Дробный модуль как решать. Как решать уравнения с модулем

Точилкина Юлия

В работе представлены различные способы решения уравнений с модулем.

Скачать:

Предварительный просмотр:

Муниципальное бюджетное общеобразовательное учреждение

«Средняя общеобразовательная школа № 59»

Уравнения с модулем

Реферативная работа

Выполнила ученица 9А класса

МБОУ «СОШ № 59» г. Барнаула

Точилкина Юлия

Руководитель

Захарова Людмила Владимировна,

учитель математики

МБОУ «СОШ № 59» г. Барнаула

Барнаул 2015

Введение

Я учусь в девятом классе. В этом учебном году мне предстоит сдавать итоговую аттестацию за курс основной школы. Для подготовки к экзамену мы приобрели сборник Д. А. Мальцева Математика. 9 класс. Просматривая сборник, я обнаружила уравнения, содержащие не только один, но и несколько модулей. Учитель объяснила мне и моим одноклассникам, что такие уравнения называют уравнениями с «вложенными модулями». Такое название показалось для нас необычным, а решение на первый взгляд, довольно сложным. Так появилась тема для моей работы «Уравнения с модулем». Я решила глубже изучить эту тему, тем более, что она мне пригодится при сдаче экзаменов в конце учебного года и думаю, что понадобится в 10 и 11 классах. Все сказанное выше определяет актуальность выбранной мною темы.

Цель работы :

  1. Рассмотреть различные методы решения уравнений с модулем.
  2. Научиться решать уравнения, содержащие знак абсолютной величины, различными методами

Для работы над темой были сформулированы следующие задачи:

Задачи:

  1. Изучить теоретический материал по теме «Модуль действительного числа».
  2. Рассмотреть методы решения уравнений и закрепить полученные знания решением задач.
  3. Полученные знания применять при решении различных уравнений, содержащих знак модуля в старших классах

Объект исследования: методы решения уравнений с модулем

Предмет исследования: уравнения с модулем

Методы исследования:

Теоретические : изучение литературы по теме исследования;

Internet – информации.

Анализ информации, полученной при изучении литературы; результатов полученных при решении уравнений с модулем различными способами.

Сравнение способов решения уравнений предмет рациональности их использования при решении различных уравнений с модулем.

«Мы начинаем думать, когда обо что-то стукнемся». Поль Валери.

1. Понятия и определения.

Понятие «модуль» широко применяется во многих разделах школьного курса математики, например, в изучении абсолютной и относительной погрешностей приближенного числа; в геометрии и физике изучаются понятия вектора и его длины (модуля вектора). Понятия модуля применяется в курсах высшей математики, физики и технических наук, изучаемых в высших учебных заведениях.

Слово «модуль» произошло от латинского слова «modulus», что в переводе означает «мера». Это слово имеет множество значений и применяется не только в математике, физике и технике, но и в архитектуре, программировании и других точных науках.

Считают, что термин предложил использовать Котс, ученик Ньютона. Знак модуля был введен в XIX веке Вейерштрассом.

В архитектуре модуль– исходная единица измерения, устанавливаемая для данного архитектурного сооружения.

В технике – это термин, применяемый в различных областях техники, служащий для обозначения различных коэффициентов и величин, например, модуль упругости, модуль зацепления…

В математике модуль имеет несколько значений, но я буду рассматривать его как абсолютную величину числа.

Определение1 : Модулем (абсолютной величиной) действительного числа а называется само это число, если а ≥0, или противоположное число – а , если а модуль нуля равен нулю.

При решении уравнений с модулем, удобно использовать свойства модуля.

Рассмотрим доказательства 5,6, 7 свойств.

Утверждение 5. Равенство │ а+в │=│ а │+│ в │ является верным, если ав ≥ 0.

Доказательство. Действительно, после возведения обеих частей данного равенства в квадрат, получим, │ а+в │²=│ а │²+2│ ав │+│ в │²,

а²+ 2 ав+в²=а²+ 2│ ав │+ в², откуда │ ав │= ав

А последнее равенство будет верным при ав ≥0.

Утверждение 6. Равенство │ а-в │=│ а │+│ в │ является верным при ав ≤0.

Доказательство. Для доказательства достаточно в равенстве

│ а+в │=│ а │+│ в │ заменить в на - в, тогда а· (- в ) ≥0, откуда ав ≤0.

Утверждение 7.Равенство │ а │+│ в │= а+в выполняется при а ≥0 и в ≥0.

Доказательство . Рассмотрев четыре случая а ≥0 и в ≥0; а ≥0 и в а в ≥0; а в а ≥0 и в ≥0.

(а-в ) в ≥0.

Геометрическая интерпретация

|а| - это расстояние на координатной прямой от точки с координатой а , до начала координат.

|-а| |а|

А 0 а х

Геометрическое толкование смысла |а| наглядно подтверждает, что |-а|=|а|

Если а 0, то на координатной прямой существует две точки а и –а, равноудаленные от нуля, модули которых равны.

Если а=0, то на координатной прямой |а| изображается точкой 0.

Определение 2: Уравнение с модулем – это уравнение, содержащее переменную под знаком абсолютной величины (под знаком модуля). Например: |х +3|=1

Определение 3: Решить уравнение-это значит найти все его корни, или доказать, что корней нет.

2. Методы решения

Из определения и свойств модуля вытекают основные методы решения уравнений с модулем:

  1. «Раскрытие» модуля (т.е. использование определения);
  2. Использование геометрического смыла модуля (свойство 2);
  3. Графический метод решения;
  4. Использование равносильных преобразований (свойства 4,6);
  5. Замена переменной (при этом используется свойство 5).
  6. Метод интервалов.

Я решила достаточно большое количество примеров, но в работе представляю вашему вниманию только несколько, на мой взгляд, типичных примеров, решенных различными способами, потому что остальные дублируют друг друга и чтобы понять, как решать уравнения с модулем нет необходимости рассматривать все решенные примеры.

РЕШЕНИЕ УРАВНЕНИЙ | f(x)| = a

Рассмотрим уравнение | f(x)| = a, а R

Уравнение данного вида может быть решено по определению модуля:

Если а то уравнение корней не имеет.

Если а= 0, то уравнение равносильно f(x)=0.

Если а>0, то уравнение равносильно совокупности

Пример. Решить уравнение |3х+2|=4.

Р е ш е н и е.

|3х+2|=4, тогда 3х+2=4,

3х+2= -4;

Х=-2,

Х=2/3

О т в е т: -2;2/3.

РЕШЕНИЕ УРАВНЕНИЙ с ИСПОЛЬЗОВАНИЕМ ГЕОМЕТРИЧЕСКОГО СВОЙСТВА МОДУЛЯ.

Пример 1. Решить уравнение /х-1/+/х-3/=6.

Решение.

Решить данное уравнение значит найти все такие точки на числовой оси Ох, для каждой из которых сумма расстояний от нее до точек с координатами 1 и 3 равна 6.

Ни одна точка из отрезка не удовлетворяет этому условию, т.к. сумма указанных расстояний равна 2. Вне этого отрезка есть две точки это 5 и -1.

1 1 3 5

Ответ: -1;5

Пример 2. Решить уравнение |х 2 +х-5|+|х 2 +х-9|=10.

Решение.

Обозначим х 2 +х-5= а, тогда / а /+/ а-4 /=10. Найдем точки на оси Ох такие, что для каждой из них сумма расстояний до точек с координатами 0 и 4 равна 10. Этому условию удовлетворяют -4 и 7.

3 0 4 7

Значит х 2 +х-5= 4 х 2 +х-5=7

Х 2 +х-2=0 х 2 +х-12=0

Х 1= 1, х 2= -2 х 1= -4, х 2= 3 Ответ:-4;-2; 1; 3.

РЕШЕНИЕ УРАВНЕНИЙ | f (x )| = | g (x )|.

  1. Так как | а |=|в |, если а= в, то уравнение вида | f (x )| = | g (x )| равносильно совокупности

Пример1.

Решить уравнение | x –2| = |3 – х |.

Р е ш е н и е.

Данное уравнение равносильно двум уравнениям:

х – 2 = 3 – х (1) и х – 2 = –3 + х (2)

2 х = 5 –2 = –3 – неверно

х = 2,5 уравнение не имеет решений.

О т в е т: 2,5.

Пример 2.

Решить уравнение |х 2 +3х-20|= |х 2 -3х+ 2|.

Р е ш е н и е.

Так как обе части уравнения неотрицательны, то возведение в квадрат является равносильным преобразованием:

(х 2 +3х-20) 2 = (х 2 -3х+2) 2

(х 2 +3х-20) 2 - (х 2 -3х+2) 2 =0,

(х 2 +3х-20-х 2 +3х-2) (х 2 +3х-20+х 2 -3х+2)=0,

(6х-22)(2х 2 -18)=0,

6х-22=0 или 2х 2 -18=0;

Х=22/6, х=3, х=-3.

Х=11/3

Ответ: -3; 3; 11/3.

РЕШЕНИЕ УРАВНЕНИЙ ВИДА | f (x )| = g (x ).

Отличие данных уравнений от | f(x)| = a в том, что в правой части тоже переменная. А она может быть как положительной, так и отрицательной. Поэтому в ее неотрицательности нужно специально убедиться, ведь модуль не может равняться отрицательному числу (свойство №1 )

1 способ

Решение уравнения | f (x )| = g (x ) сводится к совокупности решения уравнений и проверке справедливости неравенства g (x )>0 для найденных значений неизвестной.

2 способ (по определению модуля)

Так как | f (x )| = g (x ), если f (x) = 0; | f (x )| = - f (x ), если f (x )

Пример.

Решить уравнение |3 х –10| = х – 2.

Р е ш е н и е.

Данное уравнение равносильно совокупности двух систем:

О т в е т: 3; 4.

РЕШЕНИЕ УРАВНЕНИЙ ВИДА |f 1 (x)|+|f 2 (x)|+…+|f n (x)|=g(х)

Решение уравнений данного вида основано на определении модуля. Для каждой функции f 1 (x), f 2 (x), …, f n (x) необходимо найти область определения, ее нули и точки разрыва, разбивающие общую область определения на промежутки, в каждом из которых функции f 1 (x), f 2 (x), …, f n (x) сохраняют свой знак. Далее используя определение модуля, для каждой из найденных областей получим уравнение, которое необходимо решить на данном промежутке. Данный метод получил название « метод интервалов »

Пример .

Решить уравнение |х-2|-3|х+4|=1.

Р е ш е н и е.

Найдем точки, в которых подмодульные выражения равны нулю

х-2=0, х+4=0,

х=2; х=-4.

Разобьем числовую прямую на промежутки х

Решение уравнения сводится к решению трех систем:

О т в е т: -15, -1,8.

ГРАФИЧЕСКИЙ СПОСОБ РЕШЕНИЯ УРАВНЕНИЙ, СОДЕРЖАЩИХ ЗНАК МОДУЛЯ.

Графический способ решения уравнений является приближенным, так ка точность зависит от выбранного единичнрого отрезка, толщины карандаша, углов под которыми пересекаются линии и т.д. Но этот метод позволяет оценивать сколько решений имеет то или иное уравнение.

Пример . Решить графически уравнение |x - 2| + |x - 3| + |2x - 8| = 9

Решение. Построим в одной системе координат графики функций

у=|x - 2| + |x - 3| + |2x - 8| и у=9.

Для построения графика необходимо рассмотреть данную функцию на каждом промежутке (-∞; 2); [ 3/2 ; ∞ )

Ответ: (- ∞ ; 4/3] [ 3/2 ; ∞ )

Метод равносильных преобразований мы использовали и при решении уравнений | f (x )| = | g (x )|.

УРАВНЕНИЯ СО «СЛОЖНЫМ МОДУЛЕМ»

Еще один вид уравнений – уравнения со «сложным» модулем. К таким уравнениям относятся уравнения, в которых есть «модули в модуле». Уравнения данного вида можно решать, применяя различные методы.

Пример 1.

Решить уравнение ||||x| – |–2| –1| –2| = 2.

Решение.

По определению модуля, имеем:

Решим первое уравнение.

  1. ||| x |–2| –1| = 4

| x | – 2 = 5;

| x | = 7;

х = 7.

Решим второе уравнение.

  1. ||| x | –2| –1| = 0,

|| x | –2| = 1,

| x | –2 = 1 ,

| x | = 3 и | x | = 1,

х = 3; х = 1.

О т в е т: 1; 3; 7.

Пример 2.

Решить уравнение |2 – |x + 1|| = 3.

Р е ш е н и е.

Решим уравнение с помощью введения новой переменной.

Пусть | x + 1| = y , тогда |2 – y | = 3, отсюда

Выполним обратную замену:

(1) | x + 1| = –1 – нет решений.

(2) | x + 1| = 5

О т в е т: –6; 4.

Пример3 .

Сколько корней имеет уравнение | 2 | х | -6 | = 5 - х?

Решение. Решим уравнение, используя схемы равносильности.

Уравнение | 2 | х | -6 | = 5 -х равносильно системе:

Инструкция

Если модуль представлен в виде непрерывной функции, то значение ее аргумента может быть как положительным, так и отрицательным: |х| = х, х ≥ 0; |х| = - х, х

z1 + z2 = (x1 + x2) + i(y1 + y2);
z1 - z2 = (x1 - x2) + i(y1 - y2);

Легко заметить, что сложение и вычитание комплексных чисел подчиняется тому же правилу, что сложение и .

Произведение двух комплексных чисел равно:

z1*z2 = (x1 + iy1)*(x2 + iy2) = x1*x2 + i*y1*x2 + i*x1*y2 + (i^2)*y1*y2.

Поскольку i^2 = -1, то конечный результат равен:

(x1*x2 - y1*y2) + i(x1*y2 + x2*y1).

Операции возведения в степень и извлечения корня для комплексных чисел определяются так же, как и для действительных. Однако в комплексной области для любого числа существует ровно n таких чисел b, что b^n = a, то есть n корней n-ой степени.

В частности, это значит, что любое алгебраическое уравнение n-ой степени с одной переменной имеет ровно n комплексных корней, некоторые из которых могут быть и .

Видео по теме

Источники:

  • Лекция "Комплексные числа" в 2019

Корнем называют значок, обозначающий математическую операцию нахождения такого числа, возведение которого в указанную перед знаком корня степень должно дать число, указанное под этим самым знаком. Часто для решения задач, в которых присутствуют корни, недостаточно только рассчитать значение. Приходится осуществлять и дополнительные операции, одной из которых является внесение числа, переменной или выражения под знак корня.

Инструкция

Определите показатель степени корня. Показателем называют целое число, указывающее степень, в которую надо возвести результат вычисления корня, чтобы получить подкоренное выражение (то число, из которого извлекается этот корень). Показатель степени корня в виде верхнего индекса перед значком корня. Если этот не указан, это квадратный корень, степень которого равна двойке. Например, показатель корня √3 двум, показатель ³√3 равен трем, показатель корня ⁴√3 равен четырем и т.д.

Возведите число, которое требуется внести под знак корня, в степень, равную показателю этого корня, определенную вами на предыдущем шаге. Например, если нужно внести число 5 под знак корня ⁴√3, то показателем степени корня является четверка и вам надо результат возведения 5 в четвертую степень 5⁴=625. Сделать это можно любым удобным вам способом - в уме, с помощью калькулятора или соответствующих -сервисов, размещенных .

Внесите полученное на предыдущем шаге значение под знак корня в качестве множителя подкоренного выражения. Для использованного в предыдущем шаге примера с внесением под корень ⁴√3 5 (5*⁴√3), это действие можно так: 5*⁴√3=⁴√(625*3).

Упростите полученное подкоренное выражение, если это возможно. Для примера из предыдущих шагов это , что нужно просто перемножить числа, стоящие под знаком корня: 5*⁴√3=⁴√(625*3)=⁴√1875. На этом операция внесения числа под корень будет завершена.

Если в задаче присутствуют неизвестные переменные, то описанные выше шаги можно проделать в общем виде. Например, если требуется внести под корень четвертой степени неизвестную переменную x, а подкоренное выражение равно 5/x³, то вся последовательность действий может быть записана так: x*⁴√(5/x³)=⁴√(x⁴*5/x³)=⁴√(x*5).

Источники:

  • как называется знак корня

Действительных чисел недостаточно для того, чтобы решить любое квадратное уравнение. Простейшее из квадратных уравнений, не имеющих корней среди действительных чисел - это x^2+1=0. При его решении получается, что x=±sqrt(-1), а согласно законам элементарной алгебры, извлечь корень четной степени из отрицательного числа нельзя.

Модуль – это абсолютная величина выражения. Чтобы хоть как-то обозначить модуль, принято использовать прямые скобки. То значение, которое заключено в ровных скобках, и является тем значением, которое взято по модулю. Процесс решения любого модуля заключается в раскрытии тех самых прямых скобок, которые математическим языком именуются модульными скобками. Их раскрытие происходит по определенному ряду правил. Также, в порядке решения модулей, находятся и множества значений тех выражений, которые находились в модульных скобках. В большей части всех случаев, модуль раскрывается таким способом, что выражение, которое было подмодульным, получает и положительные, и отрицательные значения, в числе которых также и значение ноль. Если отталкиваться от установленных свойств модуля, то в процессе составляются различные уравнения или же неравенства от исходного выражения, которые затем необходимо решить. Разберемся же с тем, как решать модули.

Процесс решения

Решение модуля начинается с записи исходного уравнения с модулем. Чтобы ответить на вопрос о том, как решать уравнения с модулем, нужно раскрыть его полностью. Для решения такого уравнения, модуль раскрывается. Все модульные выражения должны быть рассмотрены. Следует определить при каких значениях неизвестных величин, входящих в его состав, модульное выражение в скобках обращается в ноль. Для того чтобы это сделать, достаточно приравнять выражение в модульных скобках к нулю, а затем высчитать решение образовавшегося уравнения. Найденные значения нужно зафиксировать. Таким же способом нужно определить еще и значение всех неизвестных переменных для всех модулей в данном уравнении. Далее необходимо заняться определением и рассмотрением всех случаев существования переменных в выражениях, когда они отличны от значения ноль. Для этого нужно записать некоторую систему из неравенств соответственно всем модулям в исходном неравенстве. Неравенства должны быть составлены так, чтоб они охватывали все имеющиеся и возможные значения для переменной, которые находят на числовой прямой. Затем нужно начертить для визуализации эту самую числовую прямую, на которой в дальнейшем отложить все полученные значения.

Практически все сейчас можно сделать в интернете. Не является исключением из правил и модуль. Решить онлайн его можно на одном из многочисленных современных ресурсов. Все те значения переменной, которые находятся в нулевом модуле, будут особым ограничением, которое будет использовано в процессе решения модульного уравнения. В исходном уравнении требуется раскрыть все имеющиеся модульные скобки, при этом, изменяя знак выражения, таким образом, чтобы значения искомой переменной совпадали с теми значениями, которые видно на числовой прямой. Полученное уравнение необходимо решить. То значение переменной, которое будет получено в ходе решения уравнения, нужно проверять на ограничение, которое задано самим модулем. Если значение переменной полностью удовлетворяет условие, то оно является правильным. Все корни, которые будут получены в ходе решения уравнения, но не будут подходить по ограничениям, должны быть отброшены.

Одна из самых сложных тем для учащихся – это решение уравнений, содержащих переменную под знаком модуля. Давайте разберемся для начала с чем же это связано? Почему, например, квадратные уравнения большинство детей щелкает как орешки, а с таким далеко не самым сложным понятием как модуль имеет столько проблем?

На мой взгляд, все эти сложности связаны с отсутствием четко сформулированных правил для решения уравнений с модулем. Так, решая квадратное уравнение, ученик точно знает, что ему нужно сначала применять формулу дискриминанта, а затем формулы корней квадратного уравнения. А что делать, если в уравнении встретился модуль? Постараемся четко описать необходимый план действий на случай, когда уравнение содержит неизвестную под знаком модуля. К каждому случаю приведем несколько примеров.

Но для начала вспомним определение модуля . Итак, модулем числа a называется само это число, если a неотрицательно и -a , если число a меньше нуля. Записать это можно так:

|a| = a, если a ≥ 0 и |a| = -a, если a < 0

Говоря о геометрическом смысле модуля, следует помнить, что каждому действительному числу соответствует определенная точка на числовой оси – ее координата. Так вот, модулем или абсолютной величиной числа называется расстояние от этой точки до начала отсчета числовой оси. Расстояние всегда задается положительным числом. Таким образом, модуль любого отрицательного числа есть число положительное. Кстати, даже на этом этапе многие ученики начинают путаться. В модуле может стоять какое угодно число, а вот результат применения модуля всегда число положительное.

Теперь перейдем непосредственно к решению уравнений.

1. Рассмотрим уравнение вида |x| = с, где с – действительное число. Это уравнение можно решить с помощью определения модуля.

Все действительные числа разобьем на три группы: те, что больше нуля, те, что меньше нуля, и третья группа – это число 0. Запишем решение в виде схемы:

{±c, если с > 0

Если |x| = c, то x = {0, если с = 0

{нет корней, если с < 0

1) |x| = 5, т.к. 5 > 0, то x = ±5;

2) |x| = -5, т.к. -5 < 0, то уравнение не имеет корней;

3) |x| = 0, то x = 0.

2. Уравнение вида |f(x)| = b, где b > 0. Для решения данного уравнения необходимо избавиться от модуля. Делаем это так: f(x) = b или f(x) = -b. Теперь необходимо решить отдельно каждое из полученных уравнений. Если в исходном уравнении b< 0, решений не будет.

1) |x + 2| = 4, т.к. 4 > 0, то

x + 2 = 4 или x + 2 = -4

2) |x 2 – 5| = 11, т.к. 11 > 0, то

x 2 – 5 = 11 или x 2 – 5 = -11

x 2 = 16 x 2 = -6

x = ± 4 нет корней

3) |x 2 – 5x| = -8 , т.к. -8 < 0, то уравнение не имеет корней.

3. Уравнение вида |f(x)| = g(x). По смыслу модуля такое уравнение будет иметь решения, если его правая часть больше или равна нулю, т.е. g(x) ≥ 0. Тогда будем иметь:

f(x) = g(x) или f(x) = -g(x) .

1) |2x – 1| = 5x – 10. Данное уравнение будет иметь корни, если 5x – 10 ≥ 0. Именно с этого и начинают решение таких уравнений.

1. О.Д.З. 5x – 10 ≥ 0

2. Решение:

2x – 1 = 5x – 10 или 2x – 1 = -(5x – 10)

3. Объединяем О.Д.З. и решение, получаем:

Корень x = 11/7 не подходит по О.Д.З., он меньше 2, а x = 3 этому условию удовлетворяет.

Ответ: x = 3

2) |x – 1| = 1 – x 2 .

1. О.Д.З. 1 – x 2 ≥ 0. Решим методом интервалов данное неравенство:

(1 – x)(1 + x) ≥ 0

2. Решение:

x – 1 = 1 – x 2 или x – 1 = -(1 – x 2)

x 2 + x – 2 = 0 x 2 – x = 0

x = -2 или x = 1 x = 0 или x = 1

3. Объединяем решение и О.Д.З.:

Подходят только корни x = 1 и x = 0.

Ответ: x = 0, x = 1.

4. Уравнение вида |f(x)| = |g(x)|. Такое уравнение равносильно двум следующим уравнениям f(x) = g(x) или f(x) = -g(x).

1) |x 2 – 5x + 7| = |2x – 5|. Данное уравнение равносильно двум следующим:

x 2 – 5x + 7 = 2x – 5 или x 2 – 5x +7 = -2x + 5

x 2 – 7x + 12 = 0 x 2 – 3x + 2 = 0

x = 3 или x = 4 x = 2 или x = 1

Ответ: x = 1, x = 2, x = 3, x = 4.

5. Уравнения, решаемые методом подстановки (замены переменной). Данный метод решения проще всего объяснить на конкретном примере. Так, пусть дано квадратное уравнение с модулем:

x 2 – 6|x| + 5 = 0. По свойству модуля x 2 = |x| 2 , поэтому уравнение можно переписать так:

|x| 2 – 6|x| + 5 = 0. Сделаем замену |x| = t ≥ 0, тогда будем иметь:

t 2 – 6t + 5 = 0. Решая данное уравнение, получаем, что t = 1 или t = 5. Вернемся к замене:

|x| = 1 или |x| = 5

x = ±1 x = ± 5

Ответ: x = -5, x = -1, x = 1, x = 5.

Рассмотрим еще один пример:

x 2 + |x| – 2 = 0. По свойству модуля x 2 = |x| 2 , поэтому

|x| 2 + |x| – 2 = 0. Сделаем замену |x| = t ≥ 0, тогда:

t 2 + t – 2 = 0. Решая данное уравнение, получаем, t = -2 или t = 1. Вернемся к замене:

|x| = -2 или |x| = 1

Нет корней x = ± 1

Ответ: x = -1, x = 1.

6. Еще один вид уравнений – уравнения со «сложным» модулем. К таким уравнениям относятся уравнения, в которых есть «модули в модуле». Уравнения данного вида можно решать, применяя свойства модуля.

1) |3 – |x|| = 4. Будем действовать так же, как и в уравнениях второго типа. Т.к. 4 > 0, то получим два уравнения:

3 – |x| = 4 или 3 – |x| = -4.

Теперь выразим в каждом уравнении модуль х, тогда |x| = -1 или |x| = 7.

Решаем каждое из полученных уравнений. В первом уравнении нет корней, т.к. -1 < 0, а во втором x = ±7.

Ответ x = -7, x = 7.

2) |3 + |x + 1|| = 5. Решаем это уравнение аналогичным образом:

3 + |x + 1| = 5 или 3 + |x + 1| = -5

|x + 1| = 2 |x + 1| = -8

x + 1 = 2 или x + 1 = -2. Нет корней.

Ответ: x = -3, x = 1.

Существует еще и универсальный метод решения уравнений с модулем. Это метод интервалов. Но мы его рассмотрим в дальнейшем.

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Этот математический калькулятор онлайн поможет вам решить уравнение или неравенство с модулями . Программа для решения уравнений и неравенств с модулями не просто даёт ответ задачи, она приводит подробное решение с пояснениями , т.е. отображает процесс получения результата.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

|x| или abs(x) - модуль x

Введите уравнение или неравенство с модулями

Решить уравнение или неравенство

Обнаружено что не загрузились некоторые скрипты, необходимые для решения этой задачи, и программа может не работать.
Возможно у вас включен AdBlock.
В этом случае отключите его и обновите страницу.

У вас в браузере отключено выполнение JavaScript.
Чтобы решение появилось нужно включить JavaScript.
Вот инструкции, как включить JavaScript в вашем браузере .

Т.к. желающих решить задачу очень много, ваш запрос поставлен в очередь.
Через несколько секунд решение появится ниже.
Пожалуйста подождите сек...


Если вы заметили ошибку в решении , то об этом вы можете написать в Форме обратной связи .
Не забудте указать какую задачу вы решаете и что вводите в поля .



Наши игры, головоломки, эмуляторы:

Немного теории.

Уравнения и неравенства с модулями

В курсе алгебры основной школы могут встретится простейшие уравнения и неравенства с модулями. Для их решения можно применять геометрический метод, основанный на том, что \(|x-a| \) - это расстояние на числовой прямой между точками x и a: \(|x-a| = \rho (x;\; a) \). Например, для решения уравнения \(|x-3|=2 \) нужно найти на числовой прямой точки, удалённые от точки 3 на расстояние 2. Таких точек две: \(x_1=1 \) и \(x_2=5 \).

Решая неравенство \(|2x+7|

Но основной способ решения уравнений и неравенств с модулями связан с так называемым «раскрытием модуля по определению»:
если \(a \geq 0 \), то \(|a|=a \);
если \(a Как правило, уравнение (неравенство) с модулями сводится к совокупности уравнений (неравенств), не содержащих знак модуля.

Кроме указанного определения, используются следующие утверждения:
1) Если \(c > 0 \), то уравнение \(|f(x)|=c \) равносильно совокупности уравнений: \(\left[\begin{array}{l} f(x)=c \\ f(x)=-c \end{array}\right. \)
2) Если \(c > 0 \), то неравенство \(|f(x)| 3) Если \(c \geq 0 \), то неравенство \(|f(x)| > c \) равносильно совокупности неравенств: \(\left[\begin{array}{l} f(x) c \end{array}\right. \)
4) Если обе части неравенства \(f(x) ПРИМЕР 1. Решить уравнение \(x^2 +2|x-1| -6 = 0 \).

Если \(x-1 \geq 0 \), то \(|x-1| = x-1 \) и заданное уравнение принимает вид
\(x^2 +2(x-1) -6 = 0 \Rightarrow x^2 +2x -8 = 0 \).
Если же \(x-1 \(x^2 -2(x-1) -6 = 0 \Rightarrow x^2 -2x -4 = 0 \).
Таким образом, заданное уравнение следует рассмотреть по отдельности в каждом из двух указанных случаев.
1) Пусть \(x-1 \geq 0 \), т.е. \(x \geq 1 \). Из уравнения \(x^2 +2x -8 = 0 \) находим \(x_1=2, \; x_2=-4\). Условию \(x \geq 1 \) удовлетворяет лишь значение \(x_1=2\).
2) Пусть \(x-1 Ответ: \(2; \;\; 1-\sqrt{5} \)

ПРИМЕР 2. Решить уравнение \(|x^2-6x+7| = \frac{5x-9}{3} \).

Первый способ (раскрытие модуля по определению).
Рассуждая, как в примере 1, приходим к выводу, что заданное уравнение нужно рассмотреть по отдельности при выполнении двух условий: \(x^2-6x+7 \geq 0 \) или \(x^2-6x+7

1) Если \(x^2-6x+7 \geq 0 \), то \(|x^2-6x+7| = x^2-6x+7 \) и заданное уравнение принимает вид \(x^2-6x+7 = \frac{5x-9}{3} \Rightarrow 3x^2-23x+30=0 \). Решив это квадратное уравнение, получим: \(x_1=6, \; x_2=\frac{5}{3} \).
Выясним, удовлетворяет ли значение \(x_1=6 \) условию \(x^2-6x+7 \geq 0 \). Для этого подставим указанное значение в квадратное неравенство. Получим: \(6^2-6 \cdot 6+7 \geq 0 \), т.е. \(7 \geq 0 \) - верное неравенство. Значит, \(x_1=6 \) - корень заданного уравнения.
Выясним, удовлетворяет ли значение \(x_2=\frac{5}{3} \) условию \(x^2-6x+7 \geq 0 \). Для этого подставим указанное значение в квадратное неравенство. Получим: \(\left(\frac{5}{3} \right)^2 -\frac{5}{3} \cdot 6 + 7 \geq 0 \), т.е. \(\frac{25}{9} -3 \geq 0 \) - неверное неравенство. Значит, \(x_2=\frac{5}{3} \) не является корнем заданного уравнения.

2) Если \(x^2-6x+7 Значение \(x_3=3\) удовлетворяет условию \(x^2-6x+7 Значение \(x_4=\frac{4}{3} \) не удовлетворяет условию \(x^2-6x+7 Итак, заданное уравнение имеет два корня: \(x=6, \; x=3 \).

Второй способ. Если дано уравнение \(|f(x)| = h(x) \), то при \(h(x) \(\left[\begin{array}{l} x^2-6x+7 = \frac{5x-9}{3} \\ x^2-6x+7 = -\frac{5x-9}{3} \end{array}\right. \)
Оба эти уравнения решены выше (при первом способе решения заданного уравнения), их корни таковы: \(6,\; \frac{5}{3},\; 3,\; \frac{4}{3} \). Условию \(\frac{5x-9}{3} \geq 0 \) из этих четырёх значений удовлетворяют лишь два: 6 и 3. Значит, заданное уравнение имеет два корня: \(x=6, \; x=3 \).

Третий способ (графический).
1) Построим график функции \(y = |x^2-6x+7| \). Сначала построим параболу \(y = x^2-6x+7 \). Имеем \(x^2-6x+7 = (x-3)^2-2 \). График функции \(y = (x-3)^2-2 \) можно получить из графика функции \(y = x^2 \) сдвигом его на 3 единицы масштаба вправо (по оси x) и на 2 единицы масштаба вниз (по оси y). Прямая x=3 - ось интересующей нас параболы. В качестве контрольных точек для более точного построения графика удобно взять точку (3; -2) - вершину параболы, точку (0; 7) и симметричную ей относительно оси параболы точку (6; 7).
Чтобы построить теперь график функции \(y = |x^2-6x+7| \), нужно оставить без изменения те части построенной параболы, которые лежат не ниже оси x, а ту часть параболы, которая лежит ниже оси x, отобразить зеркально относительно оси x.
2) Построим график линейной функции \(y = \frac{5x-9}{3} \). В качестве контрольных точек удобно взять точки (0; –3) и (3; 2).

Существенно то, что точка х = 1,8 пересечения прямой с осью абсцисс располагается правее левой точки пересечения параболы с осью абсцисс - это точка \(x=3-\sqrt{2} \) (поскольку \(3-\sqrt{2} 3) Судя по чертежу, графики пересекаются в двух точках - А(3; 2) и В(6; 7). Подставив абсциссы этих точек x = 3 и x = 6 в заданное уравнение, убеждаемся, что и при том и при другом значении получается верное числовое равенство. Значит, наша гипотеза подтвердилась - уравнение имеет два корня: x = 3 и x = 6. Ответ: 3; 6.

Замечание . Графический способ при всём своём изяществе не очень надёжен. В рассмотренном примере он сработал только потому, что корни уравнения - целые числа.

ПРИМЕР 3. Решить уравнение \(|2x-4|+|x+3| = 8 \)

Первый способ
Выражение 2x–4 обращается в 0 в точке х = 2, а выражение х + 3 - в точке х = –3. Эти две точки разбивают числовую прямую на три промежутка: \(x

Рассмотрим первый промежуток: \((-\infty; \; -3) \).
Если x Рассмотрим второй промежуток: \([-3; \; 2) \).
Если \(-3 \leq x Рассмотрим третий промежуток: \(}