Функции и процесс работы котельной автоматики.

В современном мире такое явление как автоматизация котельных широко распространено. Тяжело представить возведение котельных без внедрения автоматических систем. Практически все котлы включают в свою базу стандартную автоматику.

Удобны средства, помогающие в управлении горелкой, в поддержании заданной температуры и получении извещений о безопасности теплоносителя. Автоматика котлов включает в себя большое количество приборов. Много компаний предлагают самые разнообразные средства котельной автоматики. Остаётся их только технически правильно подобрать.

Средства котельной автоматики

Приборы контроля розжига и управления пламенем (например, производства ОАО МЗТА: Ф34, ФДЧ, ФСП 1, ФЭСП 2) − это средство, контролирующее уровень пламя в котле, обеспечивает безопасную работу автоматического котла, путём отключения подачи топлива при пропадании факела. Данное устройство гарантирует защиту котла от возможного взрыва.

Тягомеры, напоромеры и тягонапоромеры представляют собой специализированные датчики, измеряющие тягу в топке котла. Благодаря этим приборам происходит регулировка подачи топлива в котёл и обеспечивается оптимальный режим работы теплоносителя. Данные приборы обеспечивают также безопасность котла.

Для создания локальных систем автоматизации котельных часто используют графические панели управления, которые очень удобны в использовании.

КЭ − контрольные электроды − средство, служащее в работе чувствительным элементом в схеме защиты котла и сигнализации комплекта автоматики котла в случае угасания газового факела. Контрольные электроды в системе автоматизации котельных находят широкое применение.

Средства комплексной автоматизации котельных, такие как шкафы управления котлами, представляют собой оптимальные решения для общекотельного оборудования и автоматизации котлов. Мы рекомендуем присмотреться к автоматике управления котлами типов ДКВР и ДЕ.

Эффективное снижение затрат на отопление благодаря автоматизации котельных

Строительство новых, современных, а также реконструкция старовозведённых котельных существенно уменьшает расходы на горючее и топливо и обслуживание благодаря внедрению систем автоматизации. Помимо экономии топлива и расходов на обслуживание котлов, модернизация котельных имеет массу преимуществ. Например, увеличение коэффициента полезного действия (КПД). Автоматизация котельных повышает эффективность регулирования параметров оборудования. Современная модернизация снижает влияние человеческого фактора на эффективность управления теплоносителя. Также автоматизация котлов обеспечивает оперативное и своевременное выявление неисправностей в системе.

Программный комплекс MasterSCADA вертикально интегрирован и объектно ориентирован. Это наиболее перспективное и удобное решение задач автоматизации котлов и котельных. Большой набор ОРС серверов обеспечивает связь с контролёрами, которые не поддерживают вертикальную интеграцию. Kepware − один из мировых лидеров в области производства ОРС серверов.

Различные компании предлагают выполнение комплексных работ по внедрению систем управления любых объектов жилищно-коммунального хозяйства. С этим проблем не должно быть.

Котёл - это устройство в виде закрытого сосуда, в котором теплоноситель (чаще всего вода или пар) нагревается до определённой температуры. Котёл предназначен для снабжения теплом и горячей водой.

Технические параметры котла

Все котлы отличаются техническими параметрами. К ним относят:

  • Коэффициент полезного действия.
  • Используемый теплоноситель.
  • Рабочий диапазон температуры теплоносителя.
  • Номинальная мощность.
  • Рабочее давление теплоносителя.
  • Гидравлическое сопротивление котла.

Автоматика котла - в чём суть

Автоматика котла - это система его управления. Её основная задача - поддерживать необходимые параметры теплоносителя на выходе из котла.

Кроме того, автоматика котла выполняет следующие функции:

  • выдаёт сигналы управления на трансформатор зажигания, на электромагнитный клапан и на вентилятор;
  • в случае неудачного розжига автоматика для котла отопления запретит подачу газа. Также запрет подачи топлива будет иметь место в случае недостаточного питания воздуха или если топливо будет плохого качества;
  • во время возникновения функциональных неполадок устройства автоматика подаст сигнал « Тревога»;
  • если теплоноситель в отопительной системе не будет соответствовать норме, то розжиг также будет запрещён.

Автоматика газовых котлов предполагает наличие таких датчиков:

  • Датчик горения.
  • Датчик уровня воды.
  • Датчик продувки.
  • Датчик температуры теплоносителя.

Кроме того, автоматика котла должна обладать следующими параметрами:

  • микроконтроллерное управление;
  • электронный жидкокриталический дисплей;
  • световая сигнализация (лампочка, диод) с выводом на дисплей кода ошибки в случае неисправности горелки или других устройств (датчиков, сервоприводов смесителей, насосов);
  • возможность одновременного управления температурой на выходе из котла, температурой теплоносителя в контуре отопления и температурой горячей воды;
  • включения защитных функций в случае резкого понижения температуры теплоносителя на входе в котел;
  • управление насосами;
  • управление трехходовыми смесителями, если встроена функция погодозависимого управления.

Принцип работы автоматики котла

Итак, принцип работы автоматики котла заключается в следующем:

  • Все элементы конструкции помещены в один корпус, к которому подведены трубопроводы газа. Кроме этого, к прибору присоединена капиллярная трубка от датчиков тяги и температуры (термопары), газопровод питания запальника и кабель от пъезоэлемента.
  • Затем поворачиваем шайбу до необходимого деления и тем самым открываем доступ топлива к горелке, что самостоятельно поджигается от запальника. Поскольку автоматика газовых котлов призвана поддерживать установленную температуру теплоносителя, вмешательство человека больше не требуется. Здесь принцип такой: среда в капиллярной системе при нагревании расширяется и воздействует на пружинный клапан, закрывая его по достижении высокой температуры.
  • Горелка затухает до тех пор, пока термопара не остынет и подача газа не возобновится.

Принцип работы автоматики газового котла прост. Стоит учесть, что как зарубежные, так и российские производители используют в своих изделиях одинаковый принцип работы, хотя конструктивно приборы могут отличаться. Наиболее простой и очень надёжной автоматикой котла считаются автоматические газовые клапаны итальянских производителей.


Автоматика парового котла

Автоматизация котлов парового типа ориентирована на наличие такой системы, как преобразователь уровня воды.

Функции автоматики парового котла:

  • регулировка уровня воды в устройстве;
  • воспроизведение сигнала, который отключит горелку, в случае если вода будет находиться ниже или выше, чем уровень допустимой нормы;
  • клапан для продувки непрерывного типа;
  • прибор электропроводимости;
  • клапан для быстрой продувки;
  • система, которая посредством программирования может управлять продувкой.

Внутри расположен отсекающий электромагнитный клапан, чье нормальное состояние - « закрыт», а также регулятор давления газа и пружинный клапан. Любой автоматический газовый котел, снабженный комбинированным газовым клапаном, запускается в работу ручным способом. Изначально топливный тракт перекрыт электромагнитным клапаном. Удерживая шайбу, нажимаем кнопку пъезоэлектрического устройства и поджигаем запальник, нагревающий термочувствительный элемент в течении 30 секунд. Тот вырабатывает напряжение, удерживающее электроклапан в открытом состоянии, после чего регулировочную шайбу можно отпустить.

Подобные системы осуществляют как контроль работы устройства, так и уровень безопасности. Стоит отметить, что работа котла автоматически прекращается, если:

  • пропала тяга в дымоходе или же просто стала недостаточной;
  • потухла основная горелка или запальник;
  • давление теплоносителя упало ниже допустимого значения;
  • давление газа упало ниже допустимого значения;
  • газоанализаторы зафиксировали утечку дымовых газов или горючего.

Котёл с системой автоматики снабжён системами защит, которые среагируют следующий образом:

  • при повышении давления теплоносителя в системе отопления сработает предохранительный клапан;
  • при кратковременном понижении давления газа произойдёт автоматическое возобновление горения, если установлен электрический розжиг;
  • если в систему отопления попадёт воздух, то он будет автоматически стравлен через воздухоотводчик;
  • если установить источник бесперебойного питания для газового котла, то агрегат будет защищён от скачков напряжения в электросети, и некоторое время сможет работать от аккумуляторов.

Современные технологии в области отопительных установок позволяют человеку производить минимальный контроль над процессом их работы. Котельная автоматика – это система управления котлом, которая регулирует режим его работы. А именно температурный режим, теплоотдачу и т.д. Их схемы могут быть разными, но абсолютно все такие устройства являются экономными и удобными в использовании.

Рис. 1

Функции установки

Автоматика котельных установок выполняет такие задачи:

  • Управляет процессом включения и выключения котлов в системе оборудования (пуск/остановка), авторозжиг;
  • Подключение резервного оборудования (если оно есть в схеме) – если основные котлы, по какой-то причине остановились;
  • Регулировка характеристик теплоносителя;
  • Регулировка мощности оборудования (котлов в схеме);
  • Защитная функция, которая срабатывает при выходе котлов из строя;
  • Энергосбережение при работе котельной;
  • Оповещает об аварийной ситуации, путем включения сигнализации (могут быть разные схемы: световые, звуковые);
  • Контролирует показания индикаторов и датчиков, определяющих температуру (воздуха и теплоносителя), давление воды и насосов;
  • Предотвращение закипания теплоносителя;
  • Предотвращение замерзания системы.

Автоматическое оборудование минимизирует роль человека в управлении отопительной котельной. Есть системы, которые при возникновении аварийной ситуации отправляют СМС – оповещение оператору данного оборудования.

Все современные схемы отопительных установок оснащены автоматическим управлением. Недорогие из них имеют простую систему автоматики. Это подразумевает ручную регулировку, то есть запрограммированное включение/выключение котла. А дорогие установки с самой современной автоматической системой управления можно программировать на снижение температуры в определенное время суток, подачу горячей воды установленной температуры и т.д.

Безопасность автоматической установки

Одной из основных функций автоматических установок является обеспечение безопасности пользователей и котельного оборудования.

Сигнализация, которая означает возникновение непредвиденной ситуации в установке, оповещает об:

  • Утечке газа или другого топлива;
  • Увеличении или снижении давления (газа, воды, пара) в системе;
  • Авариях котлов;
  • Выброса угарного газа;
  • Нарушении пожарной безопасности.

Схема котельной автоматики устроена таким образом, чтобы оператор мог управлять ею дистанционно. При этом он может просматривать дневник неисправностей, благодаря которому работники сервисного центра с легкостью выявят все сбои в системе. Также есть возможность управлять установкой с помощью телефона. Для этого используется специальный код, при наборе которого автоматика переходит на другой режим работы (предварительно установленный).

Конструкция (схема) установки

Котельную автоматику разделяют на несколько уровней. К ним можно отнести:

  • І уровень– в комплектации есть термостаты и регуляторы, которые поддерживают температуру воздуха, а также возможность отопительного графика.
  • ІІ уровень– ко всем функциям первой категории добавляются еще регуляторы мощности оборудования, а также ее контролеры и возможность каскадного подключения и его регуляторы.
  • ІІІ уровень – имеет пульт управления, который выводит на экран все показания датчиков и регуляторов.
Рис. 2

Устанавливают автоматическую станцию котельной в специальном металлическом шкафу.

В эту схему входят:

  • Контроллеры, которые программируются;
  • Вторичные источники питания;
  • Бесперебойное питание схемы;
  • Концентратор;
  • Операторская панель;
  • Коммутационная аппаратура;
  • Компьютер.

Рис. 3

Процесс работы

Котельная автоматика может управлять котлами с каскадным подключением. При функционировании котельной с каскадной схемой идет слабая нагрузка и увеличивается срок эксплуатации установки. Так как автоматическая система управления включает котлы и насосы попеременно. При всем эта система отопления очень экономна и обеспечивает нужную температуру в помещении.

Зависимо от сезона установка автоматического управления включает нужное количество котлов. Автоматика может без вмешательства оператора определить оптимальную температуру воздуха и режим отопления. Установка оснащена клапанами, работу которых регулирует автоматика. Например, в схеме есть смесительный и клапан сервопривода. Эти клапаны работают в заданном режиме, при этом гарантируется экономия топлива и энергии, а также комфортная температура воздуха.

Если такая котельная автоматика установлена на производстве, то есть возможность, для осуществления экономии, устанавливать определенное расписание на отопление и подачу горячей воды. В выходные и праздничные дни, а также в ночное время температуру воздуха можно снижать, а горячая вода может и вовсе отсутствовать. Такие меры экономят до 40% топлива.

Современные микропроцессорные установки управления имеют более сложные схемы. Благодаря им можно устанавливать разную температуру в разных частях отопительной системы. То есть в разных контурах, например, радиаторный контур, контур теплых полов и т.д. Некоторые современные установки могут управлять одновременно 15 независимыми контурами. И при этом еще и регулировать режим под погодные условия.

Благодаря новым автоматическим установкам (схемам) котельные стают более экологическими. Это происходит благодаря сниженному количеству употребляемого топлива. И конечно нужно отметить, что в схеме данного оборудования есть дополнительные мощные фильтры.

Разработка проекта автоматизации котельных выполняется на основании задания, составленного при выполнении теплотехнической части проекта. Общими задачами контроля и управления работой любой энергетической установки является обеспечение:

Выработки в каждый момент необходимого количества теплоты при определенных его параметрах давлении и температуре;

Экономичности сжигания топлива, рационального использования электроэнергии для собственных нужд установки и сведения потерь теплоты к минимуму;

Надежности и безопасности, т.е установления и сохранения нормальных условий работы каждого агрегата, исключающих возможность неполадок и аварий как собственно агрегата, так и вспомогательного оборудования.

Исходя из перечисленных выше задач и указаний, все контрольные приборы можно разделить на пять групп, предназначенных для измерения:

1. Расхода воды, топлива, воздуха и дымовых газов.

2. Давлений воды, газа воздуха, измерения разрежения в элементах и газоходах котла и вспомогательного оборудования.

3. Температур воды, воздуха и дымовых газов

4. Уровня воды в баках, деаэраторах и других емкостей.

5. Качественного состава газов и воды.

Вторичные приборы могут быть указывающими, регистрирующими и суммирующими. Для уменьшения числа вторичных приборов на тепловом щите часть величин собирают на один прибор с помощью переключателей; для ответственных величин на вторичном приборе отмечают красной чертой предельно допустимые значения их замеряют непрерывно..

Кроме приборов, выведенных щит управления, часто применяются местная установка контрольно-измерительных приборов: термометров для измерения температур воды; манометров для измерения давления; различных тягомеров и газоанализаторов.

Регулирование процесса горения в котле КВ-ТС-20 выполняется тремя регуляторами: регулятором тепловой нагрузки, регулятором воздуха и регулятором разряжения.

Регулятор тепловой нагрузки получает командный импульс от главного корректирующего регулятора, а также импульсы по расходу воды. Регулятор тепловой нагрузки воздействует на орган, регулирующий подачу топлива в топку.

Регулятор общего воздуха поддерживает отношение « топливо-воздух», получая импульсы по расходу топлива от датчика и по перепаду давления в воздухоподогревателе.

Постоянное разряжение в топке поддерживается с помощью регулятора в топке котла и воздействующего на направляющий аппарат дымососа. Между регулятором воздуха и регулятором разряжения имеется динамическая связь, задача которой заключается в подаче дополнительного импульса в переходных режимах, что позволяет сохранить правильный тягодутьевой режим в процессе срабатывания регулятора воздуха и разряжения.

Устройство динамической связи обладает направленностью действия, т. е. ведомым регулятором может быть только регулятор разряжения.

Слежение за расходом сетевой и питательной воды устанавливаются регуляторы питания.

Термометр расширения ртутный:

Промышленные ртутные термометры изготавливаются с вложенной шкалой и по форме нижней части с резервуаром бывают прямые типа А и угловые типа Б, изогнутые под углом 90є в сторону, противоположную шкале. При измерении температуры нижняя часть термометров полностью опускается в измеряемую среду, т.е. глубина погружения их является постоянной.

Термометры расширения являются показывающими приборами, располагаемыми по месту измерения. Принцип действия их основан на тепловом расширении жидкости в стеклянном резервуаре в зависимости от измеряемой температуры.

Термоэлектрический термометр:

Для измерения высоких температур с дистанционной передачей показаний применяются термоэлектрические термометры, работа которых основана на принципе термоэлектрического эффекта. Хромель - копелевые термоэлектрические термометры развивают термо - эдс, значительно превышающую термо - эдс других стандартных термоэлектрических термометров. Диапазон применения хромель - копелевых термоэлектрических термометров от - 50є до + 600є С. Диаметр электродов от 0,7 до 3,2 мм.

Трубчато - пружинный манометр:

Наиболее широкое применение для измерения избыточного давления жидкости, газа и пара получили манометры, обладающие простой и надежной конструкцией, наглядностью показаний и небольшими размерами. Существенными достоинствами этих приборов являются также большой диапазон измерений, возможность автоматической записи и дистанционной передачи показаний.

Принцип действия деформационного манометра основан на использовании деформации упругого чувствительного элемента, возникающей под влиянием измеряемого давления.

Весьма распространенным видом деформационных приборов, используемых для определения избыточного давления, являются трубчато - пружинные манометры, играющие исключительно важную роль в технических измерениях. Эти приборы изготавливают с одновитковой трубчатой пружиной, представляющую собой изогнутую по окружности металлическую упругую трубку овального сечения.

Один конец спиральной пружины соединен с шестеренкой, а другой закреплен неподвижно на стойке, поддерживающей передаточный механизм.

Под действием измеряемого давления трубчатая пружина частично раскручивается и тянет за собой поводок, приводящий в движение зубчато - секторный механизм и стрелку манометра, перемещающуюся вдоль шкалы. Манометр имеет равномерную круговую шкалу с центральным углом 270 - 300є.

Автоматический потенциометр:

Основной особенностью потенциометра является то, что в нем развиваемая термоэлектрическим термометром термо - э. д. с. уравновешивается (компенсируется) равным ей по величине, но обратным по знаку напряжением от источника тока, расположенного в приборе, которое затем измеряется с большой точностью.

Автоматический малогабаритный потенциометр типа КСП2 - показывающий и самопишущий прибор с длиной линейной шкалы и шириной диаграммной ленты 160 мм. Основная погрешность показаний прибора ±0,5 и записи ±0,1%.

Вариация показаний не превышает половины основной погрешности. Скорость движения диаграммной ленты может составлять 20, 40, 60, 120, 240 или 600, 1200, 2400 мм/ч.

Потенциометр питается от сети переменного тока напряжением 220 В, частотой 50 Гц. Потребляемая прибором мощность 30 В ·А. Изменение напряжения питания на ±10% номинального не влияет на показания прибора. Допустимое значение температуры окружающего воздуха 5 - 50єС и относительной влажностью 30 - 80%. Габариты потонцеометра 240 х 320 х 450 мм. и масса 17 кг.

Деформационные электрические манометры рекомендуется устанавливать вблизи места отбора давления, закрепляя вертикально ниппелем вниз. Для манометров окружающий воздух может иметь температуру 5 - 60єС и относительную влажность 30 - 95 %. Они должны быть удалены от мощных источников переменных магнитных полей (электродвигателей, трансформаторов и т.д.)

Манометр содержит трубчатую пружину 1, закрепленную в держателе 2 с помощью втулки 3. К свободному концу пружины подвешен на рычаге 4 магнитный плунжер 5, расположенный в сидящем на держателе магнитомодуляционном преобразователе 6. Рядом с последним на откидном кронштейне закреплено усилительное устройство 7.

Прибор заключен в стальной корпус 8 с защитным кожухом 9, приспособленный для утопленного монтажа. Сообщение манометра с измеряемым давлением производится при помощи штуцера держателя, а подключение соединительных проводов посредством коробки зажимов 10. Манометр снабжен корректором нуля 11. Габариты прибора 212 х 240 х 190 мм. и масса 4,5 кг.

Манометры типа МПЕ могут применяться с одним или несколькими вторичными приборами постоянного тока: автоматическими электронными показывающими и самопишущими миллиамперметрами типов КСУ4, КСУ3,

КСУ2, КСУ1, КПУ1 И КВУ1, градуированными в единицах давления, магнитоэлектрическими показывающими и самопишущими миллиамперметрами типов Н340 и Н349,машинами центрального контроля и др. Автоматические электронные миллиамперметры постоянного тока отличаются от соответствующих автоматических потенциометров только включенным параллельно входу калиброванным нагрузочным резистором, падение напряжения на котором от протекающего тока манометра является измеряемой величиной.

Магнитоэлектрические миллиамперметры типов Н340 и Н349 имеют ширину шкалы и диаграммной ленты 100 мм. класс точности прибора 1,5. Диаграммная лента приводится в движение со скоростью 20 - 5400 мм/ч от синхронного микродвигателя, питаемого от сети переменного тока напряжением 127 или 220 В, частотой 50 Гц.

Габариты прибора 160 х 160 х 245 мм. и масса 5 кг.

Регулятор прямого действия:

Примером регулятора прямого действия является регулирующий клапан.

Клапан состоит из чугунного корпуса 1, закрытого снизу фланцевой крышкой 2, которая закрывает отверстие для спуска заполняющей клапан среды и для чистки клапана. В корпус клапана ввернуты седла 3 из нержавеющей стали. На седла садится плунжер 4 . Рабочие поверхности плунжера притерты к седлам 3.Плунжер соединен со штоком 6, который может поднимать и опускать плунжер. Шток ходит в сальниковом устройстве. Сальник уплотняет крышку 7, крепящуюся к корпусу клапана. Для смазки трущихся поверхностей штока в сальниковое устройство подается масло из масленки 5. клапаном управляет мембранно - рычажное устройство, состоящее из бугеля 8, мембранной головки 13, рычага 1 и грузов 16,17. В мембранной головке между верхней и нижней чашей зажата резиновая мембрана 15, опирающаяся на тарелку 14, посаженную на шток 9 бугеля. В штоке 9 закреплен шток 6. Шток бугеля имеет призму 12, на которую опирается рычаг 11, вращающийся на призменной опоре 10, закрепленной в бугеле 8.

В верхней чаше мембранной головки имеется отверстие, в котором закрепляется импульсная трубка, подводящая импульс давления к мембране. Под действием увеличенного давления мембрана прогибается и увлекает тарелку 14 и шток бугеля 9 вниз. Усиление, развиваемое мембраной, уравновешивается грузами 16 и 17, подвешенными на рычаге. Грузы 17 служат для грубой регулировки заданного давления. С помощью груза 16, перемещающегося вдоль рычага, производят более точную регулировку клапана.

Давление на мембранную головку передается непосредственно регулируемой средой.

Исполнительный механизм:

Для регулирования потока жидкости, газа или пара в технологическом процессе служат регулирующие органы. Перемещение регулирующих органов осуществляется исполнительными механизмами.

Регулирующие органы и исполнительные механизмы могут быть в виде двух отдельных агрегатов, связанных между собой с помощью тяг рычагов или тросов, или в виде комплектного устройства, где регулирующий орган жестко связан с исполнительным механизмом и образует моноблок.

Исполнительный механизм, получая команду от регулятора или от командного аппарата, управляемого человеком, преобразуют эту команду в механическое перемещение регулирующего органа.

Механизм электрический, однооборотный, предназначен для перемещения регулирующих органов в системах релейного регулирования и дистанционного управления. Механизм воспринимает электрическую команду, представляющую собой трехфазное напряжение сети 220 или 380 В. Команда может подаваться с помощью магнитного контактного пускателя.

Исполнительный механизм состоит из электродвигательной части

I - сервопривода и колонки управления, II блок сервопривода. Сервопривод состоит из трехфазного асинхронного реверсивного двигателя 3 с короткозамкнутым ротором. С вала двигателя момент вращения передается на редуктор 4, состоящий из двух ступеней червячной передачи. На входной вал редуктора насаживается рычаг 2, который с помощью штанги сочленяется с регулирующим органом.

Вращая ручной маховик 1, при ручном управлении можно повернуть выходной вал редуктора без помощи электродвигателя. При ручном управлении маховиком механическая передача от электродвигателя к маховику разъединяется.

Регулирующий орган предназначен для изменения расхода регулируемой среды, энергии или каких - либо других величин в соответствии с требованиями технологии.

В тарельчатых клапанах запирающая и дросселирующая поверхность выполняется плоской. У клапана с гладкими рабочими поверхностями пробочного типа, характеристика линейная, т. е. пропускная способность клапана прямо пропорциональна ходу плунжера.

Регулирование осуществляется за счет изменения проходного сечения путем поступательного перемещения шпинделя при вращении маховика при помощи рычага, сочленяемого через штангу с электрическим исполнительным механизмом.

Запорными органами клапаны служить не могут.

Контрольный пускатель:

Пускатели ПМТР - 69 выполняют на базе магнитных реверсивных контактов, каждый из которых имеет три нормально разомкнутых силовых контакта, включенных в цепь питания электродвигателя. Кроме того, пусковое устройство имеют тормозное устройство, выполненного на базе электрического конденсатора и подключаемые через размыкающие контакты к одной из статорных обмоток электродвигателя. При замыкании любой группы силовых контактов размыкаются вспомогательные контакты и конденсатор отключается от электродвигателя, двигаясь по инерции, взаимодействует с остаточным магнитным полем статора и наводит в его обмотках эдс.

Вспомогательные контакты, замыкая цепь статорной обмотки конденсатора, создают в статоре собственное магнитное поле ротора и статора вызывает противодействующий вращению тормозной эффект, который препятствует выбегу исполнительного механизма. Основным недостатком пускателей является невысокая надежность (подгорание контактов, замыкание).

Блок имеет три токовых и один по напряжению входы. Блок Р - 12 состоит из основных узлов: входных цепей ВхЦ, усилителей постоянного тока УПТ 1 и УПТ 2, блока ограничения МО, при этом УПТ 2 позволяет получать на выходе один токовый сигнал и дополнительный сигнал по напряжению. Блок Р - 12 получает питание от блока БП, на который поступает дополнительный сигнал от блока управления БУ.

Сигнал от датчика поступает на узел входных цепей, куда подается также сигнал задающего устройства I зу. Далее сигнал рассогласования у идет на усилитель постоянного тока УПТ 1, проходя через сумматор, где формируются сигналы рассогласования от входных цепей и обратной связи. Блок ограничения ОМ сигнала обеспечивает дальнейшее его преобразования, ограничивая сигнал по минимуму и максимуму. Усилитель УПТ 2 является окончательным блоком усиления. Блок обратной связи МД получает сигнал с выхода усилителя УПТ 2 и обеспечивает плавное переключение цепей с ручного управления на автоматическое. Блок обратной связи МД обеспечивает формирование сигнала управления в соответствии с П -, ПИ - или ПИД законами регулирования.

Технологическая защита.

Во избежание аварийных режимов системы управления оборудованием при чрезмерных отклонениях параметров и для обеспечения безопасности работы снабжают устройствами технологических защит.

В зависимости от результатов воздействия на оборудование защиты подразделяют: на производящие остановку или отключение агрегатов; переводящие оборудование в режим пониженных нагрузок; выполняющие локальные операции и переключения; предотвращающие аварийные ситуации.

Устройства защит должны быть надежными в предаварийных и аварийных ситуациях, т. е. в действиях защит должны отсутствовать отказы или ложные срабатывания. Отказы в действиях защит приводят к несвоевременному отключению оборудования и дальнейшему развитию аварии, а ложные срабатывания выводят оборудование из нормального технологического цикла, что снижает эффективность его работы. Для удовлетворения этих требований используют высоконадежные приборы и устройства, а также соответствующие построения схем защиты.

В защиты входят источники дискретной информации датчики, контактные приборы, вспомогательные контакты, логические элементы и релейная цепь управления. Срабатывание защит должно обеспечить однозначность действия, при этом перевод оборудования в рабочий режим после его защитой осуществляется после проверки и устранения причин, вызвавших срабатывание.

При проектирование тепловых защит котлов, турбин и другого теплового оборудования предусматривают так называемый приоритет действия защит, т. е. выполнение в первую очередь операций для той из защит, которая вызывает большую степень разгрузки. Все защиты имеют независимые источники питания и возможность фиксации причин срабатывания, а также световую и звуковую сигнализации.

Технологическая сигнализация.

Общие сведения о сигнализации.

Технологическая сигнализация, входящая в систему управления, предназначена для оповещения оперативного персонала о недопустимых отклонениях параметров и режима работы оборудования.

В зависимости от требований, предъявляемых к сигнализации, ее условно можно разделить на несколько видов: сигнализация, обеспечивающая надежность и безопасность работы оборудования; сигнализация, фиксирующая срабатывания защит оборудования и причин срабатывания; аварийная сигнализация, оповещающая о недопустимых отклонениях основных параметров и требующая немедленного останова оборудования; сигнализация неисправности электропитания различного оборудования и аппаратуры.

Все сигналы поступают на световые и звуковые приборы блочного щита управления. Звуковая сигнализация бывает двух видов: предупредительной (звонок) и аварийной (сирена) .

Световую сигнализацию изготавливают в двухцветном исполнении (красные или зеленые лампочки) или с помощью светящихся табло, на которых указывается причина срабатывания сигнализации.

Вновь поступившие сигналы на фоне уже контролируемых оператором могут остаться незамеченными, поэтому схемы сигнализации строят так, чтобы новый сигнал выделялся миганием.

Функциональная схема устройства сигнализации.

Схема сигнализации получает питание от источника постоянного тока ИП, что повышает их надежность. Сигнал включения СВ сигнализации подается на блок релейного прерывания сигнала БРП, а затем параллельно на световое табло СТ и звуковое устройство ЗУ. При этом в БРП схема выполнена так, что обеспечивает прерывистое свечение на табло и постоянный звуковой сигнал.

После приема сигнала и снятия звука схема должна быть готовой к принятию следующего сигнала, независимо от того, вернулся ли сигнализирующий параметр к своему номинальному значению.

Каждый световой сигнал должен сопровождаться звуковым для привлечения внимания обслуживающего персонала.

Средства сигнализации.

Электронно-контактный манометр.

Для измерения и сигнализации давления применяется манометр типа ЭКМ с трубчатой пружиной. Манометр имеет корпус диаметром 160 мм. с задним фланцем и радиальный штуцер. Прибор содержит стрелку 1, задающие сигнальные стрелки 2 и 3 (минимальную и максимальную), устанавливаемые на заданные значения давлений при помощи ключа. Коробку 4 с зажимами для присоединения к прибору цепи сигнализаций. Механизм манометра заключен в корпус 5. Прибор сообщается с измеряемой средой через штуцер 6.

При достижении любого из заданных придельных давлений контакт, связанный с указательной стрелкой, соприкасается с контактом, расположенным на соответствующей сигнальной стрелке, и замыкает цепь сигнализации. Контактное устройство питается от сети постоянного или переменного тока, напряжением 220 В.