Урок "числовая окружность на координатной плоскости". Внеклассный урок - числовая окружность

Уравнение окружности на координатной плоскости

Определение 1 . Числовой осью (числовой прямой, координатной прямой ) Ox называют прямую линию, на которой точка O выбрана началом отсчёта (началом координат) (рис.1), направление

O x

указано в качестве положительного направления и отмечен отрезок, длина которого принята за единицу длины .

Определение 2 . Отрезок, длина которого принята за единицу длины, называют масштабом .

Каждая точка числовой оси имеет координату , являющуюся вещественным числом. Координата точки O равна нулю. Координата произвольной точки A , лежащей на луче Ox , равна длине отрезка OA . Координата произвольной точки A числовой оси, не лежащей на луче Ox , отрицательна, а по абсолютной величине равна длине отрезка OA .

Определение 3 . Прямоугольной декартовой системой координат Oxy на плоскости называют две взаимно перпендикулярных числовых оси Ox и Oy с одинаковыми масштабами и общим началом отсчёта в точке O , причём таких, что поворот от луча Ox на угол 90° до луча Oy осуществляется в направлении против хода часовой стрелки (рис.2).

Замечание . Прямоугольную декартову систему координат Oxy , изображённую на рисунке 2, называют правой системой координат , в отличие от левых систем координат , в которых поворот луча Ox на угол 90° до луча Oy осуществляется в направлении по ходу часовой стрелки. В данном справочнике мы рассматриваем только правые системы координат , не оговаривая этого особо.

Если на плоскости ввести какую-нибудь систему прямоугольных декартовых координат Oxy , то каждая точка плоскости приобретёт две координаты абсциссу и ординату , которые вычисляются следующим образом. Пусть A – произвольная точка плоскости. Опустим из точки A перпендикуляры AA 1 и AA 2 на прямые Ox и Oy соответственно (рис.3).

Определение 4 . Абсциссой точки A называют координату точки A 1 на числовой оси Ox , ординатой точки A называют координату точки A 2 на числовой оси Oy .

Обозначение . Координаты (абсциссу и ординату) точки A в прямоугольной декартовой системе координат Oxy (рис.4) принято обозначать A (x ; y ) или A = (x ; y ).

Замечание . Точка O , называемая началом координат , имеет координаты O (0 ; 0) .

Определение 5 . В прямоугольной декартовой системе координат Oxy числовую ось Ox называют осью абсцисс , а числовую ось Oy называют осью ординат (рис. 5).

Определение 6 . Каждая прямоугольная декартова система координат делит плоскость на 4 четверти (квадранта ), нумерация которых показана на рисунке 5.

Определение 7 . Плоскость, на которой задана прямоугольная декартова система координат, называют координатной плоскостью .

Замечание . Ось абсцисс задаётся на координатной плоскости уравнением y = 0 , ось ординат задаётся на координатной плоскости уравнением x = 0.

Утверждение 1 . Расстояние между двумя точками координатной плоскости

A 1 (x 1 ; y 1) и A 2 (x 2 ; y 2)

вычисляется по формуле

Доказательство . Рассмотрим рисунок 6.

| A 1 A 2 | 2 =
= ( x 2 - x 1) 2 + ( y 2 - y 1) 2 .
(1)

Следовательно,

что и требовалось доказать.

Уравнение окружности на координатной плоскости

Рассмотрим на координатной плоскости Oxy (рис. 7) окружность радиуса R с центром в точке A 0 (x 0 ; y 0) .

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Числовая окружность в координатной плоскости

Повторим: Единичная окружность – числовая окружность, радиус которой равен 1. R=1 C=2 π + - у х

Если точка М числовой окружности соответст-вует числу t, то она соответствует и числу вида t+2 π k , где k – любое целое число (k ϵ Z) . M(t) = M(t+2 π k), где k ϵ Z

Основные макеты Первый макет 0 π у х Второй макет у х

х у 1 А(1, 0) B (0 , 1) C (- 1, 0) D (0 , -1) 0 x>0 y>0 x 0 x 0 y

Найдем координаты точки М, соответствующей точке. 1) 2) х у М P 45° O A

Координаты основных точек первого макета 0 2 x 1 0 -1 0 1 y 0 1 0 -1 0 0 x 1 0 -1 0 1 y 0 1 0 -1 0 D у х

М P х у O A Найдем координаты точки М, соответствующей точке. 1) 2) 30°

М P Найдем координаты точки М, соответствующей точке. 1) 2) 30° х у O A В

Используя свойство симметрии, найдем координаты точек, кратных у х

Координаты основных точек второго макета x y x y у х

Пример Найти координаты точки числовой окружности. Решение: P у х

Пример Найти на числовой окружности точки с ординатой Решение: у х x y x y

Упражнения: Найти координаты точек числовой окружности: а) , б) . Найти на числовой окружности точки с абсциссой.

Координаты основных точек 0 2 x 1 0 -1 0 1 y 0 1 0 -1 0 0 x 1 0 -1 0 1 y 0 1 0 -1 0 Координаты основных точек первого макета x y x y Координаты основных точек второго макета


По теме: методические разработки, презентации и конспекты

Дидактический материал по алгебре и началам анализа в 10 классе (профильный уровень) "Числовая окружность на координатной плоскости"

Вариант 1.1.Найти на числовой окружности точку:А) -2∏/3Б) 72.Како й четверти числовой окружности принадлежит точка 16.3.Найти ко...

Если расположить единичную числовую окружность на координатной плоскости, то для ее точек можно найти координаты. Числовую окружность располагают так, чтобы ее центр совпал с точкой начала координат плоскости, т. е. точкой O (0; 0).

Обычно на единичной числовой окружности отмечают точки соответствующие от начала отсчета на окружности

  • четвертям - 0 или 2π, π/2, π, (2π)/3,
  • серединам четвертей - π/4, (3π)/4, (5π)/4, (7π)/4,
  • третям четвертей - π/6, π/3, (2π)/3, (5π)/6, (7π)/6, (4π)/3, (5π)/3, (11π)/6.

На координатной плоскости при указанном выше расположении на ней единичной окружности можно найти координаты, соответствующие этим точкам окружности.

Координаты концов четвертей найти очень легко. У точки 0 окружности координата x равна 1, а y равен 0. Можно обозначить так A (0) = A (1; 0).

Конец первой четверти будет располагаться на положительной полуоси ординат. Следовательно, B (π/2) = B (0; 1).

Конец второй четверти находится на отрицательной полуоси абсцисс: C (π) = C (-1; 0).

Конец третьей четверти: D ((2π)/3) = D (0; -1).

Но как найти координаты середин четвертей? Для этого строят прямоугольный треугольник. Его гипотенузой является отрезок от центра окружности (или начала координат) к точке середины четверти окружности. Это радиус окружности. Поскольку окружность единичная, то гипотенуза равна 1. Далее проводят перпендикуляр из точки окружности к любой оси. Пусть будет к оси x. Получается прямоугольный треугольник, длины катетов которого - это и есть координаты x и y точки окружности.

Четверть окружности составляет 90º. А половина четверти составляет 45º. Поскольку гипотенуза проведена к точке середины четверти, то угол между гипотенузой и катетом, выходящим из начала координат, равен 45º. Но сумма углов любого треугольника равна 180º. Следовательно, на угол между гипотенузой и другим катетом остается также 45º. Получается равнобедренный прямоугольный треугольник.

Из теоремы Пифагора получаем уравнение x 2 + y 2 = 1 2 . Поскольку x = y, а 1 2 = 1, то уравнение упрощается до x 2 + x 2 = 1. Решив его, получаем x = √½ = 1/√2 = √2/2.

Таким образом, координаты точки M 1 (π/4) = M 1 (√2/2; √2/2).

В координатах точек середин других четвертей будут меняться только знаки, а модули значений оставаться такими же, так как прямоугольный треугольник будет только переворачиваться. Получим:
M 2 ((3π)/4) = M 2 (-√2/2; √2/2)
M 3 ((5π)/4) = M 3 (-√2/2; -√2/2)
M 4 ((7π)/4) = M 4 (√2/2; -√2/2)

При определении координат третьих частей четвертей окружности также строят прямоугольный треугольник. Если брать точку π/6 и проводить перпендикуляр к оси x, то угол между гипотенузой и катетом, лежащим на оси x, составит 30º. Известно, что катет, лежащий против угла в 30º, равен половине гипотенузы. Значит, мы нашли координату y, она равна ½.

Зная длины гипотенузы и одного из катетов, по теореме Пифагора находим другой катет:
x 2 + (½) 2 = 1 2
x 2 = 1 - ¼ = ¾
x = √3/2

Таким образом T 1 (π/6) = T 1 (√3/2; ½).

Для точки второй трети первой четверти (π/3) перпендикуляр на ось лучше провести к оси y. Тогда угол при начале координат также будет 30º. Здесь уже координата x будет равна ½, а y соответственно √3/2: T 2 (π/3) = T 2 (½; √3/2).

Для других точек третей четвертей будут меняться знаки и порядок значений координат. Все точки, которые ближе расположены к оси x будут иметь по модулю значение координаты x, равное √3/2. Те точки, которые ближе к оси y, будут иметь по модулю значение y, равное √3/2.
T 3 ((2π)/3) = T 3 (-½; √3/2)
T 4 ((5π)/6) = T 4 (-√3/2; ½)
T 5 ((7π)/6) = T 5 (-√3/2; -½)
T 6 ((4π)/3) = T 6 (-½; -√3/2)
T 7 ((5π)/3) = T 7 (½; -√3/2)
T 8 ((11π)/6) = T 8 (√3/2; -½)

Занятие 9. Числовая окружность. Синус и косинус. Тангенс и котангенс.

Единичной окружностью называют окружность радиуса 1.

Числовая окружность - это единичная окружность, точки которой соответствуют определенным действительным числам.

Общий вид числовой окружности.


1) Ее радиус принимается за единицу измерения.
2) Горизонтальный и вертикальный диаметры делят числовую окружность на четыре четверти. Их соответственно называют первой, второй, третьей и четвертой четвертью.
3) Горизонтальный диаметр обозначают AC, причем А - это крайняя правая точка. Вертикальный диаметр обозначают BD, причем B - это крайняя верхняя точка.

Соответственно:
первая четверть - это дуга AB
вторая четверть - дуга BC
третья четверть - дуга CD
четвертая четверть - дуга DA
4) Начальная точка числовой окружности - точка А.

Отсчет по числовой окружности может вестись как по часовой стрелке, так и против часовой стрелки. Отсчет от точки А против часовой стрелки называется положительным направлением . Отсчет от точки А по часовой стрелке называется отрицательным направлением .

Числовая окружность на координатной плоскости.

Центр радиуса числовой окружности соответствует началу координат (числу 0). Горизонтальный диаметр соответствует оси x , вертикальный - оси y . Начальная точка А числовой окружности находится на оси x и имеет координаты (1; 0).

Значения x и y в четвертях числовой окружности:

Значение любой точки числовой окружности:

Любая точка числовой окружности с координатами (x; y ) не может быть меньше -1, но не может быть больше 1:  ; 

Основные величины числовой окружности:

Имена и местонахождение основных точек числовой окружности:

Как запомнить имена числовой окружности.

Есть несколько простых закономерностей, которые помогут вам легко запомнить основные имена числовой окружности. Перед тем как начать, напомним: отсчет ведется в положительном направлении, то есть от точки А (2П ) против часовой стрелки.

1) Начнем с крайних точек на осях координат. Начальная точка - это 2П (крайняя правая точка на оси х , равная 1). Как вы знаете, 2П - это длина окружности. Значит, половина окружности - это 1П или П . Ось х делит окружность как раз пополам. Соответственно, крайняя левая точка на оси х, равная -1, называется П . Крайняя верхняя точка на оси у, равная 1, делит верхнюю полуокружность пополам. Значит, если полуокружность - это П , то половина полуокружности - это П /2. Одновременно П /2 - это и четверть окружности. Отсчитаем три таких четверти от первой до третьей - и мы придем в крайнюю нижнюю точку на оси у , равной -1. Но если она включает три четверти - значит имя ей 3П /2.

2) Теперь перейдем к остальным точкам. Обратите внимание: все противоположные точки имеют одинаковый числитель - причем это противоположные точки и относительно оси у , и относительно центра осей, и относительно оси х . Это нам и поможет знать их значения точек без зубрежки. Надо запомнить лишь значение точек первой четверти: П /6, П /4 и П /3. И тогда мы "увидим" некоторые закономерности:

Определение . Если точка М числовой окружности соответствует числу t, то абсциссу точки М называют косинусом числа t и обозначают соs t , а ординату точки М называют синусом числа t и обозначают sin t .
Если М(t) = М(х;у), то х = cost, у = sint.

Определение . Отношение синуса числа t к косинусу того же числа называют тангенсом числа t. Отношение косинуса числа t к синусу того же числа называют котангенсом числа t.

Таблица знаков синуса, косинуса, тангенса и котангенса по четвертям числовой окружности:

Урок и презентация на тему: "Числовая окружность на координатной плоскости"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Пособия и тренажеры в интернет-магазине "Интеграл" для 10 класса от 1С
Алгебраические задачи с параметрами, 9–11 классы
Решаем задачи по геометрии. Интерактивные задания на построение для 7-10 классов

Что будем изучать:
1. Определение.
2. Важные координаты числовой окружности.
3. Как искать координату числовой окружности?
4. Таблица основных координат числовой окружности.
5. Примеры решения задач.

Определение числовой окружности на координатной плоскости

Расположим числовую окружность в координатной плоскости так, чтобы центр окружности совместился с началом координат, а её радиус принимаем за единичный отрезок. Начальная точка числовой окружности A совмещена с точкой (1;0).

Каждая точка числовой окружности имеет в координатной плоскости свои координаты х и у, причем:
1) при $x > 0$, $у > 0$ - в первой четверти;
2) при $х 0$ - во второй четверти;
3) при $х 4) при $х > 0$, $у
Для любой точки $М(х; у)$ числовой окружности выполняются неравенства: $-1
Запомните уравнение числовой окружности: $x^2 + y^2 = 1$.

Нам важно научиться находить координаты точек числовой окружности, представленных на рисунке.

Найдем координату точки $\frac{π}{4}$

Точка $М(\frac{π}{4})$ - середина первой четверти. Опустим из точки М перпендикуляр МР на прямую ОА и рассмотрим треугольник OMP.Так как дуга АМ составляет половину дуги АВ, то $∠MOP=45°$.
Значит, треугольник OMP - равнобедренный прямоугольный треугольник и $OP=MP$, т.е. у точки M абсцисса и ордината равны: $x = y$.
Так как координаты точки $M(х;y)$ удовлетворяют уравнению числовой окружности, то для их нахождения нужно решить систему уравнений:
$\begin {cases} x^2 + y^2 = 1, \\ x = y. \end {cases}$
Решив данную систему, получаем: $y = x =\frac{\sqrt{2}}{2}$.
Значит, координаты точки M, соответствующей числу $\frac{π}{4}$, будут $M(\frac{π}{4})=M(\frac{\sqrt{2}}{2};\frac{\sqrt{2}}{2})$.
Аналогичным образом рассчитываются координаты точек, представленных на предыдущем рисунке.

Координаты точек числовой окружности



Рассмотрим примеры

Пример 1.
Найти координату точки числовой окружности: $Р(45\frac{π}{4})$.

Решение:
$45\frac{π}{4} = (10 + \frac{5}{4}) * π = 10π +5\frac{π}{4} = 5\frac{π}{4} + 2π*5$.
Значит, числу $45\frac{π}{4}$ соответствует та же точка числовой окружности, что и числу $\frac{5π}{4}$. Посмотрев значение точки $\frac{5π}{4}$ в таблице, получаем: $P(\frac{45π}{4})=P(-\frac{\sqrt{2}}{2};-\frac{\sqrt{2}}{2})$.

Пример 2.
Найти координату точки числовой окружности: $Р(-\frac{37π}{3})$.

Решение:

Т.к. числам $t$ и $t+2π*k$, где k-целое число, соответствует одна и та же точка числовой окружности то:
$-\frac{37π}{3} = -(12 + \frac{1}{3})*π = -12π –\frac{π}{3} = -\frac{π}{3} + 2π*(-6)$.
Значит, числу $-\frac{37π}{3}$ соответствует та же точка числовой окружности, что и числу $–\frac{π}{3}$, а числу –$\frac{π}{3}$ соответствует та же точка, что и $\frac{5π}{3}$. Посмотрев значение точки $\frac{5π}{3}$ в таблице, получаем:
$P(-\frac{37π}{3})=P(\frac{{1}}{2};-\frac{\sqrt{3}}{2})$.

Пример 3.
Найти на числовой окружности точки с ординатой $у =\frac{1}{2}$ и записать, каким числам $t$ они соответствуют?

Решение:
Прямая $у =\frac{1}{2}$ пересекает числовую окружность в точках М и Р. Точка М соответствует числу $\frac{π}{6}$ (из данных таблицы). Значит, и любому числу вида: $\frac{π}{6}+2π*k$. Точка Р соответствует числу $\frac{5π}{6}$, а значит, и любому числу вида $\frac{5π}{6} +2 π*k$.
Получили, как часто говорят в таких случаях, две серии значений:
$\frac{π}{6} +2 π*k$ и $\frac{5π}{6} +2π*k$.
Ответ: $t=\frac{π}{6} +2 π*k$ и $t=\frac{5π}{6} +2π*k$.

Пример 4.
Найти на числовой окружности точки с абсциссой $x≥-\frac{\sqrt{2}}{2}$ и записать, каким числам $t$ они соответствуют.

Решение:

Прямая $x =-\frac{\sqrt{2}}{2}$ пересекает числовую окружность в точках М и Р. Неравенству $x≥-\frac{\sqrt{2}}{2}$ соответствуют точки дуги РМ. Точка М соответствует числу $3\frac{π}{4}$ (из данных таблицы). Значит, и любому числу вида $-\frac{3π}{4} +2π*k$. Точка Р соответствует числу $-\frac{3π}{4}$, а значит, и любому числу вида $-\frac{3π}{4} +2π*k$.

Тогда получим $-\frac{3π}{4} +2 π*k ≤t≤\frac{3π}{4} +2πk$.

Ответ: $-\frac{3π}{4} +2 π*k ≤t≤\frac{3π}{4} +2πk$.

Задачи для самостоятельного решения

1) Найти координату точки числовой окружности: $Р(\frac{61π}{6})$.
2) Найти координату точки числовой окружности: $Р(-\frac{52π}{3})$.
3) Найти на числовой окружности точки с ординатой $у = -\frac{1}{2}$ и записать, каким числам $t$ они соответствуют.
4) Найти на числовой окружности точки с ординатой $у ≥ -\frac{1}{2}$ и записать, каким числам $t$ они соответствуют.
5) Найти на числовой окружности точки с абсциссой $x≥-\frac{\sqrt{3}}{2}$ и записать, каким числам $t$ они соответствуют.