Что такое защитное зануление и где оно применяется. Чем отличается заземление от зануления, в чем заключается разница

Защитное зануление - система, в которой токопроводящие части оборудования, не находящиеся в норме под напряжением, соединены с нейтралью. В защитных целях преднамеренно создается соединение между открытыми проводящими элементами глухозаземленной нейтрали (в сетях трехфазного тока).

В сетях однофазного тока создают контакт с глухозаземленным выводом источника однофазного тока, а в случае с постоянным током - с глухозаземленной точкой источника тока. Хотя зануление характеризуется серьезными недостатками, система по-прежнему широко применяется во многих сферах для защиты от тока.

Разница между занулением и заземлением

Между занулением и заземлением имеются отличия:

  1. В случае заземления лишний ток и появившееся на корпусе напряжение перенаправляются в грунт. Принцип действия зануления основан на обнулении на щитке.
  2. Заземление более эффективно с точки зрения защиты человека от удара током.
  3. Заземление основано на быстром и значительном уменьшении напряжения. Тем не менее, какое-то (уже неопасное) напряжение остается.
  4. Зануление заключается в создании соединения между металлическими деталями, в которых отсутствует напряжение. Принцип зануления основан на умышленном создании короткого замыкания при пробое изоляции или попадании тока на нетоковедущие части электроустановок. Как только происходит замыкание, в дело вступает автоматический выключатель, перегорают предохранители или срабатывают иные средства защиты.
  5. Заземление чаще всего используют на линиях с изолированной нейтралью в системах типа IT и TT в трехфазных сетях, где напряжение не превышает тысячи вольт. Заземление применяют при напряжении более тысячи вольт с нейтралью в любом режиме. Зануление используют в глухозаземленных нейтралях.
  6. При занулении все элементы электроприборов, не находящиеся в стандартном режиме под напряжением, соединяются с нулем. Если фаза случайно коснется зануленных элементов, резко увеличивается ток и отключается электрооборудование.
  7. Заземление не зависит от фаз электроприборов. Для организации зануления требуется соблюдение жестких условий подключения.
  8. В современных домах зануление применяется редко. Однако этот способ защиты все еще встречается в многоэтажных домах, где по каким-либо причинам нет возможности организовать надежное заземление. На предприятиях, где имеются повышенные нормативы по электробезопасности, основной способ защиты - зануление.

Обратите внимание! Для правильного определения нулевых точек и выбора способа защиты понадобится помощь квалифицированного электрика. Сделать заземление, собрать элементы контура и установить его в грунт можно и своими руками.

Схема работы

Как было сказано выше, зануление основано на провоцировании короткого замыкания после попадания фазы на металлический корпус электроустановки, соединенной с нулем. Так как сила тока возрастает, подключается защитный механизм, отключающий электропитание.

По нормативам Правил установки электроустановок в случае нарушения целостности линии она должна отключаться автоматически. Регламентируется время на отключение - 0,4 секунды (для сетей 380/220В). Для отключения используются специальные проводники. Например, в случае однофазной проводки задействуется третья жила кабеля.

Для правильного зануления важно, чтобы петля фазы-нуля характеризовалась невысоким сопротивлением. Так обеспечивается срабатывание защиты за нужный промежуток времени.

Организация зануления требует высокой квалификации, поэтому такие работы должны выполнять только квалифицированные электрики.

На схеме ниже показан принцип работы системы:

Область применения

Защитное зануление используют в электроустановках с четырехпроводными электросетями и напряжением до 1 кВт в следующих случаях:

  • в электроустановках с глухозаземленной нейтралью в сетях TN-C-S, TN-C, TN-S с проводниками типов N, PE, PEN;
  • в сетях с постоянным током и заземленной средней точкой источника;
  • в сетях с переменным током и тремя фазами с заземленным нулем (220/127, 660/380, 380/220).

Сети 380/220 допускаются в любых сооружениях, где зануление электроустановок обязательно. Для жилых помещений с сухими полами зануление обустраивать не нужно.

Электрооборудование 220/127 используются в специализированных помещениях, где отмечается повышенный риск поражения током. Такая защита необходима в условиях улицы, где занулению подлежат металлические конструкции, к которым прикасаются работники.

Проверка эффективности зануления

Чтобы проверить, насколько действенно зануление, нужно сделать замер сопротивления петли фаза-ноль в наиболее отдаленной от источника электропитания точке. Это даст возможность проверить защищенность в случае воздействия тока на корпус.

Сопротивление измеряется с использованием специализированной аппаратуры. Измерительные приборы оснащены двумя щупами. Один щуп направляют на фазу, второй - на зануленную электроустановку.

По результатам измерений устанавливают уровень сопротивления на петле фазы и нуля. С полученным результатом рассчитывают ток однофазного замыкания, применяя закон Ома. Расчетное значение тока однофазного замыкания должно быть равно или превышать ток срабатывания защитного оборудования.

Предположим, что для предохранения электроцепи от перегрузок и коротких замыканий подключен автомат-выключатель. Ток срабатывания составляет 100 Ампер. По результатам измерений сопротивление петли фазы и нуля равно 2 Ом, а фазовое напряжение в сети - 220 Вольт. Делаем расчет тока однофазного замыкания на основе закона Ома:

I = U/R = 220 Вольт/2 Ом = 110 Ампер.

Поскольку расчетный ток короткого замыкания превышает ток мгновенного срабатывания автомата-выключателя, делаем вывод об эффективности защитного зануления. В противном случае понадобилась бы замена автомата-выключателя на прибор с меньшим током срабатывания. Другой вариант решения проблемы - сокращение сопротивления петли фаза-ноль.

Нередко при проведении расчетов ток срабатывания автомата умножают на коэффициент надежности (Кн) или коэффициент запаса. Причина в том, что отсечка не всегда равна указанному показателю, то есть возможна определенная погрешность. Поэтому использование коэффициента позволяет получить более надежный результат. Для старого оборудования Кн составляет от 1,25 до 1,4. Для новой техники применяется коэффициент 1,1, так как такие автоматы работают с большей точностью.

Опасность зануления в квартире

Скачки напряжения опасны как для людей, так и для бытовой техники в квартирах. В многоквартирных домах одной из квартир достанется низкое напряжение, а другой - высокое. Если в розетке квартиры случится обрыв нулевого проводника, при следующем включении электроустановки (например, бойлера) человека ударит током.

Особенно зануление опасно в двухпроводной системе. К примеру, при проведении электромонтажных работ электрик может заменить нулевой проводник на фазный. В электрощитах эти жилы далеко не всегда обозначены определенным цветом. Если замена произойдет, электрическое оборудование окажется под напряжением.

По нормативам Правил установки электроустановок на бытовом уровне зануление не разрешается для использования в бытовых целях именно по причине его небезопасности. Зануление эффективно только для защиты больших объектов производственного назначения. Однако, несмотря на запрет, некоторые люди решаются на установку зануления в собственном жилье. Происходит это либо по причине отсутствия иных методов решения проблемы, либо из-за недостаточности знаний по данному предмету.

Зануление в квартире технически осуществимо, но эффективность такой защиты непредсказуема, как и возможные негативные последствия. Далее рассмотрим ряд ситуаций, которые возникают при наличии зануления квартире.

Зануление в розетках

В некоторых случаях защиту электроприборов предлагают выполнить путем перемычки клеммы розеточного рабочего нуля на защитный контакт. Такие действия противоречат пункту 1.7.132 ПУЭ, поскольку предполагают задействование нулевого провода двухпроводной электросети в качестве как рабочего, так и защитного нуля одновременно.

На вводе в жилое помещение чаще всего расположено устройство, предназначенное для коммутации фазы и нуля (двухполюсный прибор или так называемый пакетник). Коммутация нуля, используемого как защитный проводник, не допускается. Иными словами, запрещено использовать в качестве защиты проводник, электроцепь которого включает коммутационный аппарат.

Опасность защиты с применением перемычки в розетке состоит в том, что корпуса электроустановок в случае повреждения нуля (независимо от участка) попадают под фазное напряжение. Если нулевой проводник обрывается, электроприемник перестает функционировать. В этом случае провод кажется обесточенным, что провоцирует на необдуманные действия со всеми вытекающими последствиями.

Обратите внимание! При обрыве нуля источником опасности становится любая техника в квартире или в частном доме.

Перепутаны местами фаза и ноль

При проведении электромонтажных работ в двухпроводном стояке своими руками существует немалая вероятность путаницы между нулем и фазой.

В домах с двухпроводной системой жилы кабелей лишены отличительных признаков. При работе с проводами в этажном щитке электрик может попросту ошибиться, перепутав фазу и ноль местами. В результате корпуса электроустановок попадут под фазное напряжение.

Отгорание нуля

Обрыв нуля (отгорание нуля) часто случается в зданиях с плохой проводкой. Чаще всего проводка в таких домах проектировалась, исходя из 2 киловатт на единицу жилья. На сегодняшний день электропроводка в домах старого типа не только износилась физически, но и не способна удовлетворить возросшее количество бытовой техники.

При обрыве нуля дисбаланс возникает на трансформаторной подстанции, от которой питается многоквартирное здание. Перекос возможен в общем электрическом щите здания или в этажном щитке дома. Следствием этого станет беспорядочное понижение напряжения в одних квартирах и повышение - в других.

Низкое напряжение губительно для некоторых видов электробытовой техники, в том числе кондиционеров, холодильников, вытяжек и прочих аппаратов, оснащенных электрическими двигателями. Высокое напряжение представляет опасность для всех видов электроустановок.

Альтернатива занулению

В подсистеме TN-S зануление защитного проводника PE осуществляется лишь на одном участке - на контуре заземления трансформаторной подстанции или электрогенератора. В этой точке разделяется PEN-проводник, и далее защита и рабочий ноль нигде не встречаются.

В такой схеме энергоснабжения заземление и зануление органично взаимодействуют, создавая условия для высокой электробезопасности. Однако в системах, где нейтраль изолирована (IT, TT), зануление не используется. Электрическое оборудование, работающее в рамках системы TT и IT, заземляется за счет собственных контуров. Так как система IT предполагает подачу питания только специфическим потребителям, рассматривать такой способ организации защиты в жилых домах не имеет смысла. Единственная альтернатива неправильному, а потому опасному занулению шины PE - система TT. Особенно актуальна такая система, потому что переход на технически прогрессивные системы TN-S, TN-C-S технически и финансово затруднен для домов, чей возраст превышает 20 – 25 лет.

Электрическая сеть, построенная по стандарту TT, призвана обеспечивать качественную защиту от попадания под напряжение нетоковедущих частей. Все работы по организации зануления должны осуществляться в соответствии с нормами, указанными в пункте 1.7.39 Правил установки электроустановок.

Отличие заземления от зануления значительное. Попробуем разобраться в этом вопросе. Зануление согласно ПУЭ – это преднамеренная защита, которая используется исключительно в промышленных целях и не должна практиковаться на бытовом уровне.

Но все же, очень часто, в квартирах делается зануление. По всем прогнозам, такая система далека от совершенства и совсем не безопасна. Почему же тогда прибегают к такой крайней мере? Отчасти из-за недостатка знаний в этой области, или из-за безвыходной ситуации.

Во время ремонта квартиры многие делают полный или частичный электромонтаж не только с целью удобства расположения розеток и выключателей, но и для замены изношенной электропроводки. Так же, современный человек желает сделать свое жилье более безопасным, поэтому, пожелания заказчика сводятся к тому, чтобы в доме было заземление.

Что используется в новостройках: заземление или зануление?

Новостройки по всем правилам обеспечиваются трехпроводным кабелем (фаза, ноль, земля) в однофазной системе и пятипроводным кабелем (три фазы, ноль, земля) в трехфазной системе, т.е. по системе заземления TN-C-S или TN-S. В таких системах занулением и не пахнет.



Можно ли в старом фонде сделать заземление?

Старый фонд очень редко подвергается реконструкции. Для того чтобы перевести с системы TN-C, т.е. двухпроводная система (фаза и ноль), на такие эффективные системы как TN-C-S и TN-S, в которых предусмотрен защитный проводник РЕ (земля), своими силами практически не возможно. Модернизацией в основном занимается специализированная электротехническая компания.


В системе TN-C нет защитного проводника (земли). Никто не станет тянуть из своей квартиры отдельный заземляющий провод для того, чтобы сделать заземление, к примеру, в подвале. Хотя, некоторые решаются обеспечить себя заземлением, если квартира расположена на первом этаже. Но большинству населения такой маневр осуществить не представляется возможным.

Прежде чем подключить защитный проводник РЕ (земля) из квартиры, нужно определить, какие есть возможности.Определите наличие заземления в щитовой, к которой можно подключить третий проводник. В щитовой должна быть либо заземляющая шина РЕ, либо все этажные щитовые должны быть соединены между собой металлической шиной, и в итоге подсоединены к общему контуру заземления дома, т.е. речь идет о повторном заземлении. Это дает возможность подключить к щиту заземляющий проводник из квартиры. Если эти два варианта отсутствуют, значит, в доме нет заземления и в этом случае делают запрещенное зануление. Как уже было сказано ранее, такой метод в жилом секторе совсем не безопасен.

Как делается зануление?

Зануление не выполняет роль заземления, такая схема расчитана на эффект короткого замыкания. На производстве нагрузки более или менее распределены равномерно, и ноль выполняет в основном защитные функции. Здесь нулевой проводник цепляют к корпусу электродвигателя. При попадании на корпус электродвигателя напряжения одной из фаз, произойдет короткое замыкание. В свою очередь, сработает на выключение автоматический выключатель или автомат дифференциальной защиты. Следует принять во внимание еще один неоспоримый факт — все электроустановки на производстве соединены между собой металлической заземляющей шиной и выведены на общий контур заземления всего здания.

Можно ли сделать зануление в квартире?

Можно,но не нужно. Чем это грозит? Предположим ваше оборудование (стиральная машина,бойлер и др.) занулены. Если нулевой провод по каким-либо причинам обгорит или электрик случайно перепутал подключение проводов (вместо нуля подключил фазу), то ваше оборудование просто перегорит из-за большого напряжения.

Если вы запланировали электромонтажные работы в своем жилье, а затем узнаете, что в доме нет заземления ни в каком виде, все же лучше прокладывать трехжильный кабель. Две жилы (фаза и ноль) подключаем планово, а вот третий проводник защитного заземления оставляем незадействованным до ожидания реконструкции стояков, где будет предусмотрено заземление.

Если вы все же надумали сделать в квартире зануление, нужно помнить, что вы берете на себя огромную ответственность. В любом случае, при наличии заземления или зануления, нельзя пренебрегать установкой защитной аппаратуры, таких как УЗО (Устройство защитного отключения) и ограничитель напряжения.

Электричество делает нашу жизнь комфортнее, удобнее и интереснее вот уже несколько сотен лет. Придумано и сделано великое множество разных машин, устройств и приборов, работающих на электричестве, создающих для нас материальные блага, или таких, как печально известный электрический стул. Но, к сожалению, электричество может убивать не только на электрическом стуле по приговору суда. Поток крохотных электронов представляет собой грозную и могучую силу, относиться к которой стоит с должным уважением. Естественно, что человеком придумано большое количество разнообразных способов защиты от поражения электрическим током. В чем разница? Заземление и зануление будут далее рассмотрены в качестве примера. Это два способа, помогающих уберечься от электрического тока путем отведения его потока в сторону. Оба метода работают по одному принципу, но в то же время отличаются друг от друга.

Что такое электричество

Чтобы уяснить для себя, что такое электробезопасность, защитное заземление, зануление, как это всё работает, напомним суть явления электрического тока.

Все тела во Вселенной состоят из атомов, строение которых известно каждому школьнику: положительно заряженное ядро внутри и вращающиеся вокруг ядра отрицательные электроны. Существует ряд химических элементов - металлов, у которых несколько электронов, находящихся на самых дальних от ядра орбитах, легко могут быть оторваны (притянуты сильным положительным зарядом).

Таким образом, если взять металлический провод, приложить к его концам противоположные электрические заряды, то электроны, оторвавшись от своих атомов, начнут движение в сторону положительного заряда.

Однако при движении в толще металла электроны постоянно «натыкаются» на атомы, заставляют их слегка вибрировать в узлах кристаллических решёток. Это приводит к выделению тепла. Причём нагрев может быть таким сильным, что металл способен раскаляться до тысяч градусов (как спираль лампы накаливания). В некоторых случаях металл и вовсе может расплавиться и даже испариться.

Как электрический ток действует на тело человека

Тело человека на три четверти состоит из воды. Вода является неплохим проводником электрического тока (правда, механизм проводника несколько иной, нежели у металлов - ионный). Прохождение электрического тока по телу человека сопровождается рядом неприятных явлений. На заземление и зануление электроустановок иногда тратятся огромные, в масштабах предприятий, средства, чтобы это действие предотвратить.

Электроны, двигаясь по живым тканям, вызывают их нагрев, жидкость, содержащаяся в клетках, мгновенно закипает. Кроме этого, электрический ток, воздействуя на нейронные окончания, вызывает конвульсивное спазматическое сокращение всех мышц. Судорога приводит к остановке сердца, к блокировке дыхания.

Для человека опасен проходящий по телу электрический ток от 0,1 А. А вот, какой величины он достигнет, зависит от ряда факторов: от сухости кожных покровов, качества контакта, напряжения, расположения точек «входа» и «выхода» электронов.

Самыми опасными «маршрутами» считаются следующие:

Рука - рука;

Правая нога - левая рука или наоборот;

Голова - любая часть тела.

Виды защиты от поражения электрическим током

Способы защититься от поражающих факторов тока делятся на активные и пассивные. Активные способы предполагают наличие защитной автоматики. Дело в том, что тело человека обладает определённым электрическим сопротивлением и ёмкостью, и, дотрагиваясь до оголённого провода, мы как бы «включаем» в сеть дополнительный элемент. Умные приборы в состоянии зафиксировать такое изменение и за доли секунды обесточить цепь.

Другие меры направлены на исключение непосредственно контакта тела с источниками: использование защитных перчаток, диэлектрической обуви, специальных ковриков.

Даже встав на табурет из сухого дерева во время проведения электромонтажных работ, человек в значительной степени уменьшает риск получить смертельный удар.

А есть и другие методы, такие как защитное заземление и зануление. Суть их действия, если говорить просто, сводится к тому, чтобы предоставить электрическому току более лёгкий и «привлекательный» маршрут по сравнению с человеческим телом.

Чем опасны электроприборы

Как эти меры работают и в чем разница? Заземление и зануление относятся к защитным мероприятиям, которым уделяется достаточно много внимания ещё на стадии проектирования электрических машин и производств.

Представим себе, что в каком-либо бытовом или промышленном приборе произошло замыкание фазы на корпус. Что произойдет, если человек голой рукой дотронется до машины?

Учитывая, что планета Земля - прекрасный приёмник электрического тока, электроны устремятся через человеческое тело в грунт.

Как сработает заземление

Итак, как защитит человека заземление? Все обращали внимание на третий контакт бытовых электрических вилок, появившийся в нашей стране в конце прошлого века. Два привычных контакта - это «ноль» и «фаза», куда же ведёт третий? А он и есть заземление и ведёт, как понятно из названия, в землю.

Что происходит, если человек дотрагивается до обычного или заземлённого прибора, в чем разница? Заземление и зануление как бы создают второй параллельный маршрут для потока электронов. В случае с заземлением с корпуса прибора проложен электрический провод с хорошим сечением и малым сопротивлением, подсоединённый к металлическим штырям или другим элементам, специально заглубленным в грунт (причём обязательно ниже точки промерзания - лёд плохой проводник).

Если объяснять принцип работы заземления простым языком: электроны, идя по пути наименьшего сопротивления, в основном двигаются в землю по проводу заземления, поток же, идущий через человеческое тело, за счёт этого значительно ослабевает.

Как защищает зануление

А вот другой, аналогичный метод защиты от поражения электрическим током. В чем разница между заземлением и занулением? Если заземление соединяет открытые детали электрических машин с почвой, то зануление - с нулевым проводом.

Электрический ток здесь опять-таки выбирает более лёгкий для себя путь, благодаря чему удар тока, получаемый человеком, значительно ослабевает. Но есть ещё одно существенное отличие заземления от зануления. При касании фазного провода зануления происходит фактически короткое замыкание системы. А это практически всегда приводит в действие автоматическую защиту и обесточивает систему. Таким образом несчастный случай предотвращается заранее.

Технические особенности обеих систем

Почему в разных условиях применяются различные методы защиты, чем отличается заземление от зануления в эксплуатации?

Заземление предусматривает также возможность молниезащиты (хотя специалисты и не рекомендуют этого делать), зануление не предназначено для этого;

Зануление предполагает обязательное использование автоматов защиты, без них устройство зануления запрещено;

Зануление не всегда применимо в технике из-за обесточивания определённых участков электропроводки при срабатывании.

Где применяется заземление

В быту с целью защиты от поражения электрическим током чаще применяется заземление. В качестве заземлителей прекрасно могут работать естественные конструкции, такие как металлические, зарытые в землю трубопроводы или арматура железобетонных конструкций. Но чаще делается специальный заземляющий контур из соединённых вместе вбитых в землю штырей.

В чем разница? Заземление и зануление предназначены для обеспечения электробезопасности, в то время как при замыкании фазного провода на заземляющий контур, он сам становится источником опасности. Если в вашем доме, к примеру, сосед заземлил свою стиральную машину на систему отопления, то в случае «пробития» электричества на корпус, элементы системы отопления лучше не трогать всем жителям здания.

При использовании же специального заземляющего контура жильцам ничего не грозит. При монтаже индивидуальных заземляющих систем в частном строительстве, часто их объединяют с системами молниезащиты. Специалисты делать этого ни в коем случае не рекомендуют, так как в случае удара молнии вся проводка в доме становится фактором повышенной опасности, а многие электроприборы просто выходят из строя.

Где делается зануление

Заземление применяется в основном в жилом фонде. В промышленности же чаще всего используется защитное заземление и зануление электроустановок в комплексе. Здесь учитывается, что при попадании напряжения на корпус того или иного прибора, агрегата, работающего от сети с напряжением гораздо выше бытового, опасность для человека возрастает многократно.

Кроме того, подвергается опасности дорогостоящее оборудование. Поэтому в этом случае лучше, если участок цепи будет мгновенно обесточен защитной автоматикой.

При использовании электрических машин и агрегатов с напряжением 380В и выше для переменного тока или 440В и выше для постоянного тока, монтаж системы зануления обязателен.

Меры безопасности при обращении с электричеством

Есть несложные правила, которые при пользовании бытовыми и промышленными электроприборами позволят избежать беды.

Вилку из розетки не вытягивают за шнур, её необходимо извлекать из гнезда, крепко обхватив пальцами;

Включать-выключать электроприборы или освещение (розеткой в вилку или посредством выключателя) ни в коем случае не стоит с мокрыми руками;

Не нужно использовать в светильниках лампы большей мощности, чем это указано в инструкции к данному осветительному прибору;

Если прибор заискрил, или при его работе слышится характерный треск короткого замыкания, проводить с ним какие-либо действия можно лишь после выключения его из розетки;

Полезно знать, где и как обесточивается вся электропроводка в доме, иногда это может сохранить жизни и имущество;

Если в руководстве к прибору не указано, что он относится к оборудованию, которое можно оставлять без присмотра, то делать это ни в коем случае нельзя.

Заземление и зануление: в чём разница Любая электрическая система построена на трёхфазной сети переменного тока или является её частью. Не углубляясь в теорию слишком сильно, напомним базовые определения работы любой трёхфазной системы. Между любыми двумя взятыми фазами 50 раз в секунду возникает напряжение 380 В. Конкретно в этот момент времени один из проводников превращается в землю - источник свободных электронов, а другой проводник эти электроны принимает. Такое же явления возникает и в двух других парах фаз, но разница во времени между тем, как фазы «переключаются», составляет примерно треть от периода колебания в одной из них. Такая схема работы обязана своим появлением наиболее популярному типу электрических машин. Если расположить фазы по окружности в нужном порядке, то возникновение тока в них так же следовало бы по кругу и было бы способно толкать круглый сердечник двигателя. В самом простом варианте электрических соединений все три фазы должны быть соединены в одной точке, при этом в конкретный момент времени в пике мощности будут находиться только две из них. Основная проблема в том, что сопротивление рабочих элементов (обмоток двигателя или нагревательных спиралей), включённых в каждую из фаз, не могут быть абсолютно равными. Поэтому ток в каждой из трёх цепей всегда будет разным, и это явление нужно каким-то образом компенсировать. Поэтому точку схождения всех трёх фаз присоединяют к земле, чтобы уводить в неё остаточный электрический потенциал. Как работает заземляющий контур Любой подъезд многоэтажного дома можно смоделировать по той же схеме. Но квартиры, распределенные по трём имеющимся фазам, потребляют электричество как попало, при чём это потребление постоянно меняется. Конечно, в среднем в точке подключения домового кабеля в распределительном пункте (РП) разница в токах на фазах составляет не более 5% от номинальной нагрузки. Однако в редких случаях это отклонение может быть выше 20%, и такое явление сулит серьёзные проблемы. Если на мгновение представить, что электрический стояк, а точнее, его рамная часть, на которую прикручены все нулевые провода, оказался изолированным от земли, столь высокая разница между потреблением квартир на разных фазах выливается в следующую закономерность: На наиболее нагруженной фазе происходит падение напряжения соразмерно нагрузке. На оставшихся фазах это напряжение, соответственно, возрастает. Нулевой провод, соединённый с контуром заземления, служит запасным источником электронов как раз на такой случай. Он помогает устранить асимметрию нагрузок и избежать появления перенапряжений на смежных ветках трёхфазной цепи. Отличие заземления от зануления Если во время работы отдельно взятой пары фаз нагрузка на них не будет одинаковой, в точке схождения непременно возникнет положительный электрический потенциал. То есть, если при обрыве заземляющего контура человек возьмётся за корпус подъездного щитка, его ударит током, и сила этого удара будет зависеть от степени асимметрии нагрузок. Большинство электрических машин сконструированы таким образом, чтобы нагрузки распределялись по всем трём фазам равномерно, ведь иначе одни проводники будут нагреваться и изнашиваться быстрее других. Поэтому точку соединения фаз в некоторых устройствах выводят в отдельный четвёртый контакт, к которому подсоединяется нулевой проводник. И вот здесь вопрос: где взять этот самый нулевой проводник? Если вы обратите внимание на столбы высоковольтных ЛЭП, на них присутствует только три провода, то есть три фазы. И для транспортировки электроэнергии этого вполне достаточно, ведь все трансформаторы на понижающих подстанциях имеют симметричную нагрузку на обмотках и заземляются каждый независимо от других. А появляется этот четвёртый проводник на самых последних трансформаторных подстанциях (ТП) в цепочке преобразований, там, где 6 или 10 кВ превращаются в привычные нам 220/380 В, и возникает неиллюзорная вероятность асинхронной нагрузки. В этом месте начала трёх обмоток трансформатора соединяются и подключаются к общей системе заземления и от этой точки берёт своё начало четвёртый, нулевой провод. И теперь мы понимаем, что заземление - это система стержней, погруженных в грунт, а зануление - это вынужденное присоединение средней точки к заземлению для устранения опасного потенциала и асимметрии. Соответственно, нулевой проводник - подсоединённый к точке зануления или ближе, а провод защитного заземления - подключённый непосредственно к самому заземляющему контуру. Вы замечали, что нулевой провод в трёхфазном кабеле имеет меньшее сечение, чем остальные? Это вполне объяснимо, ведь на него ложится не вся нагрузка, а только разница токов между фазами. Хотя бы один контур заземления в сети должен быть, и обычно он находится рядом с источником тока: трансформатор на подстанции. Здесь система требует обязательного зануления, но при этом нулевой проводник перестаёт быть защитным: что бывает, если в ТП «отгорел ноль», знакомо многим. По этой причине заземляющих контуров по всей протяжённости ЛЭП может быть несколько, и обычно так оно и есть. Конечно, повторное зануление, в отличие от заземления, вовсе не обязательно, но зачастую крайне полезно. По тому, в каком месте выполняется общее и повторные зануления трехфазной сети, различают несколько типов систем. В системах под названием I-T или T-T защитный проводник всегда берётся независимо от источника, для этого у потребителя устраивается собственный контур. Даже если источник имеет свою точку заземления, к которой подключен нулевой проводник, защитной функции последний не имеет, и с защитным контуром потребителя никак не контактирует. Подключения заземления в распределительном щитке Системы без заземления на стороне потребителя более распространены. В них защитный проводник передаётся от источника потребителю, в том числе и посредством нулевого провода. Обозначаются такие схемы приставкой TN и одним из трёх постфиксов: TN-C: защитный и нулевой проводник совмещены, все заземляющие контакты на розетках подключаются к нулевому проводу. TN-S: защитный и нулевой проводник нигде не контактируют, но могут подключаться к одному и тому же контуру. TN-C-S: защитный проводник следует от самого источника тока, но там всё равно соединяется с нулевым проводом. Ключевые моменты электромонтажа Итак, чем вся эта информация может быть полезна на практике? Схемы с собственным заземлением потребителя, естественно, предпочтительны, но иногда их технически невозможно реализовать, например, в квартирах высоток или на скальном грунте. Вы должны знать, что при совмещении нулевого и защитного проводника в одном проводе (называемом PEN) безопасность людей не ставится в приоритет, а потому оборудование, с которым контактируют люди, должно иметь дифференциальную защиту. И здесь начинающие монтажники допускают целый ворох ошибок, неправильно определяя тип системы заземления/зануления и, соответственно, неверно подключают УЗО. В системах с совмещённым проводником УЗО может устанавливаться в любой точке, но обязательно после места совмещения. Эта ошибка часто возникает в работе с системами TN-C и TN-C-S, а особенно часто, если в таких системах нулевой и защитный проводники не имеют соответствующей маркировки. Поэтому никогда не используйте жёлто-зелёные провода там, где в этом нет необходимости. Всегда заземляйте металлические шкафы и корпуса оборудования, но только не совмещённым PEN-проводником, на котором при обрыве нуля возникает опасный потенциал, а защитным проводом PE, который подключается к собственному контуру. Кстати, при наличии собственного контура на него выполнять незащищённое зануление очень и очень не рекомендуется, если только это не контур вашей собственной подстанции или генератора. Дело в том, что при обрыве нуля вся разница асинхронной нагрузки в общегородской сети (а это может быть несколько сотен ампер) проследует в землю через ваш контур, раскаляя соединяющий провод до бела.

В этой статье вы найдете отличия зануления от заземления. Наверное, каждый человек слышал о таком способе защиты, как заземление электроприборов. При строительстве современного дома монтаж трехпроводной сети считается обязательным. Многие могут подумать, что делать, если в квартире установлена старая проводка.

В этом случае вам потребуется выполнить зануление электропроводки. В этой статье вы узнаете, в чем разница зануления и заземления.

Обе системы предназначаются для выполнения одинаковых функций. Они защищают человека от поражения электрическим током. Разница заключается в том, что зануление провоцирует моментальное отключение электроэнергии при опасном контакте человека с проводом. Заземление будет мгновенно отводить электрический ток в землю. Для вам потребуется заземление. Это и есть отличия зануления от заземления.

Если более подробно рассмотреть этот вопрос, тогда необходимо изучить какой принцип действия у каждого варианта защиты. На основании этого вы легко можете выделить разницу альтернативных вариантов. Заземление работает следующим образом: к корпусу электроприборов подключают специальный провод, который ведет на соответствующую шину. Оттуда заземляющий провод должен выходить к главному заземляющему контуру, который находится рядом с домом. Увидеть контур заземления можно на фото ниже. Если в доме произойдет сбой электроприбора, тогда опасность сможет миновать человека.

Система зануления представляет собой соединение корпуса электроприбора с нейтральным проводом сети. В результате этого образуется замкнутый контур, как показано на схеме ниже. может иметь подобный контур заземления. При возникновении опасной ситуации произойдет короткое замыкание, и автоматические выключатели на вводном щитке смогут отключить электроэнергию.

Наглядно увидеть разницу между занулением и заземлением вы сможете на схеме ниже:

Надеемся, что вы теперь поняли основные отличия зануления от заземления. Посмотреть их разницу наглядно можно на видео:

Какая система лучше?

Для того чтобы вы лучше могли понять все основные отличия мы предоставили вашему вниманию отличия в использовании каждой системы. На основании этого материала вы самостоятельно сможете сделать вывод.

  • Заземления дома можно сделать своими руками. Для этого вам потребуется только сварочный аппарат. Для того чтобы создать зануление могут потребоваться определенные знания, которые связаны с выбором оптимальной точки для подключения провода к нейтрали.
  • Если произойдет обрыв провода в распределительном щитке, тогда система зануления не будет работать. В результате этого вы сможете стать жертвой поражения электрическим током. С системой защитного заземления этого не случиться. Если вы будете выполнять плановый осмотр всех проводов и соединений, тогда подобная ситуация не возникнет.

Как видите, сделать правильное заземление в частном доме достаточно просто. Эта система будет не только долговечной, но и безопасной. Для создания зануления вам потребуется вызов мастера, который самостоятельно выполнить установку. Также вам потребуется проводить регулярный осмотр своей системы. Использовать зануление необходимо только в том случае если вы проживаете в «хрущевке». Надеемся, что теперь вы поняли, в чем разница зануления и заземления. Теперь вы сможете увидеть отличия зануления от заземления на видео.