Экстрасенсы. Инфляция во вселенной, экспоненциальное расширение вселенной

В котором кратко описывает возникновение и развитие теории инфляционной вселенной, дающей новое объяснение Большому взрыву и предсказывающейт существование наряду с нашей множества других вселенных.

Космология в некотором роде сродни философии. Во-первых, по обширности своего предмета исследования - им является вся Вселенная в целом. Во-вторых, по тому, что некоторые посылки в ней принимаются учеными в качестве допустимых без возможности провести какой-либо проверочный эксперимент. В-третьих, предсказательная сила многих космологических теорий заработает только если мы сможем попасть в другие вселенные - чего ожидать не приходится.

Однако из этого всего вовсе не следует, что современная космология - это такая рукомахательная и не совсем научная область, где можно, подобно древним грекам, лежать в тени дерев и гипотетизировать о количестве измерений пространства-времени - десять их или одиннадцать? Космологические модели базируются на наблюдательных данных астрономии, и чем больше этих данных, тем больше материала для космологических моделей - которые должны эти данные связывать и согласовывать между собой. Сложность в том, что в космологии затрагиваются фундаментальные вопросы требующие некоторых изначальных предположений, которые выбираются авторами моделей исходя из их личных представлений о гармонии мироздания. В этом, вообще-то, нет ничего исключительного: при построении всякой теории нужно брать какие-то опорные точки. Просто для космологии, которая оперирует самыми большими масштабами пространства и времени, их выбрать особенно трудно.

Для начала несколько важных определений.

Космология - наука, изучающая свойства нашей Вселенной как единого целого. Однако в ней пока нет какой-то единой теории, которая бы описывала все происходящее и когда-либо произошедшее. Сейчас существуют четыре основных космологических модели , которые пытаются описать происхождение и эволюцию вселенной и каждая из них имеет свои плюсы и минусы, своих адептов и противников. Модель Лямбда-CDM считается наиболее авторитетной, хотя и не бесспорной. Важно понимать, что космологические модели не обязательно соперничают друг с другом. Просто они могут описывать принципиально разные этапы эволюции. Например, Лябмда-CDM вообще не рассматривает вопрос Большого взрыва, хотя прекрасно объясняет все, что произошло после него.


Структура мультивселенной с пузырями мини-вселенных внутри нее.

Рисунок: Andrei Linde

Удивительно в этом то, что космологическая постоянная (то есть энергия вакуума) не изменяется во времени по мере расширения вселенной, в то время как плотность вещества как раз меняется совершенно предсказуемо и зависит от объема пространства. Получается, что в ранней вселенной плотность вещества намного превосходила плотность вакуума, в будущем по мере разлета галактик плотность вещества будет уменьшаться. Так почему же именно сейчас, когда мы можем измерить их, они так близки по значению друг к другу?

Единственным известным способом объяснить такое невероятное совпадение, не привлекая какие-то ненаучные гипотезы, можно только с помощью антропного принципа и инфляционной модели - то есть из множества существующих вселенных жизнь зародилась в той, где космологическая постоянная в данный момент времени оказалась равна плотности материи (это в свою очередь определяет время, прошедшее с начала инфляции, и дает как раз достаточно времени для формирования галактик, образования тяжелых элементов и развития жизни).

Еще одним поворотным моментом в развитии инфляционной модели был выход в 2000 году статьи Буссо и Полчински , в которой они предложили использовать теорию струн для объяснения большого набора разных типов вакуума, в каждом из которых космологическая постоянная могла принимать свои значения. А когда в работу над объединением теории струн и инфляционной модели включился один из создателей самой теории струн, Леонард Сасскинд, это не только помогло составить более законченную картину, которую сейчас называют «антропным ландшафтом теории струн», но и в некотором роде добавило вес всей модели в научном мире. Число статей по инфляции увеличилось за год с четырех до тридцати двух.

Инфляционная модель претендует на то, чтобы не просто объяснить тонкую настройку фундаментальных констант, но и помочь обнаружить некоторые фундаментальные параметры, которые определяют величину этих констант. Дело в том, что в Стандартной модели сегодня 26 параметров (космологическая постоянная стала последним из открытых), которые определяют величину всех констант, с которыми вы когда-либо сталкивались в курсе физики. Это достаточно много и уже Эйнштейн считал, что их количество можно уменьшить. Он предложил теорему, которая, по его словам, не может в настоящее время быть более чем верой, о том, что в мире нет произвольных констант: он так мудро устроен, что должны быть какие-то логические связи между казалось бы совсем разными величинами. В инфляционной модели эти константы могут быть всего лишь параметром окружающей среды, который кажется нам локально неизменным из-за эффекта инфляции, хотя будет совершенно иным в другой части вселенной и определяется еще не выявленными, но наверняка существующими истинно фундаментальными параметрами.

В заключении статьи Линде пишет, что критика инфляционной модели часто основана на том, что мы не сможем в обозримом будущем проникнуть в другие вселенные. Поэтому проверить теорию невозможно и у нас до сих пор нет ответов на самые базовые вопросы: Почему вселенная такая большая? Почему она однородна? Почему она изотропна и не вращается как наша галактика? Однако, если взглянуть на эти вопросы под другим углом, то оказывается, что и без путешествия в другие мини-вселенные у нас есть множество экспериментальных данных. Таких как размер, плоскость, изотропность, однородность, значение космологической постоянной, соотношение масс протона и нейтрона и так далее. И единственное на сегодняшний день разумное объяснение этим и многим другим экспериментальным данным дается в рамках теории мультиверсов и, следовательно, модели инфляционной космологии.


, 1990. Андрей Линде

«The Anthropic landscape of string theory» 2003. Леонард Сасскинд


Марат Мусин

В.В.Казютинский

Инфляционная космология: теория и научная картина мира *

Сейчас происходит новый коренной пересмотр знаний о Вселенной как целом, т.е. наибольшем по масштабу фрагменте мирового целого, который наука способна выделить имеющимися в данное время средствами. Этот пересмотр касается двух концептуальных уровней: 1) построение новых космологических теорий; 2) изменения блока «мир как целое» в научной картине мира (НКМ).

Современные изменения в космологии вносят чрезвычайно большой, но пока недостаточно оцененный вклад в современную НКМ, не говоря уже о мировоззренческом интересе, который они представляют. Их суть - возвращение к выраженным языком неклассической физики идеям бесконечного множества миров, бесконечности пространства и времени, бесконечности процессов эволюции и самоорганизации во Вселенной (Метавселенной), часть которых считалась навсегда отвергнутой с позиций науки.

Теория расширяющейся Вселенной была исключительно эффективной исследовательской программой. Она позволила решить ряд проблем, относящихся к структуре и эволюции нашей Метагалактики, в том числе, ранним стадиям ее развития. Например, выдающимся достижением стала теория «горячей Вселенной» Г.А.Гамова, подтвержденная открытием в 1965 году реликтового излучения. Многочисленные альтернативы фридмановской космологии оказались неубедительными.

Вместе с тем, теория расширяющейся Вселенной сама столкнулась с рядом серьезных проблем. Некоторые из них носили, так сказать, «технический» характер. Скажем, несколько обескураживает то, что, несмотря на интенсивные исследования, до сих пор не удалось построить в рамках теории А.А.Фридмана достаточно адекватную модель расширяющейся Метагалактики, поскольку известные факты, необходимые для построения такой модели, либо недостаточно точны, либо противоречивы. Другие проблемы носят более принципиальный характер. В качестве «дамоклова меча» над космологами уже давно висит «парадокс массы», согласно которому 90-95% массы Метагалактики должно находиться в невидимом состоянии, природа которого пока непонятна. Современное развитие теории расширяющейся Вселенной породило ряд еще более серьезных проблем, в сущности, ясно показывающих ограниченность теории, ее неспособность справиться с этими проблемами без существенных концептуальных сдвигов. Особенно много неприятностей доставляла теории проблема самых начальных стадий эволюции Вселенной. Хорошо известна проблема сингулярности: при обращении радиуса Вселенной, т.е. нашей Метагалактики, в нуль многие параметры становились бесконечными. Неясным оказывался физический смысл вопроса: а что было «до» сингулярности (иногда сам этот вопрос объявляли неосмысленным, поскольку время, как утверждал еще Августин, возникло вместе со Вселенной. (Но ответы типа: «до» этого не было времени и, следовательно, сам вопрос поставлен некорректно, многих космологов не очень-то удовлетворяли.) Теория в ее не квантовом варианте не могла объяснить причину, вызвавшую Большой взрыв, расширение Вселенной. Кроме того, существует впечатляющий перечень более десятка других проблем, с которыми теория А.А.Фридмана не смогла справиться. Вот лишь некоторые из них. 1) Проблема плоскостности (или пространственной евклидовости) Вселенной: близость кривизны пространства к нулевому значению, что на порядки отличается от «теоретических ожиданий»; 2) проблема размеров Вселенной: более естественно, с точки зрения теории, было бы ожидать, что наша Вселенная содержит не более нескольких элементарных частиц, а не 10 88 по современной оценке - еще одно огромное расхождение теоретических ожиданий с наблюдениями! 3) проблема горизонта: достаточно удаленные точки в нашей Вселенной еще не успели провзаимодействовать и не могут иметь общие параметры (такие, как

плотность, температура, и др.). Но наша Вселенная, Метагалактика, в больших масштабах отказывается удивительно однородной, несмотря на невозможность причинных связей между ее удаленными областями.

Сейчас, после того как инфляционная космология смогла решить большую часть этих проблем, затруднения релятивистской космологии перечисляют часто, и даже как-то очень охотно. Но в 60-70-е годы даже их упоминания были очень сдержанными и дозированными, особенно перед лицом нефридмановских исследовательских программ. Во-первых, у многих была еще в памяти трагическая судьба релятивистской космологии, подвергавшейся идеологическим нападкам отнюдь не только в нашей стране. Во-вторых, существовало общее понимание, что вблизи «начала» решающую роль начинают играть квантовые эффекты. Отсюда следовало, что необходима дальнейшая трансляция новых знаний из физики элементарных частиц и квантовой теории поля. Обсуждение космологических проблем на уровне НКМ привело к интереснейшим выводам. Были выдвинуты два фундаментальных принципа, которые вызвали сильный «прогрессивный сдвиг» в космологии.

1) Принцип квантового рождения Вселенной. Космологическая сингулярность является неустранимой чертой концептуальной структуры неквантовой космологии. Но в квантовой космологии это - лишь грубое приближение, которое должно быть заменено понятием спонтанной флуктуации вакуума (Трайон, 1973).

2) Принцип раздувания, согласно которому вскоре после начала расширения Вселенной произошел процесс ее экспоненциального раздувания. Он длился около 10 -35 с, но за это время раздувающаяся область должна достигнуть, по выражению А.Д.Линде, «невообразимых размеров». Согласно некоторым моделям раздувания, масштаб Вселенной (в см) достигнет 10 в степени 10 12 , т.е. величин, на много порядков превышающих расстояния до самых удаленных объектов наблюдаемой Вселенной.

Первый вариант раздувания был рассмотрен А.А.Старобинским в 1979 году, затем последовательно появились три сценария раздувающейся Вселенной: сценарий А.Гуса (1981 г.), так называемый новый сценарий (А.Д.Линде, А.Альбрехт, П.Дж.Стейнхардт, 1982), сценарий хаотического раздувания (А.Д.Линде, 1986 г.). Сценарий хаотического раздувания исходит из того, что механизм, порождающий быстрое раздувание ранней Вселенной, обусловлен скалярными полями, играющими ключевую роль как

в физике элементарных частиц, так и в космологии. Скалярные поля в ранней Вселенной могут принимать произвольные значения; отсюда и название - хаотическое раздувание .

Раздувание объясняет многие свойства Вселенной, которые создавали неразрешимые проблемы для фридмановской космологии. Например, причиной расширения Вселенной является действие антигравитационных сил в вакууме. Согласно инфляционной космологии, Вселенная должна быть плоской. А.Д.Линде даже рассматривает этот факт как предсказание инфляционной космологии, подтверждаемое наблюдениями. Не составляет проблемы и синхронизация поведения удаленных областей Вселенной.

Теория раздувающейся Вселенной вносит (пока на гипотетическом уровне) серьезные изменения в блок «мир как целое» НКМ.

1. В полном соответствии с философским анализом понятия «Вселенная как целое», который привел к выводу, что это - «все существующее» с точки зрения данной космологической теории или модели (а не в каком-то абсолютном смысле) теория совершила беспрецедентное расширение объема этого понятия по сравнению с релятивистской космологией. Общепринятая точка зрения, что наша Метагалактика и есть вся Вселенная, была оставлена. В инфляционной космологии введено понятие Метавселенной, тогда как для областей масштаба Метагалактики предложен термин «минивселенные». Теперь уже Метавселенная рассматривается как «все существующее» с точки зрения инфляционной космологии, а Метагалактика - как ее локальная область. Но не исключено, что если будет создана единая теория физических взаимодействий (ЕФТ, ТВО), то объем понятия Вселенная как целое вновь будет значительно расширен (или изменен).

2. Теория Фридмана основывалась на принципе однородности Вселенной (Метагалактики). Инфляционная космология, объясняя факт крупномасштабной однородности Вселенной при помощи механизма раздувания, одновременно вводит новый принцип - крайней неоднородности Метавселенной. Квантовые флуктуации, связанные с возникновением минивселенных, приводят к различиям физических законов и условий, размерности пространства-времени, свойств элементарных частиц и др. внеметагалактических объектов. Следует ли напоминать, что принцип бесконечного многообразия материального мира, в частности, его физических форм - это довольно старая философская идея, которая сейчас находит новое подтверждение в космологии.

3. Метавселенная как совокупность множества минивселенных, возникающих из флуктуаций пространственно-временной «пены», очевидно бесконечна, не имеет начала и конца во времени (И.Д.Новиков назвал ее «вечно юной Вселенной», не подозревая, что эту метафору еще в начале XX века придумал К.Э.Циолковский, критикуя теорию тепловой смерти Вселенной).

4. Теория раздувающейся Вселенной существенно иначе, чем фридмановская, рассматривает процессы космической эволюции. Она отказывается от представления, что вся Вселенная возникла 10 9 лет назад из сингулярного состояния. Это - лишь возраст нашей минивселенной, Метагалактики, возникшей из вакуумной «пены». Следовательно, «до» начала расширения Метагалактики был вакуум, который современная наука рассматривает как одну из физических форм материи. Но еще прежде, чем этот вывод был сделан в космологическом контексте, относительность, а вовсе не абсолютность, и вполне природный, а не трансцендентный характер расширения обосновывались из философских соображений . Тем самым, понятие «сотворения мира», один раз встречающееся в текстах А.А.Фридмана, и бесчисленное множество раз - в теологических, философских, да и собственно космологических сочинениях на протяжении большей части XX века, оказывается не более чем метафорой, не вытекающей из существа инфляционной космологии. Метавселенная, согласно теории, может вообще оказаться стационарной, хотя эволюция входящих в нее минивселенных описывается теорией большого взрыва.

А.Д.Линде ввел понятие вечного раздувания, которое описывает эволюционный процесс, продолжающийся как цепная реакция. Если Метавселенная содержит, по крайней мере, одну раздувающуюся область, она будет безостановочно порождать новые раздувающиеся области. Возникает ветвящаяся структура минивселенных, похожая на фрактал.

5. Инфляционная космология позволила дать совершенно новое понимание проблемы сингулярности. Понятие сингулярности, неустранимое в рамках стандартной релятивистской модели, основанной на классическом способе описания и объяснения, существенно меняет свой смысл при квантовом способе описания и объяснения, применяемом в инфляционной космологии. Оказывается вовсе не обязательным считать, что было какое-то единое начало мира, хотя это допущение и встречается с некоторыми трудностями. Но, по словам А.Д.Линде, в сценариях хаотического раздувания Вселенной «особенно отчетливо видно, что

вместо трагизма рождения всего мира из сингулярности, до которой ничего не существовало, и его последующего превращения в ничто, мы имеем дело с нескончаемым процессом взаимопревращения фаз, в которых малы, или, наоборот, велики квантовые флуктуации метрики» . Отсюда следует, что незыблемый еще недавно вывод о существовании общекосмологической сингулярности в начале расширения теряет убедительность. Нет необходимости утверждать, что все части Вселенной начали одновременное расширение. Сингулярность заменяется в теории расширяющейся Вселенной квантовой флуктуацией вакуума.

6. Инфляционная космология на современном этапе своего развития пересматривает прежние представления о тепловой смерти Вселенной. А.Д.Линде говорит о «самовоспроизводящейся раздувающейся Вселенной», т.е. процессе бесконечной самоорганизации. Минивселенные возникают и исчезают, но никакого единого конца этих процессов нет.

7. Как в релятивистской, так и в инфляционной космологии играет значительную роль антропный принцип (АП). Он связывает между собой фундаментальные параметры нашей вселенной, Метагалактики, параметры элементарных частиц и факт существования в Метагалактике человека. К числу необходимых для появления человека космологических условий относится следующие: Вселенная (Метагалактика) должна быть достаточно большой, плоской, однородной. Именно эти свойства ее вытекают из теории раздувающейся Вселенной. Без привлечения процесса раздувания в ранней Вселенной объяснить однообразие ее строения и свойств внутри охваченной наблюдениями области нельзя.

Нетрудно заметить, что в философских основаниях инфляционной космологии сплелись отдельные идеи и образы, транслированные из разных философских систем. Например, идея бесконечного множества миров имеет длительную философскую традицию еще со времен Левкиппа, Демокрита, Эпикура, Лукреция. Особенно глубоко она разрабатывалась Николаем Кузанским и Джордано Бруно. Идея аристотелевской метафизики о превращении потенциально возможного в действительное оказала влияние не только на используемый инфляционной космологией квантовый способ описания и объяснения, но и оказывается - парадоксальным образом! - предшественницей эволюционных идей этой теории. Парадоксальным потому, что сам Аристотель считал Вселенную единственной и, рассматривая возникновение и уничтожение как земные процессы, приписывал небу неизменность во

времени и замкнутость в пространстве. Но высказанные им идеи о потенциальном и актуальном бытии были перенесены, вопреки собственным взглядам Аристотеля, на бесконечную Метавселенную. Находят в философских основаниях инфляционной космологии также влияние идей Платона. Оно прослеживается, во всяком случае, через неоплатоников эпохи Возрождения.

Некоторые исследователи (например, А.Н.Павленко) считают, что инфляционная космология должна рассматриваться как новый этап современной революции в науке о Вселенной, поскольку она не только создает новую НКМ, но также приводит к пересмотру некоторых идеалов и норм познания (например, идеалы доказательности знания, которые сводятся к внутритеоретическим факторам). В качестве прогноза или экспертной оценки такая точка зрения приемлема, если мы учтем, однако, следующие обстоятельства.

Конечно, разработка теории, вызывающей крупный сдвиг в наших знаниях о мире и серьезные мировоззренческие последствия, - необходимый признак определенной стадии научной революции. Этот признак должен быть, однако, дополнен обоснованием новой теории, ее признания в научном сообществе, что также входит в структуру революционного сдвига. По степени радикальности, с какой инфляционная космология (особенно вариант хаотического раздувания) пересматривает картину мира как целого, она явно превосходит теорию А.А.Фридмана. В сообществе космологов она стала пользоваться большим влиянием, которое установилось, впрочем, не сразу. В первой половине 80-х годов считались конкурентоспособными различные сценарии квантового рождения Вселенной из вакуума, инфляционная космология - в их числе. Это объяснялось существенными недостатками первых сценариев раздувания. Лишь после появления сценария хаотического раздувания произошел прорыв в признании новой космологии. Тем не менее, проблема обоснования этой космологической теории остается пока открытой, как раз вследствие того, что принятым сейчас идеалам и нормам доказательности знания она не соответствует (другие Вселенные принципиально не наблюдаемы). Надежды на изменение этих идеалов в обозримом будущем (исключение обязательности «внешнего оправдания») пока невелики. Строго говоря, революция, потенциально заключенная в инфляционной космологии, может состояться, а может и не состояться. На ее развертывание пока можно только надеяться, не исключая полностью также других неожиданных и пока не угадываемых поворотов в этой области.

Социокультурная ассимиляция инфляционной космологии содержит любопытный момент. Являясь чрезвычайно революционной по своей сути, новая космологическая теория не вызвала особого «бума». Пошло уже около 20 лет после появления первого варианта этой теории, но она почти не вышла за пределы довольно узкого круга специалистов, не стала источником мировоззренческих дискуссий, хотя бы отдаленно напоминающих ожесточенные баталии вокруг теории Коперника, будоражившей умы еще до опубликования его бессмертного трактата, или вокруг теории А.А.Фридмана. Это поразительное обстоятельство нуждается в объяснении.

Не исключено, что основная причина - увы, падение интереса к научному, в частности, физико-математическому знанию, которое интенсивно заменяется разного рода суррогатами, зачастую вызывающими неизмеримо больший ажиотаж, чем самые первоклассные научные достижения. Сейчас находят отклик лишь немногие открытия науки, которые обнаруживают прямую связь с проблемами человеческого бытия.

Далее, инфляционная космология - чрезвычайно сложная теория, не очень понятная даже специалистам из соседних областей физики, а тем более для неспециалистов, и уже в силу только этого одного находящаяся вне сферы этих интересов.

Наконец, идея единственной и конечной во времени Вселенной пустила в культуре слишком глубокие корни, оказала на нее слишком сильное влияние, чтобы с легкостью уступить место теории, явно напоминающей давно отвергнутые космологические образцы.

Тем не менее, прогресс космологии продолжается и ближайшие годы, вероятно, приведут к более уверенным оценкам теории раздувающейся Вселенной.

Литература

1. Линде А.Д. Физика элементарных частиц и инфляционная космология. М., 1990.

2. Казютинский В.В. Понятие «Вселенная» // Бесконечность и Вселенная. М., 1969.

3. Казютинский В.В. Идея Вселенной // Философия и мировоззренческие проблемы современной науки. М., 1981.

Сразу после зарождения Вселенная расширялась невероятно быстро.

С 30-х годов XX века астрофизики уже знали, что, согласно закону Хаббла , Вселенная расширяется, а значит, она имела свое начало в определенный момент в прошлом. Задача астрофизиков, таким образом, внешне выглядела простой: отследить все стадии хаббловского расширения в обратной хронологии, применяя на каждой стадии соответствующие физические законы, и, пройдя этот путь до конца — точнее, до самого начала, — понять, как именно всё происходило.

В конце 1970-х годов, однако, оставались нерешенными несколько фундаментальных проблем, связанных с ранней Вселенной, а именно:

  • Проблема антивещества . Согласно законам физики, вещество и антивещество имеют равное право на существование во Вселенной (см. Античастицы), однако Вселенная практически полностью состоит из вещества. Почему так произошло?
  • Проблема горизонта. По фоновому космическому излучению (см. Большой взрыв) мы можем определить, что температура Вселенной везде примерно одинакова, однако отдельные ее части (скопления галактик) не могли находиться в контакте (как принято говорить, они были за пределами горизонта друг друга). Как же получилось, что между ними установилось тепловое равновесие?
  • Проблема распрямления пространства. Вселенная, судя по всему, обладает именно той массой и энергией, которые необходимы для того, чтобы замедлить и остановить хаббловское расширение. Почему из всех возможных масс Вселенная имеет именно такую?

Ключом к решению этих проблем послужила идея, что сразу после своего рождения Вселенная была очень плотной и очень горячей. Всё вещество в ней представляло собой раскаленную массу кварков и лептонов (см. Стандартная модель), у которых не было никакой возможности объединиться в атомы. Действующим в современной Вселенной различным силам (таким, как электромагнитные и гравитационные силы) тогда соответствовало единое поле силового взаимодействия (см. Универсальные теории). Но когда Вселенная расширилась и остыла, гипотетическое единое поле распалось на несколько сил (см. Ранняя Вселенная).

В 1981 году американский физик Алан Гут осознал, что выделение сильных взаимодействий из единого поля, случившееся примерно через 10 -35 секунды после рождения Вселенной (только задумайтесь — это 34 нуля и единица после запятой!), стало поворотным моментом в ее развитии. Произошел фазовый переход вещества из одного состояния в другое в масштабах Вселенной — явление, подобное превращению воды в лед. И как при замерзании воды ее беспорядочно движущиеся молекулы вдруг «схватываются» и образуют строгую кристаллическую структуру, так под влиянием выделившихся сильных взаимодействий произошла мгновенная перестройка, своеобразная «кристаллизация» вещества во Вселенной.

Кто видел, как лопаются водопроводные трубы или трубки автомобильного радиатора на сильном морозе, стоит только воде в них превратиться в лед, тот на собственном опыте знает, что вода при замерзании расширяется. Алану Гуту удалось показать, что при разделении сильных и слабых взаимодействий во Вселенной произошло нечто подобное — скачкообразное расширение. Это расширение, которое называется инфляционным , во много раз быстрее обычного хаббловского расширения. Примерно за 10 -32 секунды Вселенная расширилась на 50 порядков — была меньше протона, а стала размером с грейпфрут (для сравнения: вода при замерзании расширяется всего на 10%). И это стремительное инфляционное расширение Вселенной снимает две из трех вышеназванных проблем, непосредственно объясняя их.

Решение проблемы распрямления пространства нагляднее всего демонстрирует следующий пример: представьте координатную сетку, нарисованную на тонкой эластичной карте, которую затем смяли как попало. Если теперь взять и сильно встряхнуть эту смятую в комок эластичную карту, она снова примет плоский вид, а координатные линии на ней восстановятся, независимо от того, насколько сильно мы деформировали ее, когда скомкали. Аналогичным образом, не важно, насколько искривленным было пространство Вселенной на момент начала ее инфляционного расширения, главное — по завершении этого расширения пространство оказалось полностью распрямленным. А поскольку из теории относительности мы знаем, что кривизна пространства зависит от количества материи и энергии в нем, становится понятно, почему во Вселенной находится ровно столько материи, сколько необходимо, чтобы уравновесить хаббловское расширение.

Объясняет инфляционная модель и проблему горизонта , хотя не так прямо. Из теории излучения черного тела мы знаем, что излучение, испускаемое телом, зависит от его температуры. Таким образом, по спектрам излучения удаленных участков Вселенной мы можем определить их температуру. Такие измерения дали ошеломляющие результаты: оказалось, что в любой наблюдаемой точке Вселенной температура (с погрешностью измерения до четырех знаков после запятой) одна и та же. Если исходить из модели обычного хаббловского расширения, то вещество сразу же после Большого взрыва должно было разлететься слишком далеко, чтобы температуры могли уравняться. Согласно же инфляционной модели, вещество Вселенной до момента t = 10 -35 секунды оставалось гораздо более компактным, чем при хаббловском расширении. Этого чрезвычайно краткого периода было вполне достаточно, чтобы установилось термическое равновесие, которое не было нарушено на стадии инфляционного расширения и сохранилось до сих пор.

Американский физик, специалист в области элементарных частиц и космологии. Родился в Нью-Брюнсвике, штат Нью-Джерси. Докторскую степень получил в Массачусетском технологическом институте, куда в 1986 году и вернулся, став профессором физики. Свою теорию инфляционного расширения Вселенной Гут разработал еще в Стэнфордском университете, занимаясь теорией элементарных частиц . Известен его отзыв о Вселенной как о «бескрайней скатерти-самобранке».

Узнав о теории Большого взрыва, я задал себе вопрос, откуда же взялось то, что взорвалось?
Вопрос о происхождении Вселенной со всеми ее известными и пока неведомыми свойствами испокон веков волнует человека. Но только в ХХ веке, после обнаружения космологического расширения, вопрос об эволюции Вселенной стал понемногу прояснятся. Последние научные данные позволили сделать вывод, что наша Вселенная родилась 15 миллионов лет назад в результате Большого взрыва. Но что именно взорвалось в тот момент и что, собственно, существовало до Большого взрыва, по-прежнему оставалось загадкой. Созданная в ХХ веке инфляционная теория появления нашего мир позволила существенно продвинутся в разрешении этих вопросов, общая картина первых мгновений Вселенной сегодня уже неплохо прорисована, хотя многие проблемы еще ждут своего часа.
До начала прошлого века было всего два взгляда на происхождение нашей Вселенной. Ученые полагали, что она вечна и неизменна, а богословы говорили, что Мир сотворен и у него будет конец. Двадцатый век, разрушив очень многое из того, что было создано в предыдущие тысячелетия, сумел дать свои ответы на большинство вопросов, занимавших умы ученых прошлого. И быть может, одним из величайших достижений ушедшего века является прояснение вопроса о том, как возникла Вселенная, в которой мы живем, и какие существуют гипотезы по поводу ее будущего. Простой астрономический факт - расширение нашей Вселенной - привел к полному пересмотру всех космогонических концепций и разработке новой физики - физики возникающих и исчезающих миров. Всего 70 лет назад Эдвин Хаббл обнаружил, что свет от более далеких галактик «краснее» света от более близких. Причем скорость разбегания оказалась пропорциональна расстоянию от Земли (закон расширения Хаббла). Обнаружить это удалось благодаря эффекту Доплера (зависимости длины волны света от скорости источника света). Поскольку более далекие галактики кажутся более «красными», то предположили, что и удаляются они с большей скоростью. Кстати, разбегаются не звезды и даже не отдельные галактики, а скопления галактик. Ближайшие от нас звезды и галактики связаны друг с другом гравитационными силами и образуют устойчивые структуры. Причем в каком направлении ни посмотри, скопления галактик разбегаются от Земли с одинаковой скоростью, и может показаться, что наша Галактика является центром Вселенной, однако это не так. Где бы ни находился наблюдатель, он будет везде видеть все ту же картину - все галактики разбегаются от него. Но такой разлет вещества обязан иметь начало. Значит, все галактики должны были родиться в одной точке. Расчеты показывают, что произошло это примерно 15 млрд. лет назад. В момент такого взрыва температура была очень большой, и должно было появиться очень много квантов света. Конечно, со временем все остывает, а кванты разлетаются по возникающему пространству, но отзвуки Большого взрыва должны были сохраниться до наших дней. Первое подтверждение факта взрыва пришло в 1964 году, когда американские радиоастрономы Р. Вильсон и А. Пензиас обнаружили реликтовое электромагнитное излучение с температурой около 3° по шкале Кельвина (–270°С). Именно это открытие, неожиданное для ученых, убедило их в том, что Большой взрыв действительно имел место и поначалу Вселенная была очень горячей. Теория Большого взрыва позволила объяснить множество проблем, стоявших перед космологией. Но, к сожалению, а может, и к счастью, она же поставила и ряд новых вопросов. В частности: Что было до Большого взрыва? Почему наше пространство имеет нулевую кривизну и верна геометрия Евклида, которую изучают в школе? Если теория Большого взрыва справедлива, то отчего нынешние размеры нашей Вселенной гораздо больше предсказываемого теорией 1 сантиметра? Почему Вселенная на удивление однородна, в то время как при любом взрыве вещество разлетается в разные стороны крайне неравномерно? Что привело к начальному нагреву Вселенной до невообразимой температуры более 10 13 К?
Все это указывало на то, что теория Большого взрыва неполна. Долгое время казалось, что продвинуться далее уже невозможно. Только четверть века назад благодаря работам российских физиков Э. Глинера и А. Старобинского, а также американца А.Гуса было описано новое явление - сверхбыстрое инфляционное расширение Вселенной. Описание этого явления основывается на хорошо изученных разделах теоретической физики - общей теории относительности Эйнштейна и квантовой теории поля. Сегодня считается общепринятым, что именно такой период, получивший название «инфляция», предшествовал Большому взрыву.
При попытке дать представление о сущности начального периода жизни Вселенной приходится оперировать такими сверхмалыми и сверхбольшими числами, что наше воображение с трудом их воспринимает. Попробуем воспользоваться некоей аналогией, чтобы понять суть процесса инфляции.
Представим себе покрытый снегом горный склон, в который вкраплены разнородные мелкие предметы - камешки, ветки и кусочки льда. Кто-то, находящийся на вершине этого склона, сделал небольшой снежок и пустил его катиться с горы. Двигаясь вниз, снежок увеличивается в размерах, так как на него налипают новые слои снега со всеми включениями. И чем больше размер снежка, тем быстрее он будет увеличиваться. Очень скоро из маленького снежка он превратится в огромный ком. Если склон заканчивается пропастью, то он полетит в нее со все более увеличивающейся скоростью. Достигнув дна, ком ударится о дно пропасти и его составные части разлетятся во все стороны (кстати, часть кинетической энергии кома при этом пойдет на нагрев окружающей среды и разлетающегося снега).
Теперь опишем основные положения теории, используя приведенную аналогию. Прежде всего физикам пришлось ввести гипотетическое поле, которое было названо «инфлатонным» (от слова «инфляция»). Это поле заполняло собой все пространство (в нашем случае - снег на склоне). Благодаря случайным колебаниям оно принимало разные значения в произвольных пространственных областях и в различные моменты времени. Ничего существенного не происходило, пока случайно не образовалась однородная конфигурация этого поля размером более 10 -33см. Что же касается наблюдаемой нами Вселенной, то она в первые мгновения своей жизни, по-видимому, имела размер 10 -27 см. Предполагается, что на таких масштабах уже справедливы основные законы физики, известные нам сегодня, поэтому можно предсказать дальнейшее поведение системы. Оказывается, что сразу после этого пространственная область, занятая флуктуацией (от лат. fluctuatio - «колебание», случайные отклонения наблюдаемых физических величин от их средних значений), начинает очень быстро увеличиваться в размерах, а инфлатонное поле стремится занять положение, в котором его энергия минимальна (снежный ком покатился). Такое расширение продолжается всего 10 -35 секунды, но этого времени оказывается достаточно для того, чтобы диаметр Вселенной возрос как минимум в 10 27 раз и к окончанию инфляционного периода наша Вселенная приобрела размер примерно 1 см. Инфляция заканчивается, когда инфлатонное поле достигает минимума энергии - дальше падать некуда. При этом накопившаяся кинетическая энергия переходит в энергию рождающихся и разлетающихся частиц, иначе говоря, происходит нагрев Вселенной. Как раз этот момент и называется сегодня Большим взрывом.
Гора, о которой говорилось выше, может иметь очень сложный рельеф-несколько разных минимумов, долины внизу и всякие холмы и кочки. Снежные комья (будущие вселенные) непрерывно рождаются наверху горы за счет флуктуаций поля. Каждый ком может скатиться в любой из минимумов, породив при этом свою вселенную со специфическими параметрами. Причем вселенные могут существенно отличаться друг от друга. Свойства нашей Вселенной удивительнейшим образом приспособлены к тому, чтобы в ней возникла разумная жизнь. Другим вселенным, возможно, повезло меньше.
Еще раз хотелось бы подчеркнуть, что описанный процесс рождения Вселенной «практически из ничего» опирается на строго научные расчеты. Тем не менее у всякого человека, впервые знакомящегося с инфляционным механизмом, описанным выше, возникает немало вопросов.
Сегодня наша Вселенная состоит из большого числа звезд, не говоря уж о скрытой массе. И может показаться, что полная энергия и масса Вселенной огромны. И совершенно непонятно, как это все могло поместиться в первоначальном объеме 10-99см3. Однако во Вселенной существует не только материя, но и гравитационное поле. Известно, что энергия последнего отрицательна и, как оказалось, в нашей Вселенной энергия гравитации в точности компенсирует энергию, заключенную в частицах, планетах, звездах и прочих массивных объектах. Таким образом, закон сохранения энергии прекрасно выполняется, и суммарная энергия и масса нашей Вселенной практически равны нулю. Именно это обстоятельство отчасти объясняет, почему зарождающаяся Вселенная тут же после появления не превратилась в огромную черную дыру. Ее суммарная масса была совершенно микроскопична, и вначале просто нечему было коллапсировать. И только на более поздних стадиях развития появились локальные сгустки материи, способные создавать вблизи себя такие гравитационные поля, из которых не может вырваться даже свет. Соответственно, и частиц, из которых «сделаны» звезды, на начальной стадии развития просто не существовало. Элементарные частицы начали рождаться в тот период развития Вселенной, когда инфлатонное поле достигло минимума потенциальной энергии и начался Большой взрыв.
Область, занятая инфлатонным полем, разрасталась со скоростью, существенно большей скорости света, однако это нисколько не противоречит теории относительности Эйнштейна. Быстрее света не могут двигаться лишь материальные тела, а в данном случае двигалась воображаемая, нематериальная граница той области, где рождалась Вселенная (примером сверхсветового движения является перемещение светового пятна по поверхности Луны при быстром вращении освещающего ее лазера).
Причем окружающая среда совсем не сопротивлялась расширению области пространства, охваченного все более быстро разрастающимся инфлатонным полем, поскольку ее как бы не существует для возникающего Мира. Общая теория относительности утверждает, что физическая картина, которую видит наблюдатель, зависит от того, где он находится и как движется. Так вот, описанная выше картина справедлива для «наблюдателя», находящегося внутри этой области. Причем этот наблюдатель никогда не узнает, что происходит вне той области пространства, где он находится. Другой «наблюдатель», смотрящий на эту область снаружи, никакого расширения вовсе не обнаружит. В лучшем случае он увидит лишь небольшую искорку, которая по его часам исчезнет почти мгновенно. Даже самое изощренное воображение отказывается воспринимать такую картину. И все-таки она, по-видимому, верна. По крайней мере, так считают современные ученые, черпая уверенность в уже открытых законах Природы, правильность которых многократно проверена.
Надо сказать, что это инфлатонное поле и сейчас продолжает существовать и флуктуировать. Но только мы, внутренние наблюдатели, не в состоянии этого увидеть - ведь для нас маленькая область превратилась в колоссальную Вселенную, границ которой не может достигнуть даже свет.
Итак, сразу после окончания инфляции гипотетический внутренний наблюдатель увидел бы Вселенную, заполненную энергией в виде материальных частиц и фотонов. Если всю энергию, которую мог бы измерить внутренний наблюдатель, перевести в массу частиц, то мы получим примерно 10 80 кг. Расстояния между частицами быстро увеличиваются из-за всеобщего расширения. Гравитационные силы притяжения между частицами уменьшают их скорость, поэтому расширение Вселенной после завершения инфляционного периода постепенно замедляется.
Сразу после рождения Вселенная продолжала расти и охлаждаться. При этом охлаждение происходило в том числе и благодаря банальному расширению пространства. Электромагнитное излучение характеризуется длиной волны, которую можно связать с температурой - чем больше средняя длина волны излучения, тем меньше температура. Но если пространство расширяется, то будут увеличиваться и расстояние между двумя «горбами» волны, и, следовательно, ее длина. Значит, в расширяющемся пространстве и температура излучения должна уменьшаться. Что и подтверждает крайне низкая температура современного реликтового излучения.
По мере расширения меняется и состав материи, наполняющей наш мир. Кварки объединяются в протоны и нейтроны, и Вселенная оказывается заполненной уже знакомыми нам элементарными частицами - протонами, нейтронами, электронами, нейтрино и фотонами. Присутствуют также и античастицы. Свойства частиц и античастиц практически идентичны. Казалось бы, и количество их должно быть одинаковым сразу после инфляции. Но тогда все частицы и античастицы взаимно уничтожились бы и строительного материала для галактик и нас самих не осталось бы. И здесь нам опять повезло. Природа позаботилась о том, чтобы частиц было немного больше, чем античастиц. Именно благодаря этой небольшой разнице и существует наш мир. А реликтовое излучение - это как раз последствие аннигиляции (то есть взаимоуничтожения) частиц и античастиц. Конечно, на начальном этапе энергия излучения была очень велика, но благодаря расширению пространства и как следствие - охлаждению излучения эта энергия быстро убывала. Сейчас энергия реликтового излучения примерно в десять тысяч раз (104 раз) меньше энергии, заключенной в массивных элементарных частицах.
Постепенно температура Вселенной упала до 1010 К. К этому моменту возраст Вселенной составлял примерно 1 минуту. Только теперь протоны и нейтроны смогли объединяться в ядра дейтерия, трития и гелия. Это происходило благодаря ядерным реакциям, которые люди уже хорошо изучили, взрывая термоядерные бомбы и эксплуатируя атомные реакторы на Земле. Поэтому можно уверенно предсказывать, сколько и каких элементов может появиться в таком ядерном котле. Оказалось, что наблюдаемое сейчас обилие легких элементов хорошо согласуется с расчетами. Это означает, что известные нам физические законы одинаковы во всей наблюдаемой части Вселенной и были таковыми уже в первые секунды после появления нашего мира. Причем около 98% существующего в природе гелия образовалось именно в первые секунды после Большого взрыва.
Сразу после рождения Вселенная проходила инфляционный период развития - все расстояния стремительно увеличивались (с точки зрения внутреннего наблюдателя). Однако плотность энергии в разных точках пространства не может быть в точности одинаковой - какие-то неоднородности всегда присутствуют. Предположим, что в какой-то области энергия немного больше, чем в соседних. Но раз все размеры быстро растут, то и размер этой области тоже должен расти. После окончания инфляционного периода эта разросшаяся область будет иметь чуть больше частиц, чем окружающее ее пространство, да и ее температура будет немного выше.
Поняв неизбежность возникновения таких областей, сторонники инфляционной теории обратились к экспериментаторам: «необходимо обнаружить флуктуации температуры…» - констатировали они. И в 1992 году это пожелание было выполнено. Практически одновременно российский спутник «Реликт-1» и американский «COBE» обнаружили требуемые флуктуации температуры реликтового излучения. Как уже говорилось, современная Вселенная имеет температуру 2,7 К, а найденные учеными отклонения температуры от среднего составляли примерно 0,00003 К. Неудивительно, что такие отклонения трудно было обнаружить раньше. Так инфляционная теория получила еще одно подтверждение.
С открытием колебаний температуры появилась еще одна захватывающая возможность - объяснить принцип формирования галактики. Ведь чтобы гравитационные силы сжимали материю, необходим исходный зародыш - область с повышенной плотностью. Если материя распределена в пространстве равномерно, то гравитация, подобно Буриданову ослу, не знает, в каком направлении ей действовать. Но как раз области с избытком энергии и порождает инфляция. Теперь гравитационные силы знают, на что воздействовать, а именно, на более плотные области, созданные во время инфляционного периода. Под действием гравитации эти изначально чуть-чуть более плотные области будут сжиматься и именно из них в будущем образуются звезды и галактики.
Современный нам момент эволюции Вселенной крайне удачно приспособлен для жизни, и длиться он будет еще много миллиардов лет. Звезды будут рождаться и умирать, галактики вращаться и сталкиваться, а скопления галактик - улетать все дальше друг от друга. Поэтому времени для самосовершенствования у человечества предостаточно. Правда, само понятие «сейчас» для такой огромной Вселенной, как наша, плохо определено. Так, например, наблюдаемая астрономами жизнь квазаров, удаленных от Земли на 10-14 млрд. световых лет, отстоит от нашего «сейчас» как раз на те самые 10-14 млрд. лет. И чем дальше в глубь Вселенной мы заглядываем с помощью различных телескопов, тем более ранний период ее развития мы наблюдаем.
Сегодня ученые в состоянии объяснить большинство свойств нашей Вселенной, начиная с момента в 10 -42 секунды и до настоящего времени и даже далее. Они могут также проследить образование галактик и довольно уверенно предсказать будущее Вселенной. Тем не менее ряд «мелких» непонятностей еще остается. Это прежде всего - сущность скрытой массы (темной материи) и темной энергии. Кроме того, существует много моделей, объясняющих, почему наша Вселенная содержит гораздо больше частиц, чем античастиц, и хотелось бы определиться в конце концов с выбором одной правильной модели.
Как учит нас история науки, обычно именно «мелкие недоделки» и открывают дальнейшие пути развития, так что будущим поколениям ученых наверняка будет чем заняться. Кроме того, более глубокие вопросы тоже уже стоят на повестке дня физиков и математиков. Почему наше пространство трехмерно? Почему все константы в природе словно «подогнаны» так, чтобы возникла разумная жизнь? И что же такое гравитация? Ученые уже пытаются ответить и на эти вопросы.
Ну и конечно, оставим место для неожиданностей. Не надо забывать, что такие основополагающие открытия, как расширение Вселенной, наличие реликтовых фотонов и энергия вакуума, были сделаны, можно сказать, случайно и не ожидались ученым сообществом.

Согласно теории космической инфляции, ранняя Вселенная начала расширятся экспоненциально, сразу после Большого Взрыва. Космологи выдвинули данную теорию в 1981 году, для объяснения нескольких важных проблем в космологии.

Одна из таких проблем – это проблема горизонта. Предположите на минуту, что Вселенная не расширяется. А теперь представьте, что в очень ранней Вселенной был выпущен фотон, который свободно летел, до момента столкновения с Северным полюсом Земли. А теперь представьте, что в то же время был выпущен фотон, на этот раз в направлении противоположном первому. Он должен был бы удариться в Южный полюс Земли.

Могут ли два данных фотона, обменяться какой-либо информацией, происходившей во время их создания? Очевидно, что нет. Потому, что время, необходимое для передачи данных от одного фотона – другому, в этом случае составит два возраста Вселенной. Фотоны обособлены. Они находятся за пределами горизонта друг – друга.

Тем не менее, наблюдения показывают, что фотоны, приходящие с противоположных направлений, каким-то образом взаимодействовали. Так как фоновая микроволновая космическая радиация имеет практически идентичную температуру во всех точках нашего неба.

Эта проблема может быть решена, принятием предположения, что некоторое время после Большого Взрыва, Вселенная расширялась экспоненциально. До этого момента, Вселенная могла иметь казуальный контакт и уравновешенную общую температуру. Регионы, находящиеся сегодня на большом расстоянии друг от друга, в ранней Вселенной находились очень близко. Это объясняет, почему фотоны, приходящие с разных направлений, практически всегда имеют идентичную температуру.

Простая модель, позволяющая понять расширение Вселенной, — похожа на раздувание воздушного шарика. Наблюдателю, находящемуся с любой стороны от шарика, может казаться, что он находится в центре расширения, так как все соседние точки становятся дальше.
Когда шарик надувается, расстояния между объектами на поверхности шарика около е60 = 1026. Это цифра с двадцатью шестью нолями. Она превосходит нормальные политико-экономические споры о инфляции.

Квантовые флуктуации

Давайте представим, что до того как шарик начали надувать, на нем была написана надпись. Настолько маленькая, что ее нельзя было прочесть. Надувание шарика, сделало послание читаемым. Это значит, что инфляция выступает в роле микроскопа, который показывает, что было написано на первоначальном шарике.

Похожим образом, мы можем рассмотреть квантовые флуктуации, которые были образованы в начале инфляции. Расширение космоса во время эпохи инфляции выступает в роли огромного микроскопа, который показывает квантовые флуктуации. Это оставляет отпечатки в фоновом микроволновом космическом излучении (более горячие и холодные регионы) и в расширении галактик.

При использовании классической физики, эволюция инфляционной Вселенной является однородной – каждая точка пространства развивается идентично. Однако, квантовая физика вносит некоторую неопределенность в начальные условия, для различных точек пространства.

Эти вариации действуют, как семена при формировании структуры. После периода инфляции, когда колебания усилятся, распределение материи будет немного отличаться, от места к месту во Вселенной. Сила притяжения формирует более плотные области, что приводит к образованию галактик.