторов риска: содержания холестерина в крови, артериального давления и массы тела. Существуют примеры, когда по мере роста УФС содержание холестерина в крови снизилось с 280 до 210 мг, а триглицеридов со 168 до 150 мг%. В любом возрасте с помощью тренировки можно повысить аэробные возможности и уровень выносливости -показатели биологического возраста организма и его жизнеспособности. Например, у хорошо тренированных бегунов среднего возраста максимально возможная ЧСС примерно на 10 уд/мин больше, чем у неподготовленных. Такие физические упражнения, как ходьба, бег (по З ч. в неделю), уже через 10-12 недель приводят к увеличению МПК на 10-15%.

Таким образом, оздоровительный эффект занятий массовой физкультурой связан прежде всего с повышением аэробных возможностей организма, уровня общей выносливости и физической работоспособности. Повышение работоспособности сопровождается профилактическим эффектом в отношении факторов риска сердечно-сосудистых заболеваний: снижением веса тела и жировой массы, содержания холестерина и триглицеридов в крови, снижением артериального давления и частоты сердечных сокращений. Кроме того, регулярная физическая тренировка позволяет в значительной степени затормозить развитие возрастных изменений физиологических функций, а также дегенеративных изменений различных органов и систем (включая задержку и обратное развитие атеросклероза). Выполнение физических упражнений положительно влияет на все звенья двигательного аппарата, препятствуя развитию дегенеративных изменений, связанных с возрастом и гиподинамией. Повышается минерализация костной ткани и содержание кальция в организме, что препятствует развитию остеопороза. Увеличивается приток лимфы к суставным хрящам и межпозвонковым дискам, что является лучшим средством профилактики артроза и остеохондроза. Все эти данные свидетельствуют о неоценимом положительном влиянии занятий оздоровительной физической культурой на организм человека.


Заключение

В данной курсовой работе были рассмотрены основные гемодинамические характеристики и их изменение при выполнении физической нагрузки. Краткие выводы сведены в таблице 10.

Таблица10. Основные гемодинамические характеристики

Определение Характеристика. Эффект тренировки
ЧСС ЧСС-частота сердечн. сокращений в минуту (частота пульса). ЧСС покоя средн. У мужчин -60уд/мин женщин-75,у тренирован. муж. -55 , у выдающихся спортсменов-50уд/мин. Миним. зарегистрированная ЧСС покоя у спортсменов-21уд/мин. ЧСС макс средн. мужчин 200уд/ мин, у тренированных-195,у суперспортсменов -190уд/мин(упр.макс. аэробной мощн.), 180уд/м (макс. анаэробн. мощн.), ЧСС макс у нетренированных женщин-205 уд/мин, у спортсменок-195уд/мин. Снижение ЧСС (брадикардия) является эффектом тренировки выносливости и ведёт к уменьшению запроса миокарда в кислороде.
СО

СО=СВ/ЧСС

Кол-во крови, выбрасываемое каждым из желудочков сердца при одном сокращении.

СОпокоя у нетренированных мужчин в среднем 70-80мл, у тренированных-90 мл, у выдающихся спортсменов-100-120мл. При макс.аэробной нагрузке СОмакс у нетренированных молодых мужчин - 120-130мл, тренированных-150,у выдающихся спортсменов- 190-210мл. СОмакс нетренированных женщин 90мл, у выдающихся стайеров 140-150мл. Увеличение СО в результате тренировки является признаком повышения эффективности работы сердца.
СВ или МОК или Q

СВ=СО*ЧСС

СВ=ПО2/АВР-О2 Кол-во крови, выбрасываемое сердцем за 1 мин

МОК-Объём крови,проходящ. через кровеносн. сосуды в ед врем

Q=P/R- Кровоток

СВпокоя у мужчин = 4-5л/мин, у женщин-3-5л/мин.СВмакс средний у нетренированных мужчин-24л/мин, у суперспортсменов (тренирующих выносливость) и имеющих большой объём сердца (1200-1300мл)- более 30л/мин- у лыжников СВмакс=38–42 л/мин. У нетренированных женщин СВ-18л/мин. У выдающихся спортсменокСВмакс=28-30. Основное уравнение гемодинамики P-давление крови, R-сосудистое сопротивл. Одним из главных эффектов тренировки выносливости является увеличение СВмакс. Рост СВ не за счёт ЧСС, а за счёт СО
АД

САД- СистолическоеАД-макс.давление крови на стенку аорты,достигаемое в момент СВ

ДАД-ДиастолическоеАД

давление крови с которым она возвращается в предсердие в диастоле.

Нормативы АД-100-129 мм рт.ст. для макс. и 60-79 мм рт.ст. для минимального для лиц до 39 лет Верхняя граница нормы систолического давления от 21 года до 60 лет - 140 мм рт.ст., для диастолического-90мм.рт.ст. При небольшой физической нагрузке АДмакс повышается до 130-140 мм рт.ст., при средней до 140-170, при большой до 180-200. АДмин, обычно, при физ. нагрузке уменьшается. При гипертонии и физических нагрузках САДмакс=250мм рт.ст. Повышение АД связано с ростом R и СО. Занятия спортом способствуют снижению АД, но АД не выходит за пределы нормы. Динамические нагрузки (упр. на выносливость) способствуют снижению АД, статистические нагрузки (упр. на силу)- подъёму АД.
R

3.14*R^4-Сосудистое или периферическ. сопротивлен

Зависит от L-длины сосуда, n- вязкости крови, R-радиуса сосуда; 3,14-число Пи. Перераспределение кровотока, усиление капилляризации, замедление скорости кровотока у высокотренированных спортсменов.
ОЦК ОЦК- Объём циркулирующей крови- общее кол-во крови, находящееся в кровеносных сосудах. Составляет 5-8% веса, в покое у женщин-4,3л, у мужчин-5,5л. При нагрузке ОЦК сначала увеличивается, а затем уменьшается на 0,2-0,3л из-за оттока части плазмы из капилляров в межклеточное пространство. У женщин при макс. работе ОЦКсред=4л, у мужчин-5,2л. При нагрузке макс.аэробной мощности у тренированных мужчин ОЦКсред =6,42л. Увеличение ОЦК при тренировке выносливости.
PaO2, PвO2 PaO2, PвO2- Парциальное напряжение кислорода в артериальной или венозной крови. Парциальное давление. PaO2-PвO2 =АВР-О2 артериально-венозная разность по кислороду PaO2-100ммрт.ст.PвO2пок-40-50мм рт.ст.PвO2макс.работы=10-20мм рт.ст. Если РвО2покоя у мужчин и женщин составляет 30мм рт.ст, то после упражнения на выносливость у нетренированных мужчин РвО2=13мм рт.ст, женщин 14мм рт.ст. Соответственно у тренированных мужчин и женщин-10 и 11мм рт.ст. АВР-О2 покоя=5,8млО2/ 100мл крови, против 6,5 у мужчин. После упражнения у нетренированных женщин АВР-О2=11,1млО2/100мл крови, против 14 у мужчин. В результате тренировки АВР-О2 у женщин-12,8,у мужчин-15,51млО2/100мл крови. Саркоплазматическая гипертрофия скелетной мускулатуры приводит к снижению содержания кислорода в венозной крови PвO2 и увеличениюАВР-О2.Следовательно повышается МПК.

В графе 3 дана краткая характеристика изученных величин и их предельные значения.

Степень изменения гемодинамических показателей при физической нагрузке зависит от исходных величин в состоянии покоя. Физическая нагрузка требует существенного повышения функций сердечно-сосудистой, дыхательной и кровеносной систем. От этого зависит обеспечение работающих мышц достаточным количеством кислорода и выведение из тканей углекислоты. Сердечно - сосудистая система обладает рядом механизмов, позволяющих доставлять на периферию возможно большее количество крови. Прежде всего это гемодинамические факторы: увеличение ЧСС, СВ, ОЦК, ускорение кровотока, изменение АД. Эти показатели различны у представителей различных видов спорта.(Согласно спортивной специализации спринтеры тренируют скорость, стайеры - выносливость, тяжелоатлеты - силу.)

Использование метода эхокардиографии в спортивной медицине позволило установит различие путей адаптации сердца в зависимости от направленности тренировочного процесса. У спортсменов, тренирующих выносливость адаптация сердца идёт преимущественно за счёт дилятации при небольшой гипертрофии, а у спортсменов, тренирующих силу - за счёт истинной гипертрофии миокарда и небольшой дилятации. При усиленной физической работе повышается сердечная деятельность. Сердце следует тренировать постепенно в соответствии с возрастом.

Очень важным является такой гемодинамический фактор, как изменение АД. Направленность тренировочного процесса влияет на АД. Физические нагрузки динамического характера способствуют его снижению, статистические нагрузки - подъёму. Причиной гипертонии могут стать физические и эмоциональные напряжения. Низкий уровень систолического давления в лёгочной артерии является показателем высокого состояния сердечно-сосудистой системы спортсменов тренирующихся на выносливость. Он характеризует потенциальную готовность организма, в частности гемодинамики, к большим и длительным физическим нагрузкам.

Физиологические изменения в организме, вызванные тренировкой выносливости, у женщин те же, что и у мужчин. Так, в кислородтранспортной системе увеличиваются максимальные показатели(ЛВмакс,СВмакс,СОмакс), концентрация лактата при максимальной работе, а ЧССмакс снижается в связи с усилением парасимпатических влияний. Всё это свидетельствует о повышении эффективности и экономичности, а также об увеличении резервных возможностей кислородтранспортной системы.

Состояние организма как в покое, так и при нагрузке зависит от многих причин: от внешних условий, специфики видов спорта (плавание, зимние виды и т.п.), наследственных факторов, пола, возраста и др.

Предел роста тренировочных эффектов у каждого человека генетически предопределён. Даже систематическая интенсивная физическая тренировка не может повысить функциональные возможности организма сверх предела, определяемого генотипом. ЧССпокоя, размеры сердца, толщина стенок левого желудочка, капилляризация миокарда, толщина стенок коронарных артерий находятся под влиянием наследственных факторов.

Необходимо иметь в виду, что занятия физическими упражнениями способствуют укреплению здоровья, совершенствованию биологических механизмов защитно-приспособительных реакций, повышению неспецифической устойчивости к различным вредным влияниям окружающей среды, только при обязательном условии, что степень физической нагрузки на этих занятиях оптимальна для данного конкретного человека. Только оптимальная степень физической нагрузки, соответствующая возможностям человека, её выполняющего, обеспечивает укрепление здоровья, физическое совершенствование, предупреждает возникновение ряда заболеваний и способствует увеличению продолжительности жизни. Физическая нагрузка меньше оптимальной не даёт нужного эффекта, выше оптимальной становится чрезмерной, а чрезмерная нагрузка вместо оздоровительного эффекта может стать причиной возникновения различных заболеваний и даже внезапной смерти от перенапряжения сердца.Спортивные достижения должны расти вследствие повышения здоровья.

Следует особо сказать о влиянии оздоровительной физической культуры на стареющий организм. Физическая культура является основным средством, задерживающим возрастное ухудшение физических качеств и снижение адаптационных способностей организма в целом и сердечнососудистой системы в частности. Изменения в системе кровообращения, снижение производительности сердца влекут за собой выраженное уменьшение максимальных аэробных возможностей организма, снижение уровня физической работоспособности и выносливости. Скорость возрастного снижения МПК в период от 20 до 65 лет у нетренированных мужчин составляет в среднем 0,5 мл/мин/кг, у женщин - 0,3 мл/мин/кг за год. В период от 20 до 70 лет максимальная аэробная производительность снижается почти в 2 раза - с 45 до 25 мл/кг (или на 10 % за десятилетие). Адекватная физическая тренировка, занятия оздоровительной физической культурой способны в значительной степени приостановить возрастные изменения различных функций. Особенно полезны физический труд, физкультура и спорт на свежем воздухе, а особенно вредными для сердечно- сосудистой системы являются курение и злоупотребление спиртными напитками.

В вышеизложенном материале прослежены закономерности изменения основных гемодинамических характеристик организма. Одновременное повышение уровня состояния здоровья и функционального состояния человека невозможно без активного, широкого и всестороннего использования средств физкультуры и спорта.


Литература

1.А.С.Залманов. Тайная мудрость человеческого организма (Глубинная медицина).- М.: Наука, 1966.- 165с.

2.Спортивная медицина (Руководство для врачей)/под редакцией А.В.Чоговадзе, Л.А.Бутченко.-М.:Медицина,1984.-384с.

3.Спортивная физиология: Учеб.для ин-тов физ.кутьт./Под ред. Я.М.Коца.-М.:Физкультура и спорт,1986.-240с.

4.Дембо А.Г.Врачебный контроль в спорте.-М.:Медицина.1988.-288с.

5.А.М.Цузмер, О.Л.Петришина. Человек. Анатомия. Физиология. Гигиена.-М.: Просвещение, 1971.-255с.

6.В.И. Дубровский, Реабилитация в спорте. – М.: Физкультура и спорт, 1991. – 208 с.

7. Мельниченко Е.В.Методические указания к теоретическому изучению курса «Спортивная физиология» .Симферополь.2003г.

8.Грабовская Е.Ю. Малыгина В.И. Мельниченко Е.В. Методические указания к теоретическому изучению курса «Физиология мышечной деятельности.» Симферополь.2003г

9.Дембо А.Г.Актуальные проблемы современной спортивной медицины.-М.:Физкультура и спорт,1980.-295с.

10.Былеева Л.В. и др. Подвижные игры. Учеб.пособие для ин-тов физической культуры. М.:Физкультура и спорт,1974.-208с.


А.С.Залманов. Тайная мудрость человеческого организма (Глубинная медицина).- Москва: Наука, 1966.- C32.

Спортивная медицина (Руководство для врачей)/под редакцией А.В.Чоговадзе, Л.А.Бутченко.-М.:Медицина,1984.-С83.

Спортивная медицина (Руководство для врачей)/под редакцией А.В.Чоговадзе, Л.А.Бутченко.-М.:Медицина,1984.-С76.

Спортивная физиология: Учеб.для ин-тов физ.кутьт./Под ред. Я.М.Коца.-М.:Физкультура и спорт,1986.-С.87.

Спортивная физиология: Учеб.для ин-тов физ.кутьт./Под ред. Я.М.Коца.-М.:Физкультура и спорт,1986.-С.29

Дембо А.Г.Врачебный контроль в спорте.-М.:Медицина.1988.-С137.

Спортивная физиология: Учеб.для ин-тов физ.кутьт./Под ред. Я.М.Коца.-М.:Физкультура и спорт,1986.-С.202

Спортивная медицина (Руководство для врачей)/под редакцией А.В.Чоговадзе, Л.А.Бутченко.-М.:Медицина,1984.-С97.

...) и относительную (при значительной дилятации левого желудочка с расширением аортального отверстия) недостаточность аортального клапана. Этиология 1) РЛ; 2) ИЗ; 3) сифилитический аортит; 4) диффузные заболевания соединительной ткани; 5) атеросклероз аорты; 6) травмы; 7) врожденный порок. Патогенез и изменения гемодинамики. Основной патологический процесс приводит к сморщиванию (ревматизм, ...

Литературных данных по изучаемому вопросу; 2) оценить морфофункциональные показатели у участников групп различной тренированной направленности на начальном этапе; 3) определить влияние аэробных и анаэробных физических упражнений на морфофункциональные возможности занимающихся; 4) провести сравнительный анализ показателей исследуемый у участников групп в динамике тренировочного процесса. 2.2 ...


Электрокардиографическую методику в основном для выявления физиологических и патологических изменений в сердце, в то время как работ, где использовали бы показатели ЭКГ для определения тренированности и влияние физических нагрузок на изменение частоты сердечных сокращений и артериального давления, мы не нашли».12 Проведенный анализ ЭКГ показал, что в покое изучаемые величины у гимнастов 15-16 лет...

РаО2 наряду с двумя другими величинами (раСО2 и рН) составляют такое понятие как "газы крови" (Arterial blood gases - ABG(s)). Значение рaО2 зависит от многих параметров, главными из которых являются возраст и высота нахождения пациента (парциальное давление О2 в атмосферном воздухе). Таким образом, показатель рО2 должн быть интепретирован индивидуально для каждого пациента.
Точные результаты для ABGs зависит от сбора, обработки и собственно анализа образца. Клинически важные ошибки могут возникать на любом из этих этапов, но измерение газов крови являются особенно уязвимыми к ошибкам возникающим до проведения анализа. Наиболее распространенные проблемы включают в себя
- забор не артериальной (смешанной или венозной) крови;
- наличие воздушных пузырьков в пробе;
- недостаточное или чрезмерное количество антикоагулянта в образце;
- задержка проведения анализа и хранение образца всё это время неохлажденным.

Надлежащий образец крови для анализа ABG содержит, как правило,1-3 мл артериальной крови, взятой пункционно анаэробно из периферической артерии в специальный контейнер из пластика, с помощью иглы малого диаметра. Пузырьки воздуха, которые могут попасть во время отбора пробы, должны быть незамедлительно удалены. Воздух в помещении имеет раО2 около 150 мм рт.ст. (на уровне моря) и раСО2 практически равное нулю. Таким образом, воздушные пузырьки, которые смешиваются с артериальной кровью сдвигают (увеличивают) раО2 к 150 мм рт.ст. и уменьшают (снижают) раСО2.

Если в качестве антикоагулянта используется гепарин и забор производится шприцем а не специальным контейнером, следует учитывать рН гепарина, который равен приблизительно 7,0. Таким образом, избыток гепарина может изменить все три значения ABG (раО2, раСО2, рН). Очень малое количество гепарина необходимо, чтобы предотвратить свертывание; 0,05 - 0,10 мл разбавленного раствора гепарина (1000 ЕД / мл), будет противодействовать свертыванию приблизительно 1 мл крови, не влияя при этом на рН, раО2, раСО2. После промывки шприца гепарином, достаточное количество его обычно остается в мертвом пространстве шприца и иглы, чего хватает для антикоагуляции без искажения значений ABG.

После сбора, образец должен быть проанализирован в кратчайшие сроки. Если происходит задержка более 10 минут, образец должен быть погружен в контейнер со льдом. Лейкоциты и тромбоциты продолжают потреблять кислород в образце и после забора, и могут вызвать значительное падение раО2, при хранении в течение долгого времени при комнатной температуре, особенно в условиях лейкоцитоза или тромбоцитоза. Охлаждение позволит предотвратить любые клинически важные изменения, по крайней мере в течение 1 часа, за счёт снижения метаболической активности этих клеток.

С уменьшением барометрического давления снижается и парциальное давление основных газов, входящих в состав атмосферы. Количественный же состав воздушной смеси в тропосфере остается практически неизменным. Так атмосферный воздух в нормальных условиях (на уровне моря) содержит 21% кислорода, 78% азота, 0,03% углекислого газа и почти % приходится на инертные газы: гелий, ксенон, аргон и т.д.

Парциа́льное давление (лат. partialis - частичный, от лат. pars - часть) - давление отдельно взятого компонента газовой смеси. Общее давление газовой смеси является суммой парциальных давлений её компонентов.

Парциальное давление газа в атмосферном воздухе определяется по формуле:

Рh – барометрическое давление на фактической высоте.

Решающую роль в поддержании жизнедеятельности человека играет газовый обмен между организмом и внешней средой. Газовый обмен осуществляется за счет дыхания и кровообращения: в организм непрерывно поступает кислород, а из организма выделяется углекислый газ и другие продукты обмена веществ. Чтобы этот процесс не нарушался необходимо поддерживать парциальное давление кислорода во вдыхаемом воздухе на уровне близком к земному.

Парциальным давлением кислорода (О 2) в воздухе называется часть общего давления воздуха, приходящаяся на долю О 2.

Так, на уровне моря (Н=0м), в соответствии с (1.1), парциальное давление кислорода составит:


где αО 2 = 21% - содержание газа в атмосферном воздухе в %;

Р h =0 – барометрическое давление на высоте уровня моря

При увеличении высоты суммарное давление газов падает, однако парциальное давление таких составных частей, как углекислого газа и водяных паров в альвеолярном воздухе, практически остается без изменений.

И равно, при температуре тела человека 37 0 С примерно:

· для водяных паров РН 2 О=47мм рт.ст.;

· для углекислого газа РСО 2 =40 мм рт.ст.

При этом значительно изменяется скорость падения давления кислорода в альвеолярном воздухе.



Атмосферное давление и температура воздуха на высотах

По международному стандарту

Таблица 1.4

№ п/п Высота, м Барометрическое давление, мм рт.ст. Температура воздуха, 0 С
1.
2. 715,98 11,75
3. 674,01 8,5
4. 634,13 5,25
5. 596,17
6. 560,07 -1,25
7. 525,8 -4,5
8. 493,12 -7,15
9. 462,21 -11,0
10. 432,86 -14,25
11. 405,04 -17,5
12. 378,68 -20,5
13. 353,73 -24,0
14. 330,12 -27,25
15. 307,81 -30,5
16. 286,74 -33,75
17. 266,08 -37,0
18. 248,09 -40,25
19. 230,42 -43,5
20. 213,76 -46,75
21. 198,14 -50,0
22. 183,38 -50,25
23. 169,58 -56,5
24. 156,71 -56,5
25. 144,82 -56,5
26. 133,83 -56,5
27. 123,68 -56,5
28. 114,30 -56,5
29. 105,63 -56,5
30. 97,61 -56,5
31. 90,21 -56,5
32. 83,86 -56,5

Альвеолярный воздух - смесь газов (главным образом кислорода, углекислого газа, азота и паров воды), содержащаяся в лёгочных альвеолах, непосредственно участвующий в газообмене с кровью. Поступление кислорода в кровь, протекающую по лёгочным капиллярам, и удаление из неё углекислого газа, а также регуляция дыхания зависят от состава, поддерживаемого у здоровых животных и человека в определённых узких границах благодаря вентиляции лёгких (у человека в норме содержит 14-15% кислорода и 5-5,5% углекислого газа). При недостатке кислорода во вдыхаемом воздухе и некоторых болезненных состояниях возникают изменения состава, что может привести к гипоксии.