Значение химии в жизни человека. Химия в жизни человека


Муниципальное бюджетное общеобразовательное учреждение

«Гимназия №16»

По теме:
«Роль химии в жизни человека»

2011
Введение

Для решения многих задач можно использовать одну из важнейших отраслей науки и естествознания - химическую науку. Современная химия развивается стремительными темпами, плодотворно сотрудничая с физикой, математикой, биологией и другими науками. Роль химии в жизни и развитии общества очень велика. Химия очень тесно связана с производством материальных ценностей. Естествознание, в том числе и химическая наука, начиная с давно известных положений и законов, и кончая современными сложными теориями, взаимосвязана с философией.
Колоссальные достижения химической практики весомо и зримо ощутимы в нашей повседневной жизни. Сейчас практически немыслимо остановиться на этом пути или вернуться назад, отказавшись от использования знаний об окружающем мире, которыми человечество уже обладает.

1. Химия в нашей повседневной жизни

Повсюду, куда бы мы ни обратили свой взор, нас окружают предметы и изделия, изготовленные из веществ и материалов, которые получены на химических заводах и фабриках. Кроме того, в повседневной жизни, сам того не подозревая, каждый человек осуществляет химические реакции. Например, умывание с мылом, стирка с использованием моющих средств и др. При опускании кусочка лимона в стакан горячего чая происходит ослабление окраски – чай здесь выступает в роли кислотного индикатора. Аналогичное кислотно-основное взаимодействие проявляется при смачивании уксусом нарезанной синей капусты. Хозяйки знают, что капуста при этом розовеет. Зажигая спичку, замешивая песок и цемент с водой или гася водой известь, обжигая кирпич, мы осуществляем настоящие, а иногда и довольно сложные химические реакции. Объяснение этих и других широко распространенных в жизни человека химических процессов – удел специалистов.
Приготовление пищи – это тоже химические процессы. Не зря говорят, что женщины-химики часто очень хорошие кулинары. Действительно, приготовление пищи на кухне иногда напоминает выполнение органического синтеза в лаборатории. Только вместо колб и реторт на кухне используют кастрюли и сковородки, а иногда и автоклавы в виде скороварок. Не стоит далее перечислять химические процессы, которые проводит человек в повседневной жизни. Необходимо лишь отметить, что в любом живом организме в огромных количествах осуществляются различные химические реакции. Процессы усвоения пищи, дыхания животного и человека основаны на химических реакциях. В основе роста маленькой травинки и могучего дерева также лежат химические реакции.
Химия – это наука, важная часть естествознания. Строго говоря, наука не может окружать человека. Его могут окружать результаты практического приложения науки. Это уточнение весьма существенное. В настоящее время часто можно слышать слова: «химия испортила природу», «химия загрязнила водоем и сделала его непригодным для использования» и т.д. На самом же деле наука химия здесь вовсе не причем. Люди, используя результаты науки, плохо оформили их в технологический процесс, безответственно отнеслись к требованиям правил безопасности и к экологически допустимым нормам промышленных сбросов, неумело и не в меру использовали удобрения на сельскохозяйственных угодьях и средства защиты растений от сорняков и вредителей растений. Любая наука, особенно естествознание, не может быть хорошей или плохой. Наука – накопление и систематизация знаний. Другое дело, как и в каких целях используются эти знания. Однако это уже зависит от культуры, квалификации, моральной ответственности и нравственности людей, не добывающих, а использующих знания.

2. Химическая промышленность

Химическая промышленность – комплексная отрасль, определяющая, наряду с машиностроением, уровень научно-технического прогресса, обеспечивающая все отрасли народного хозяйства химическими технологиями и материалами, в том числе новыми, прогрессивными и производящая товары массового народного потребления.
Химическая промышленность объединяет множество специализированных отраслей, разнородных по сырью и назначению выпускаемой продукции, но сходных по технологии производства.
В состав современной химической промышленности России входят следующие отрасли.
Отрасли химической промышленности:

    горно-химическая (добыча и обогащение химического минерального сырья – фосфоритов, апатитов, калийных и поваренных солей, серного колчедана);
    основная (неорганическая) химия (производство неорганических кислот, минеральных солей, щелочей, удобрений, химических кормовых средств, хлора, аммиака, кальцинированной и каустической соды);
    органическая химия:
    производство синтетических красителей;
    производство синтетических смол и пластических масс;
    производство искусственных и синтетических волокон и нитей;
    производство химических реактивов, особо чистых веществ и катализаторов;
    фотохимическая (производство фотокинопленки, магнитных лент и других фотоматериалов);
    лакокрасочная (получение белил, красок, лаков, эмалей, нитроэмалей и т.п.);
    химико-фармацевтическая
- производство лекарственных веществ и препаратов;
- производство химических средств защиты растений.
7. производство товаров бытовой химии;
    производство пластмассовых изделий, стекловолокнистых материалов, стеклопластиков и изделий из них.
8. микробиологическая отрасль.

Экономические районы страны, в которых сложились наиболее крупные комплексы химической промышленности:
Центральный район – полимерная химия (производство пластмасс и изделий из них, синтетического каучука, шин и резинотехнических изделий, химического волокна), производство красителей и лаков, азотных и фосфорных удобрений, серной кислоты;
Уральский район – производство азотных, фосфорных и калийных удобрений, соды, серы, серной кислоты, полимерная химия (производство синтетического спирта, синтетического каучука, пластмасс из нефти и попутных газов);
Северо-Западный район – производство фосфорных удобрений, серной кислоты, полимерная химия (производство синтетических смол, пластмасс, химического волокна);
Поволжье – нефтехимическое производство (органический синтез), производство полимерной продукции (синтетического каучука, химического волокна);
Северный Кавказ – производство азотных удобрений, органического синтеза, синтетических смол и пластмасс;
Сибирь (Западная и Восточная) – химия органического синтеза, азотная промышленность на коксовом газе, производство полимерной химии (пластмасс, химического волокна, синтетического каучука), шинное производство.

3. Химия и здоровье человека

Живая клетка это настоящее царство больших и малых молекул, которые непрерывно взаимодействуют, образуются и распадаются... В организме человека реализуется около 100 000 процессов, причем каждый из них представляет собой совокупность различных химических превращений. В одной клетке организма может происходить примерно 2000 реакций. Все эти процессы осуществляются при помощи сравнительно небольшого числа соединений. Большая часть болезней обусловлена отклонением концентраций какого-либо вещества от нормы. Это связано с тем, что огромное число химических превращений внутри живой клетки происходит в несколько этапов, и многие вещества важны клетке не сами по себе, они являются лишь посредниками в цепи сложных реакций; но, если нарушается какое-то звено, то вся цепь в результате часто перестает выполнять свою передаточную функцию; останавливается нормальная работа клетки по синтезу необходимых веществ.
Фармакология - это наука о лекарственных средствах, действии различных химических соединений на живые организмы, о способах введения лекарств в организмы и о взаимодействии лекарств между собой. Молекулярная фармакология изучает поведение молекул лекарственных веществ внутри клетки, транспорт этих молекул через мембраны и т.д. Человек начал применять лекарственные вещества очень давно, несколько тысяч лет назад. Древняя медицина практически полностью основывалась на лекарственных растениях, и этот подход сохранил свою привлекательность до наших дней. Множество современных лекарственных препаратов содержат вещества растительного происхождения или химически синтезированные соединения, идентичные тем, которые можно обнаружить в лекарственных растениях. Один из самых ранних из дошедших до нас трактат о лекарственных средствах был написан древнегреческим врачом Гиппократом в IV веке до нашей эры.

4. Химия и проблемы продовольствия и экологии

Население нашей планеты растёт. По прогнозам Организации объединенных наций к 2050г. оно составит около 7 млрд. человек и будет, естественно, увеличиваться в последующие десятилетия. Это значит, что уже сейчас необходимо задуматься над тем, как обеспечить население Земли питанием в будущем. Расчёты учёных приводят к выводу, что проблема будет решена, если за ближайшие 40 - 50 лет мировое производство продуктов питания возрастёт в 3 - 4 раза. Подобный прирост может быть осуществлён только в том случае, если произойдёт "зелёная революция" - резкий подъём сельского хозяйства, прежде всего в развивающихся странах, на базе внедрения всех достижений
современной науки, в том числе химии.
Есть ли основания верить в возможность такой "зелёной революции"? Учёные отвечают на этот вопрос определённо: да, можно. Модернизированное сельское хозяйство с помощью своих могучих союзниц - химии и биологии - без труда может прокормить более 7 млрд. человек.
В решении продовольственной проблемы в глобальном масштабе основной акцент делается на увеличение производства растительной и животной пищи естественного происхождения. Увеличение же объёма производства пищи естественного производства, по мнению специалистов, будет в ближайшем будущем достигаться за счёт создания благоприятных условий для размножения и роста растений и животных. Сюда относится в первую очередь применение удобрений, а затем стимуляторов роста, искусственных кормов для сельскохозяйственных животных, средств защиты растений и животных, введение в практику питания новых продуктов, добытых в океане, и т. д.
Большие потери урожая связанны с вредителями и болезнями сельскохозяйственных растений. Гибнет примерно одна треть урожая. Если отказаться от применения химических средств защиты растений, то эта доля удвоится. Для 3 тыс. видов культурных растений известно около 30 тыс. возбудителей болезней! Из них более 25 тыс. - грибы, около 600 - нематоды (черви), более 200 - бактерии, около 300 - вирусы.
В результате заболеваний растений люди теряют 10 - 15% урожая ещё до того, как он собран. Совместное же воздействие болезней, вредителей и сорняков отнимают от урожая от 25 до 40%. Цифра не малая, но и это ещё не всё. От 5 до 25% продукции сельского хозяйства теряется при перевозке и хранении. В результате суммарные потери урожая, до того как он попадёт к потребителю, составляют в разных странах около 40 до 50%. Есть над чем призадуматься специалистам по борьбе с вредителями и болезнями сельскохозяйственных культур.
В животноводстве приобретают всё большее значение искусственные, производимые на специальных заводах корма. Для увеличения массы домашний скот должен в остаточном количестве снабжаться сырьём. Это может быть растительный белок, рыбная мука и т. д. Однако при расширении масштабов животноводства и увеличении спроса на его продукцию этих источников белка может не хватать, поэтому химики совместно с биологами давно уже начали искать пути замены таких кормов. И придуманы хорошие заменители натуральных кормов.
Научно-технический прогресс, дающий человеку много благ, одновременно оказывает и отрицательное влияние на окружающую природу.
В промышленно развитых стран на одного жителя ежегодно в атмосферу попадает до 150 -200 кг пыли, золы и других промышленных выбросов. За сутки промышленность мира сбрасывает более 100 млн. кубических метров сточных вод.
Мощным источником загрязнения атмосферы являются все виды транспорта, работающие на тепловых двигателях. Выбрасываемые ими вещества в целом идентичны газообразным отходам промышленного происхождения. С выхлопными газами автомобилей в воздух попадают оксиды углерода, азота, серы, альдегиды, несгоревшие углеводороды, а также продукты, содержащие хлор, бор, фосфор и свинец. Загрязняют атмосферу дизельные двигатели автомобильного, водного и железнодорожного транспорта.
Вредное воздействие на гидросферу оказывают продукты нефтихимических предприятий, сырая нефть, перевозимая танкерами. Исследования Атлантического океана и шельфовых вод Европы и Северной Америки показывают, что уровень загрязнения в открытом океане в 2 - 3 раза меньше, чем в прибрежных водах, где плёнка из нефти держится более продолжительное время. 1 тонна нефти способна покрыть тонкой плёнкой поверхность водного массива площадью 1200 гектар.
Кроме того, в различных отраслях промышленности используется громадное количество новых соединений, отсутствующих в природе. Ежегодно их синтезируется в мире более 250 тысяч, из них около 300 находят промышленное применение и могут попасть в окружающую среду. По данным Всемирной организации здравоохранения, среди химических соединений, используемых в промышленном масштабе, примерно 40 тыс. вредны для человека. Процесс загрязнения окружающей среды несвойственной ей веществами, раньше носивший локальный характер, в последнее время принял глобальные масштабы. Особенно загрязнение среды такими несвойственными биосфере элементами, как свинец, ртуть, кадмий. Мощность техногенного воздействия на живую природу достигла такой величины, что возникла опасность необратимых изменений за счёт нарушения слагавшихся в течение миллионов лет природных динамических равновесий. Даже загрязнение среды такими характерными для природных круговоротов веществами, как нитраты, соли аммония, фосфаты, достигло на значительных участках земной поверхности концентраций, при которых природные механизмы оказываются недостаточными для плавного включения этих веществ в круговорот. В результате, например, во многих крупных водоёмах земного шара произошло резкое изменение в экосистемах, что привело к большому обеднению видами живых организмов.
Какой же выход видит наука, в частности химия, из создавшегося экологического кризиса? Ведь химизация промышленного и сельского хозяйства не означает разрушения всего живого, а, наоборот, предлагает пути решения проблем современности. Прежде все
и т.д.................

Химия находит применение в различных отраслях деятельности человека – медицине, сельском хозяйстве, производстве керамических изделий, лаков, красок, автомобильной, текстильной, металлургической и других отраслях промышленности. В повседневной жизни человека химия нашла отражение прежде всего в различных предметах бытовой химии (моющие и дезинфицирующие средства, средства по уходу за мебелью, стеклянными и зеркальными поверхностями и т.д.), лекарственных препаратах, косметических средствах, различных изделиях из пластмасс, красках, клеях, средствах для борьбы с насекомыми, удобрениями и т.д. Этот список можно продолжать практически бесконечно, рассмотрим лишь некоторые его пункты.

Предметы бытовой химии

Из предметов бытовой химии первое место по масштабам производства и применения занимают моющие средства, среди которых наиболее популярны различные мыла, стиральные порошки и жидкие моющие средства (шампуни и гели).

Мыла представляют собой смеси солей (калиевые или натриевые) жирных ненасыщенных кислот (стеариновая, пальмитиновая и др.), причем натриевые соли образуют твердые мыла, а калиевые – жидкие.

Мыла получают по реакции гидролиза жиров в присутствии щелочей (омыление). Рассмотрим получение мыла на примере омыления тристеарина (триглицерид стеариновой кислоты):

где C 17 H 35 COONa и есть мыло – натриевая соль стеариновой кислоты (стеарат натрия).

Получение мыла возможно и с использованием в качестве сырья алкилсульфатов (соли сложных эфиров высших спиртов и серной кислоты):

R-CH 2 -OH + H 2 SO 4 = R-CH 2 -O-SO 2 –OH (сложный эфир серной кислоты) + H 2 O

R-CH 2 -O-SO 2 –OH + NaOH = R-CH 2 -O-SO 2 –ONa (мыло – алкилсульфат натрия) + H 2 O

В зависимости от сферы применения выделяют хозяйственные, косметические (жидкие и твердые) мыла, а также мыло ручной работы. В мыло дополнительно можно ввести различные ароматизаторы, красители или отдушки.

Синтетические моющие средства (стиральные порошки, гели, пасты, шампуни) представляют собой сложные по химическому составу смеси нескольких компонентов, главной составляющей частью которых являются поверхностно-активные вещества (ПАВ). Среди ПАВов выделяют ионогенные (анионные, катионные, амфотерные) и неионогенные ПАВ. Для производства синтетических моющих средств обычно применяют иногенные анионные ПАВы, представляющие собой алкилсульфаты, аминосульфаты, сульфосукцинаты и др. соединения, которые диссоциируют на ионы в водном растворе.

Порошкообразные моющие средства обычно содержат различные добавки для устранения жировых загрязнений. Чаще всего это кальцинированная или питьевая соду, фосфаты натрия.

К некоторым порошками добавляют химические отбеливатели — органические и неорганические соединения, при разложении которых происходит выделение активного кислорода или хлора. Иногда, в качестве отбеливающих добавок используют ферменты, которые за счет быстрого процесса расщепления белка хорошо удаляют загрязнения органического происхождения.

Изделия из полимеров

Полимеры- высокомолекулярные соединения, макромолекулы которых, состоят из «мономерных звеньев» — молекул неорганических или органических веществ, соединённых соединенных между собой химическими или координационными связями.

Изделия из полимеров нашли широкое применение в повседневной жизни человечества – это всевозможные бытовые принадлежности — кухонная утварь, предметы для ванной комнаты, приборы хозяйственного и бытового назначения, емкости, для хранения, упаковочные материалы и т.д. Волокна полимеров применяются для изготовления разнообразных тканей, трикотажа, чулочно-носочных изделий, искусственного меха гардин, ковров, обивочных материалов для мебели и автомашин. Из синтетического каучук производят резинотехнические изделия (сапоги, галоши, кеды, коврики, подошвы для обуви и т.д.).

Среди множества полимерных материалов широко используют полиэтилен, полипропилен, поливинлхлорид, тефлон, полиакрилат и пенопласт.

Среди изделий из полиэтилена наибольшую известность в быту получили полиэтиленовая плёнка, всевозможная тара (бутылки, банки, ящики, канистры и т.д.), трубы для канализации, дренажа, водо-, газоснабжения, броня, теплоизоляторы, термоклей и т.д. Всю эту продукцию производят из полиэтилена, получаемого двумя способами – при высоком (1) и низком давлении (2):



ОПРЕДЕЛЕНИЕ

Полипропилен – полимер, полученный полимеризацией пропилена в присутствии катализаторов (например, смесь TiCl 4 и AlR 3):

n CH 2 =CH(CH 3) → [-CH 2 -CH(CH 3)-] n

Широкое применение этот материал нашел в производстве упаковочных материалов, предметов домашнего обихода, нетканых материалов, одноразовых шприцов, в строительстве для вибро- и шумоизоляции межэтажных перекрытий в системах «плавающий пол».

Поливинилхлорид (ПВХ) – полимер, полученный суспензионной или эмульсионной полимеризацией винилхлорида, а также полимеризацией в массе:

Применяется для электроизоляции проводов и кабелей, производства листов, труб, пленок для натяжных потолков, искусственных кож, линолеума, профилей для изготовления окон и дверей.

Поливинилхлорид используют как уплотнитель в бытовых холодильниках, вместо относительно сложных механических затворов. Из ПВХ также делают презервативы для людей с аллергией на латекс.

Косметические средства

Основные продукты косметической химии – это всевозможные кремы, лосьоны, маски для лица, волос и тела, духи, туалетная вода, краски для волос, туши, лаки для волос и ногтей и т.д. В состав косметических средств входят вещества, которые содержатся в тканях, для которых предназначены эти средства. Так, в косметические препараты по уходу за ногтями, кожей и волосами входят аминокислоты, пептиды, жиры, масла, углеводы и витамины, т.е. вещества, необходимые для жизни клеток, составляющих эти ткани.

Помимо веществ, получаемых из природного сырья (например, всевозможные растительные экстракты) в производстве косметических средств широко используют синтетические виды сырья, которые получают путем химического (чаще органического) синтеза. Вещества, полученные таким путем, характеризуются высокой степенью чистоты.

Основные виды сырья для производства косметических средств естественные и синтетические животные (куриный, норковый, свиной) и растительные (хлопковое, льняное, касторовое масло) жиры, масла и воски, углеводороды, ПАВы, витамины и стабилизаторы.

Значение химии в современном обществе

Химические знания — это мощная сила в руках человечества. Знание свойств химических веществ и способов их получения не только позволяет изучать и понимать природу, но и получать новые, еще неизвестные вещества, предполагать существование веществ с необходимыми свойствами.

Но химия также может представлять опасность для человека и окружающей среды. Известный писатель-фантаст и ученый-химик Айзек Азимов писал: «Химия — это смерть, упакованная в банки и коробки». И сказанное справедливо не только для химии, но и для электричества, радиоэлектроники, транспорта. Мы не можем жить без электричества, но оголенный провод смертельно опасен, автомобили помогают нам передвигаться, но под их колесами часто гибнут люди. Использование человечеством достижений современной науки и техники, в том числе и химии, требует глубоких знаний и высокой общей культуры.

Только ответственное, рациональное природопользование может стать залогом устойчивого развития нашей цивилизации!

Химия в повседневной жизни

Без химии невозможно представить современный быт людей. И не только опосредованно, через использование пищи, одежды, обуви, топлива, жилья, но и непосредственно, через использование стеклянных, пластмассовых, фарфоровых и фаянсовых изделий, лекарственных препаратов, средств для дезинфекции, косметических изделий, различных клеев, лаков, красок, пищевых добавок и т. п.

Окончательно вошли в наш быт различные моющие средства. Но кроме мыла и шампуней мы используем много других средств, в частности отбеливателей. Действие большинства из них основано на свойствах хлорсодержащих соединений, являющихся сильными окислителями. На некоторых средствах указывают «Не содержат Хлора». Такие средства содержат другие сильные окислители, например натрий перборат NaBO 2 . H 2 O 2 . 3H 2 O или натрий перкарбонат Na 2 CO 3 . 1,5H 2 O 2 . H 2 O. Жесткая вода может вызвать повреждение стиральных машин, поэтому мы используем средства для ее смягчения.

Создание новых материалов

Создание новых материалов — необходимость современной жизни. Материалы с новыми, улучшенными свойствами должны заменить устаревшие. Новых материалов требуют и высокотехнологичные отрасли: космическая и атомная техника, электроника. Для практических потребностей необходимы металлы, полимеры, керамика, красители, волокна и многое другое.

Особое место среди новых материалов занимают композиты. По многим свойствам — прочности, вязкости — композиты значительно превышают традиционные материалы, благодаря чему потребности общества в них постоянно растут. На создание композитов тратится все больше ресурсов, а главными потребителями композитов сегодня являются автомобильная и космическая отрасли (рис. 40.1).

Биоматериалы

С развитием медицины возникла потребность в замене органов и тканей в организме человека. Материалы, которые можно использовать для изготовления различных имплантов, создают в химических лабораториях. Металлические протезы просты в изготовлении, очень прочны, химически инертны и относительно дешевы. Главным недостатком металлов является то, что они подвергаются коррозии, из-за которой снижается механическая прочность, а организм отравляют ионы металлических элементов. Достаточно перспективными для изготовления имплантов являются сплавы титана (например, Ti-Al-V). Они прочные, относительно легкие и устойчивые к коррозии.

Сегодня все больше используют керамические биоимпланты. Керамика — замечательный биоматериал: она прочная, не поддается коррозии. Кроме того, керамика не стирается, что важно для искусственных суставов, а также характеризуется биосовместимостью.

Рис. 40.1. Использование композитных материалов: углеродную ткань (углеволокно) (а) используют для армирования деталей велосипедов и автомобилей, из стеклопластика изготавливают корпуса байдарок и небольших лодок (б) и даже целые дома (в)

Рис. 40.2. Современные биоматериалы используют для изготовления искусственных суставов и многофункциональных протезов конечностей


Рациональное использование природного сырья

Природа кажется неисчерпаемой кладовой, из которой человечество берет необходимое сырье. За последние 20 лет полезных ископаемых было потреблено больше, чем за всю историю человечества. В мире ежегодно добывают и перерабатывают около 100 млрд тонн горных пород. Многие сырьевые источники уже истощены, поэтому остро стоит сырьевая проблема. Уже сегодня многие страны испытывают недостаток в отдельных природных ресурсах. В Украине, например, не хватает нефти и природного газа.

Комплексное использование сырья и отходов — основа комбинированных производств (разных химических, химических с металлургическими и др.). Необходимо внедрять безотходные технологии, т. е. такие производственные процессы, при которых отходы одного производства становятся сырьем (реагентами) для другого.

Неисчерпаемым источником сырья являются промышленные и бытовые отходы. Задача химиков состоит в разработке методов эффективного использования таких отходов. Применение вторичного сырья дает возможность экономить природные сырье и энергию, а также снизить себестоимость продукта, поскольку расходы ресурсов в 2-3 раза (а по некоторым видам до 6 раз) меньше, чем производство из первичного сырья. Например, выплавка стали из металлолома требует в 6-7 раз меньше энергетических затрат и в 25 раз дешевле, чем получение стали из руды.


Ключевая идея

Химия вошла во все сферы жизни и деятельности человечества. В повседневной жизни мы используем много продуктов химической промышленности. Химия позволяет создавать новые материалы, не существующие в природе.

Контрольные вопросы

486. Назовите продукты химических производств, которые вы используете в повседневной жизни.

487. Приведите примеры неблагоприятного влияния химических веществ и технологий на окружающую среду или человека.

488. Опишите, какой была бы ваша жизнь, если бы в ней не было продуктов химического производства.

489. Охарактеризуйте роль химии в создании новых материалов, в решении энергетической и сырьевой проблем.

Задания для усвоения материала

490*. Узнайте у взрослых, есть ли в вашем городе, поселке, области химические предприятия. Какие? Что они производят? Как они влияют на окружающую среду? Может ли человек отказаться от продуктов этих производств? Ответ обоснуйте.

491* Найдите в дополнительных источниках информацию о принципах рационального природопользования и значении химии в реализации этих принципов.

Это материал учебника

Значение химии в жизни человека трудно переоценить. Приведём фундаментальные области, в которых химия оказывает своё созидательное воздействие на жизнь людей.

1. Возникновение и развитие жизни человека не возможно без химии. Именно химические процессы, многие тайны которых учёные ещё не раскрыли, ответственны за тот гигантский переход от неживой материи к простейшим одноклеточным, и далее к вершине современного эволюционного процесса - человеку.

2. Большинство материальных потребностей, возникающих в жизни человека, обслуживается природной химией или получает удовлетворение в результате использования в производстве химических процессов.

3. Даже возвышенные и гуманистические устремления людей в своей основе опираются на химию человеческого организма, и, в частности, сильно зависят от химических процессов в мозге человека.

Конечно же, всё богатство и разнообразие жизни нельзя свести только к химии. Но наряду с физикой и психологией, химия как наука, представляет собой определяющий фактор развития человеческой цивилизации.

Химия жизни

Насколько сейчас известно, наша планета образовалась приблизительно 4.6 миллиарда лет назад, а простейшие ферментирующие одноклеточные формы жизни существуют 3.5 миллиарда лет. Уже 3.1 миллиарда лет они могли бы использовать фотосинтез, но геологические данные об окислительном состоянии осадочных отложений железа указывают, что атмосфера Земли приобрела окислительный характер лишь 1.8-1.4 миллиарда лет назад. Многоклеточные формы жизни, которые, по-видимому, зависели от изобилия энергии, возможного только при дыхании кислородом, появились На Земле приблизительно от миллиарда до 700 миллионов лет назад, и именно в то время наметился путь дальнейшей эволюции высших организмов. Наиболее революционным шагом, после зарождения самой жизни, было использование внеземного источника энергии, Солнца. В конечном итоге, именно это превратило жалкие ростки жизни, которые использовали случайно встречающиеся природные молекулы с большой свободной энергией, в огромную силу, способную преобразовать поверхность планеты и даже выйти за её пределы.

В настоящее время учёные придерживаются точки зрения, что зарождение жизни на Земле происходило в восстановительной атмосфере, которая состояла из аммиака, метана, воды и диоксида углерода, но не содержала свободного кислорода.
Первые живые организмы получали энергию, разлагая молекулы небиологического происхождения с большой свободной энергией на меньшие молекулы без их окисления. Предполагается, что на ранней стадии существования Земли она имела восстановительную атмосферу, состоящую из таких газов как водород, метан, вода, аммиак и сероводород, но содержащую очень мало свободного кислорода или вообще его не имевшего. Свободный кислород разрушал бы органические соединения быстрее, чем они могли синтезироваться в результате естественно протекающих процессов (под воздействием электрического разряда, ультрафиолетового излучения, теплоты или естественной радиоактивности). В этих восстановительных условиях органические молекулы, которые образовались небиологическими способами, не могли разрушаться в результате окисления, как это происходит в наше время, а продолжали накапливаться в течении тысячелетий, до тех пор, пока, наконец, не появились компактные локализованные образования из химических веществ, которые можно уже считать живыми организмами.
Появившиеся живые организмы могли поддерживать существование за счёт разрушения естественно образующихся органических соединений, поглощая их энергию. Но если бы это был единственный источник энергии, то жизнь на нашей планете была бы крайне ограниченной. К счастью, около 3 миллиардов лет назад появились важные соединения металлов с порфиринами, и это открыло путь к использованию совершенно нового источника энергии – солнечного света. Первым шагом, который поднял жизнь на Земле над ролью простого потребителя органических соединений, было включение в неё процессов координационной химии.

По-видимому, перестройка явилась побочным следствием появления нового способа запасания энергии – фотосинтеза*, – который давал его обладателям огромное преимущество над простыми ферментативными поглотителями энергии. Организмы, в которых развилось это новое свойство, могли использовать энергию солнечного света для синтеза своих собственных энергоёмких молекул и уже не зависеть от того, что находится среди их окружения. Они стали предшественниками всех зелёных растений.
Сегодня все живые организмы можно подразделить на две категории: те, которые способны изготовлять свою собственную пищу при помощи солнечного света, и те, которые не имеют такой возможности. Скорее всего, и родственные ей бактерии сегодня являются живыми ископаемыми, потомками тех древних способных к ферментации анаэробов, которые отступили в редкие анаэробные области мира, когда атмосфера в целом накопила большие количества свободного кислорода и приобрела окислительный характер. Поскольку организмы второй категории существуют за счёт поедаемых ими организмов первой категории, накопление энергии посредством фотосинтеза является источником движущей силы для всего живущего на Земле.

Общая реакция фотосинтеза в зелёных растениях обратна реакции сгорания глюкозы и проходит с поглощением значительного количества энергии.

6 CO 2 + 6 H 2 O --> C 6 H 12 O 6 + 6 O 2

Вода расщепляется на элементы, что создаёт источник атомов водорода для восстановления углекислого газа в глюкозу, а нежелательный газообразный кислород выделяется в атмосферу. Энергия, необходимая для осуществления этого в высшей степени несамопроизвольного процесса, обеспечивается солнечным светом. В наиболее древних формах бактериального фотосинтеза в качестве источника восстановительного водорода использовалась не вода, а сероводород, органические вещества или сам газообразный водород, но лёгкая доступность воды сделала этот источник наиболее удобным, и в настоящее время он используется всеми водорослями и зелёными растениями. Простейшими организмами, в которых осуществляется фотосинтез с высвобождением кислорода, являются сине-зелёные водоросли. Их правильнее обозначать современным названием цианобактерии, поскольку это, в самом деле бактерии, научившиеся добывать собственную пищу из углекислого газа, воды и солнечного света.

К сожалению, фотосинтез приводит к высвобождению опасного побочного продукта, кислорода. Кислород был не только бесполезен для ранних организмов, он конкурировал с ними, окисляя естественно образующиеся органические соединения прежде, чем они могли быть окислены в процессе метаболизма этими организмами. Кислород представлял собой гораздо более эффективный «пожиратель» энергоёмких соединений, чем живая материя. Ещё хуже было то, что слой озона, который постепенно образовывался из кислорода в верхней части атмосферы, преграждал доступ ультрафиолетовому излучению Солнца и ещё более замедлял естественный синтез органических соединений. Со всех современных точек зрения, появление свободного кислорода в атмосфере представляло собой угрозу для жизни.
Но, как часто случается, жизнь сумела обойти это препятствие и даже обратила его в преимущество. Отходами жизнедеятельности первичных простейших организмов были такие соединения, как молочная кислота и этанол. Эти вещества намного менее энергоёмки по сравнению с сахарами, но они способны высвобождать большое количество энергии, если полностью окисляются до СО 2 и Н 2 О. В результате эволюции возникли живые организмы, способные «фиксировать» опасный кислород в виде Н 2 О и СО 2 , а взамен получать энергию сгорания того, что прежде было их отходами. Преимущества сжигания пищи с помощью кислорода оказались столь велики, что подавляющее большинство форм жизни – растения и животные – пользуются в настоящее время кислородным дыханием.

Когда появились новые источники энергии, возникла новая проблема, связанная уже не с получением пищи или кислорода, а с транспортировкой кислорода в надлежащее место организма. Малые организмы могли обходиться простой диффузией газов через содержащиеся в них жидкости, но этого недостаточно для многоклеточных существ. Так перед эволюцией возникла очередная преграда.
Выход из тупика в третий раз оказался возможен благодаря процессам координационной химии. Появились такие молекулы, состоящие из железа, порфирина и белка, в которых железо могло связывать молекулу кислорода, не окисляясь при этом. Кислород просто переносится в различные участки организма, чтобы высвободиться при надлежащих условиях – кислотности и недостатке кислорода. Одна из таких молекул, гемоглобин, переносит О 2 в крови, а другая, миоглобин, получает и запасает (хранит) кислород в мышечных тканях до тех пор, пока он не понадобится в химических процессах. В результате появления миоглобина и гемоглобина были сняты ограничения на размеры живых организмов. Это привело к появлению разнообразных многоклеточных, и, в конечном итоге, человека.

* Фотосинтез – это процесс преобразования энергии света в энергию химической связи получающихся веществ.

** Метаболизм – расщепление богатых энергией веществ и извлечение их энергии.

Химия как зеркало жизни человека.

Оглянитесь вокруг, и Вы увидите, что жизнь современного человека невозможна без химии. Мы используем химию при производстве пищевых продуктов. Мы передвигаемся на автомобилях, металл, резина и пластик которых сделаны с использованием химических процессов. Мы используем духи, туалетную воду, мыло и дезодоранты, производство которых немыслимо без химии. Есть даже мнение, что самое возвышенное чувство человека, любовь, это набор определённых химических реакций в организме.
Такой подход к рассмотрению роли химии в жизни человека, является, на мой взгляд, упрощённым, и я предлагаю Вам его углубить и расширить, перейдя в совершенно новую плоскость оценки химии и её влияния на человеческое общество.

Презентация по химии ученицы 8 «А» Федотовой Елизаветы на тему: «Роль химии в жизни людей»

Химия в жизни человека очень важна, потому что эти процессы окружают нас повсюду: начиная от приготовления пищи и заканчивая биологическими процессами в организме. Достижения в этой области знаний приносили человечеству и ущерб (создание оружия массового поражения), и дарили спасение от смерти (разработка медикаментов от заболеваний, выращивание искусственных органов и т.п.). Знание этой науки необходимо: столько противоречивых открытий не происходило ни в какой другой области знаний.

Быт Химические процессы: когда поджигаем спичку; соблюдение личной гигиены, когда человек использует мыло, которое пенится при взаимодействии с водой; стирка с применением порошков, ополаскивателей для смягчения белья; когда человек пьет чай с лимоном, окраска напитка ослабевает; когда люди делают ремонт и замешивают цемент, обжигают кирпич, гасят водой известь. Происходят сложнейшие химические процессы, о которых в повседневной жизни мы не задумываемся, но без них не обошелся бы ни один человек.

Медицина С помощью смешения веществ получаются медикаменты, а когда они вступают в реакцию с клетками организма, наступает выздоровление. Химия может играть как созидательную роль в медицине, так и разрушительную, ведь создаются не только лекарства, но и яды – токсические вещества, наносящие вред здоровью человека. Существуют такие виды токсических веществ: вредные; раздражающие; агрессивные; канцерогенные.

Биологическая сторона жизнедеятельности Усвоение пищи, дыхание человека и животного основано именно на химических реакциях. Фотосинтез, без которого люди не смогут жить, тоже сопровождается химическими процессами. Некоторые ученые считают, что зарождение жизни на нашей планете происходило в среде, состоящей из диоксида углерода, аммиака, воды и метана, и первые организмы получали энергию для жизни, разлагая молекулы без окисления. Это простейшие химические реакции, сопровождающие зарождение жизни на Земле.

Производство Еще в древности были распространены ремесла, в основе которых лежали химические процессы: например, создание керамики, обработка металла, использование естественных красителей. Сегодня нефтехимическая и химическая промышленность – одни из самых значимых отраслей экономики, и химические процессы и знания о них играют немаловажную роль в обществе. От человечества зависит, как их использовать – в созидательных или разрушительных целях, ведь среди разнообразия химических веществ можно встретить и опасные для человека (взрывоопасные, окисляющие, воспламеняющиеся и т.д.). Химия в жизни человека – это и панацея от заболеваний, и оружие, и экономика, и приготовление пищи, и, конечно же, сама жизнь.