Индивидуальные тепловые пункты принцип работы. Тепловой пункт индивидуальный (ИТП): схема, принцип работы, эксплуатация

*информация размещена в ознакомительных целях, чтобы поблагодарить нас, поделитесь ссылкой на страницу с друзьями. Вы можете прислать интересный нашим читателям материал. Мы будем рады ответить на все ваши вопросы и предложения, а также услышать критику и пожелания по адресу [email protected]

Собственники жилья знают, какую долю в коммунальных платежах составляют затраты на обеспечение тепла. Отопление, горячая вода - то, от чего зависит комфортное существование, особенно в холодное время года. Однако не все знают, что эти расходы могут быть существенно снижены, для чего необходимо перейти на использование индивидуальных тепловых пунктов (ИТП).

Недостатки централизованного отопления

Традиционная схема централизованного отопления работает так: от центральной котельной по магистралям теплоноситель поступает на централизованный теплопункт, где и распределяется по внутриквартальным трубопроводам потребителям (зданиям и домам). Управление температурой и давлением теплоносителя осуществляется на централизованно, в центральной котельной, едиными значениями для всех зданий.

При этом возможны потери тепла на трассе, когда одинаковое количество теплоносителя передается в здания, расположенные на разном расстоянии от котельной. Кроме того, архитектура микрорайона - это как правило здания различной этажности и конструкции. Поэтому одинаковые параметры теплоносителя на выходе из котельной не означают одинаковые входные параметры теплоносителя в каждом здании.

Использование ИТП стало возможным из-за изменения схемы регулирования теплоснабжения. Принцип ИТП основан на том, что регулирование тепла производится прямо на входе теплоносителя в здание, исключительно и индивидуально для него. Для этого отопительное оборудование располагают в автоматизированном индивидуальном теплопункте - в подвале здания, на первом этаже или в отдельно стоящем сооружении.

Принцип работы ИТП

Индивидуальный тепловой пункт - это совокупность оборудования, с помощью которого осуществляется учет и распределение тепловой энергии и теплоносителя в системе отопления конкретного потребителя (здания). ИТП подключен к распределительным магистралям городской сети теплоэнергии и водопровода.

Работа ИТП построена по принципу автономности: в зависимости от наружной температуры аппаратура изменяет температуру теплоносителя в соответствие с расчетными значениями и подает его в отопительную систему дома. Потребитель больше не зависит от протяженности магистралей и внутриквартальных трубопроводов. Но удержание тепла полностью зависит от потребителя и зависит от технического состояния здания и методов по сбережению тепла.

Индивидуальные теплопункты обладают следующими преимуществами:

  • независимо от протяженности теплотрасс можно обеспечить одинаковые параметры отопления у всех потребителей,
  • возможность обеспечить индивидуальный режим работы (например, для медицинских учреждений),
  • отсутствует проблема потерь тепла на теплотрассе, вместо нее потери тепла зависят от обеспечения утепления дома домовладельцем.

В состав ИТП входят системы горячего и холодного водоснабжения, а также отопления и вентиляции. Конструктивно ИТП - это комплекс устройств: коллекторы, трубопроводы, насосы, различные теплообменники, регуляторы и датчики. Это сложная система, требующая настройки, обязательной профилактики и обслуживания, при этом техническое состояние ИТП напрямую влияет на расход тепла. На ИТП контролируются такие параметры теплоносителя как давление, температура и расход. Этими параметрами может управлять диспетчер, кроме того, данные передаются в диспетчерскую службу теплосети для записи и мониторинга.

Кроме непосредственно распределения тепла, ИТП помогает учесть и оптимизировать затраты на потребление. Комфортные условия при экономном расходовании энергоресурсов - вот основное преимущество использования ИТП.

Тепловым пунктом называется сооружение, которое служит для присоединения местных систем теплопотребления к тепловым сетям. Тепловые пункты подразделяются на центральные (ЦТП) и индивидуальные (ИТП). ЦТП служат для теплоснабжения двух и более зданий, ИТП - для теплоснабжения одного здания. При наличии ЦТП в каждом отдельном здании обязательно устройство ИТП, который выполняет только те функции, которые не предусмотрены в ЦТП и необходимы для системы теплопотребления данного здания. При наличии собственного источника теплоты (котельной) тепловой пункт, как правило, располагается в помещении котельной.

В тепловых пунктах размещается оборудование, трубопроводы, арматура, приборы контроля, управления и автоматизации, посредством которых осуществляются:

Преобразование параметров теплоносителя, например, для снижения температуры сетевой воды в расчетном режиме со 150 до 95 0 С;

Контроль параметров теплоносителя (температуры и давления);

Регулирование расхода теплоносителя и распределение его по системам потребления теплоты;

Отключение систем потребления теплоты;

Защита местных систем от аварийного повышения параметров теплоносителя (давления и температуры);

Заполнение и подпитка систем потребления теплоты;

Учет тепловых потоков и расходов теплоносителя и др.

На рис. 8 приведена одна из возможных принципиальных схем индивидуального теплового пункта с элеватором для отопления здания. Через элеватор система отопления присоединяется в том случае, если надо снижать температуру воды для системы отопления, например, со 150 до 95 0 С (в расчетном режиме). При этом располагаемый напор перед элеватором, достаточный для его работы, должен быть не менее 12-20 м вод. ст., а потеря напора не превышает 1,5 м вод. ст. Как правило, к одному элеватору присоединяется одна система или несколько мелких систем с близкими гидравлическими характеристиками и с суммарной нагрузкой не более 0,3 Гкал/ч. При больших необходимых напорах и теплопотреблении применяются смесительные насосы, которые также используются и при автоматическом регулировании работы системы теплопотребления.

Подключение ИТП к тепловой сети производится задвижкой 1. Вода очищается от взвешенных частиц в грязевике 2 и поступает в элеватор. Из элеватора вода с расчетной температурой 95 0 С направляется в систему отопления 5. Охлажденная в отопительных приборах вода возвращается в ИТП с расчетной температурой 70 0 С. Часть обратной воды используется в элеваторе, а остальная вода очищается в грязевике 2 и поступает в обратный трубопровод теплосети.

Постоянный расход горячей сетевой воды обеспечивает автоматический регулятор расхода РР. Регулятор РР получает импульс на регулирование от датчиков давления, установленных на подающем и обратном трубопроводах ИТП, т.е. он реагирует на разность давлений (напор) воды в указанных трубопроводах. Напор воды может меняться по причине увеличения или уменьшения давления воды в теплосети, что обычно связано в открытых сетях с изменение расхода воды на нужды ГВС.


Например , если напор воды возрастает, то расход воды в системе увеличивается. Во избежание перегрева воздух в помещениях регулятор уменьшит свое проходное сечение, чем восстановит прежний расход воды.

Постоянство давления воды в обратном трубопроводе системы отопления автоматически обеспечивает регулятор давления РД. Падение давления может быть следствием утечек воды в системе. В этом случае регулятор уменьшит проходное сечение, расход воды снизится на величину утечки и давление восстановится.

Расход воды (теплоты) измеряется водомером (теплосчетчиком) 7. Давление и температура воды контролируются, соответственно, манометрами и термометрами. Задвижки 1, 4, 6 и 8 используются для включения или отключения теплового пункта и системы отопления.

В зависимости от гидравлических особенностей тепловой сети и местной системы отопления в тепловом пункте могут также устанавливаться:

Подкачивающий насос на обратном трубопроводе ИТП, если располагаемый напор в тепловой сети недостаточен для преодоления гидравлического сопротивления трубопроводов, оборудования ИТП и систем теплопотребления. Если при этом давление в обратном трубопроводе будет ниже статического давления в этих системах, то подкачивающий насос устанавливается на подающем трубопроводе ИТП;

Подкачивающий насос на подающем трубопроводе ИТП, если давление сетевой воды недостаточно для предотвращения вскипания воды в верхних точках систем потребления теплоты;

Отсекающий клапан на подающем трубопроводе на вводе и подкачивающий насос с предохранительным клапаном на обратном трубопроводе на выходе, если давление в обратном трубопроводе ИТП может превысить допускаемое давление для системы теплопотребления;

Отсекающий клапан на подающем трубопроводе на входе в ИТП, а также предохранительный и обратный клапаны на обратном трубопроводе на выходе из ИТП, если статическое давление в тепловой сети превышает допускаемое давление для системы теплопотребления и др.

Рис 8. Схема индивидуального теплового пункта с элеватором для отопления здания:

1, 4, 6, 8 - задвижки; Т - термометры; М - манометры; 2 - грязевик; 3 - элеватор; 5 -радиаторы системы отопления; 7 - водомер (теплосчетчик); РР - регулятор расхода; РД - регулятор давления

Как было показано на рис. 5 и 6, системы ГВС подсоединяются в ИТП к подающему и обратному трубопроводам через водоподогреватели или непосредственно, через регулятор температуры смешения типа ТРЖ.

При непосредственном водоразборе вода на ТРЖ подается из подающего или из обратного или из обоих трубопроводов вместе в зависимости от температуры обратной воды (рис.9). Например , летом, когда сетевая вода имеет 70 0 С, а отопление отключено, в систему ГВС поступает только вода из подающего трубопровода. Обратный клапан служит для предотвращения перетекания воды из подающего трубопровода в обратный при отсутствии водоразбора.

Рис. 9. Схема узла присоединения системы ГВС при непосредственном водоразборе:

1, 2, 3, 4, 5, 6 - задвижки; 7 - обратный клапан; 8 - регулятор температуры смешения; 9 - датчик температуры смеси воды; 15 - водоразборные краны; 18 - грязевик; 19 - водомер; 20 - воздухоотводчик; Ш - штуцер; Т - термометр; РД - регулятор давления (напора)

Рис. 10. Двухступенчатая схема последовательного присоединения водоподогревателей ГВС:

1,2, 3, 5, 7, 9, 10, 11, 12, 13, 14 - задвижки; 8 - обратный клапан; 16 - циркуляционный насос; 17 - устройство для отбора импульса давления; 18 - грязевик; 19 - водомер; 20 - воздухоотводчик; Т - термометр; М - манометр; РТ - регулятор температуры с датчиком

Для жилых и общественных зданий также широко применяется схема двухступенчатого последовательного присоединения водоподогревателей ГВС (рис.10). В данной схеме водопроводная вода вначале подогревается в подогревателе I-ой ступени, а затем в подогревателе II-ой ступени. При этом водопроводная вода проходит через трубки подогревателей. В подогревателе I-ой ступени водопроводная вода греется обратной сетевой водой, которая после охлаждения идет в обратный трубопровод. В подогревателе II-ой ступени водопроводная вода греется горячей сетевой водой из подающего трубопровода. Охлажденная сетевая вода поступает в систему отопления. В летний период эта вода подается в обратный трубопровод по перемычке (в обвод системы отопления).

Расход горячей сетевой воды на подогреватель II-ой ступени регулирует регулятор температуры (клапан термореле) в зависимости от температуры воды за подогревателем II-ой ступени.

Билет №1

1. Источниками энергии, в том числе и тепловой, могут служить вещества, энергетический потенциал которых достаточен для последующего преобразования их энергии в другие ее виды с целью последующего целенаправ­ленного использования. Энергетический потенциал веществ является параметром, позволяющим оценить прин­ципиальную возможность и целесообразность их использования как источников энергии, и выражается в едини­цах энергии: джоулях (Дж) или киловатт (тепловых)-часах [кВт(тепл.) -ч] *.Все источники энергии условно делят на первичные и вторичные (рис. 1.1). Первичными источниками энергии называют вещества, энергетический потенциал которых является следствием природных процесов и не зависит от деятельности человека. К первичным источникам энергии относятся: ископаемые горючие и расщепляющиеся вещества, нагретые до высокой температуры воды недр Земли (термальные воды), Солнце, ветер, реки, моря, океаны и др. Вторичными источниками энергии называют вещества, обладающие определенным энергетическим потенциалом и являющиеся побочными продуктами деятельности человека; например, отработавшие горючие органические вещества, городские отходы, горячий отработанный теплоноситель промышленных производств (газ, вода, пар), нагретые вентиляционные выбросы, отходы сельскохозяйственного производства и др.Первичные источники энергии условно разделяют на невозобновляющиеся, возобновляющиеся и неисчерпае­мые. К ^возобновляющимся первичным источникам энергии относят ископаемые горючие вещества: уголь, нефть, газ, сланец, торф и ископаемые расщепляющиеся вещества: уран и торий. К возобновляющимся первичным источникам энергии относят все возможные источники энергии, являющиеся продуктами непрерывной деятельности Солнца и природных процессов на поверхности Земли: ветер, водные ресурсы, океан, растительные продукты биологической деятельности на Земле (древесину и другие растительные вещества), а также и Солнце. К практически неисчерпаемым первичным источникам энергии относят термальные воды Земли и вещества, которые могут быть источниками получения термоядерной энергии.Ресурсы первичных источников энергии на Земле оцениваются общими запасами каждого источника и его энергетическим потенциалом, т. е. количеством энергии, которая может быть выделена из единицы его массы. Чем выше энергетический потенциал вещества, тем выше эффективность его использования как первичного источника энергии и, как правило, тем большее распространение оно получило при производстве энергии. Так, например, нефть имеет энергетический потенциал, равный 40 000-43 000 МДж на 1 т массы, а природный и попутный газы - от 47 210 до 50 650 МДж на 1 т массы, что в сочетании с их относительно невысокой стоимостью добычи сделало возможным их быстрое распространение в 1960-1970-х годах как первичных источников тепловой энергии.Использование ряда первичных источников энергии до последнего времени сдерживалось либо сложностью тех­нологии преобразования их энергии в тепловую энергию (например, расщепляющиеся вещества), либо относи­тельно низким энергетическим потенциалом первичного источника энергии, что требует больших затрат на полу­чение тепловой энергии нужного потенциала (например, использование солнечной энергии, энергии ветра и др.). Развитие промышленности и научно-производственного потенциала стран мира привело к созданию и реализа­ции процессов производства тепловой энергии из ранее неразрабатывавшихся первичных источников энергии, в том числе к созданию атомных станций теплоснабжения, солнечных генераторов теплоты для теплоснабжения зданий, теплогенераторов на геотермальной энергии.



Принципиальная схема тэс


2.Тепловой пункт (ТП) - комплекс устройств, расположенный в обособленном помещении, состоящий из элементов тепловых энергоустановок, обеспечивающих присоединение этих установок к тепловой сети, их работоспособность, управление режимами теплопотребления, трансформацию, регулирование параметров теплоносителя и распределение теплоносителя по типам потребления.Основными задачами ТП являются:

Преобразование вида теплоносителя

Контроль и регулирование параметров теплоносителя

Распределение теплоносителя по системам теплопотребления

Отключение систем теплопотребления

Защита систем теплопотребления от аварийного повышения параметров теплоносителя

Учет расходов теплоносителя и тепла

Схема ТП зависит, с одной стороны, от особенностей потребителей тепловой энергии, обслуживаемых тепловым пунктом, с другой стороны, от особенностей источника, снабжающего ТП тепловой энергией. Далее, как наиболее распространённый, рассматривается ТП с закрытой системой горячего водоснабжения и независимой схемой присоединения системы отопления.

Принципиальная схема теплового пункта

Теплоноситель, поступающий в ТП по подающему трубопроводу теплового ввода, отдает свое тепло в подогревателях систем ГВС и отопления, а также поступает в систему вентиляции потребителей, после чего возвращается в обратный трубопровод теплового ввода и по магистральным сетям отправляется обратно на теплогенерирующее предприятие для повторного использования. Часть теплоносителя может расходоваться потребителем. Для восполнения потерь в первичных тепловых сетях на котельных и ТЭЦ существуют системы подпитки, источниками теплоносителя для которых являются системы водоподготовки этих предприятий.

Водопроводная вода, поступающая в ТП, проходит через насосы ХВС, после чего часть холодной воды отправляется потребителям, а другая часть нагревается в подогревателе первой ступени ГВС и поступает в циркуляционный контур системы ГВС. В циркуляционном контуре вода при помощи циркуляционных насосов горячего водоснабжения движется по кругу от ТП к потребителям и обратно, а потребители отбирают воду из контура по мере необходимости. При циркуляции по контуру вода постепенно отдает своё тепло и для того, чтобы поддерживать температуру воды на заданном уровне, её постоянно подогревают в подогревателе второй ступени ГВС.

Система отопления также представляет замкнутый контур, по которому теплоноситель движется при помощи циркуляционных насосов отопления от ТП к системе отопления зданий и обратно. По мере эксплуатации возможно возникновение утечек теплоносителя из контура системы отопления. Для восполнения потерь служит система подпитки теплового пункта, использующая в качестве источника теплоносителя первичные тепловые сети.

Билет №3

Схемы присоединения потребителей к тепловым сетям. Принципиальная схема ИТП

Различают зависимые и независимые схемы присоединения систем отопления:

Независимая (закрытая) схема подключения - схема присоединения системы теплопотребления к тепловой сети, при которой теплоноситель (перегретая вода), поступающий из тепловой сети, проходит через теплообменник, установленный на тепловом пункте потребителя, где нагревает вторичный теплоноситель, используемый в дальнейшем в системе теплопотребления

Зависимая (открытая) схема подключения - схема присоединения системы теплопотребления к тепловой сети, при которой теплоноситель (вода) из тепловой сети поступает непосредственно в систему теплопотребления.

Индивидуальный тепловой пункт (ИТП). Используется для обслуживания одного потребителя (здания или его части). Как правило, располагается в подвальном или техническом помещении здания, однако, в силу особенностей обслуживаемого здания, может быть размещён в отдельностоящем сооружении.

2. Принцип действия МГД-генератора. Схема ТЭС с МГД.

Магнитогидродинамический генератор, МГД-генератор - энергетическая установка, в которой энергия рабочего тела (жидкой или газообразной электропроводящей среды), движущегося в магнитном поле, преобразуется непосредственно в электрическую энергию.

Также как и в обычных машинных генераторах, принцип работы МГД-генератора основан на явлении электромагнитной индукции, то есть на возникновении тока в проводнике, пересекающем силовые линии магнитного поля. Но, в отличие от машинных генераторов, в МГД-генераторе проводником является само рабочее тело, в котором при движении поперёк магнитного поля возникают противоположно направленные потоки носителей зарядов противоположных знаков.

Рабочим телом МГД-генератора могут служить следующие среды:

· Электролиты

· Жидкие металлы

· Плазма (ионизированный газ)

Первые МГД-генераторы использовали в качестве рабочего тела электропроводные жидкости (электролиты), в настоящее время применяют плазму, в которой носителями зарядов являются в основном свободные электроны и положительные ионы, отклоняющиеся в магнитном поле от траектории, по которой газ двигался бы в отсутствие поля. В таком генераторе может наблюдаться дополнительное электрическое поле, так называемое поле Холла , которое объясняется смещением заряженных частиц между соударениями в сильном магнитном поле в плоскости, перпендикулярной магнитному полю.

Электростанции с магнитогидродинамическими генераторами (МГД-генераторами) . МГД - генераторы планируется сооружать в качестве надстройки к станции типа КЭС. Они используют тепловые потенциалы в 2500-3000 К, недоступные для обычных котлов.

Принципиальная схема ТЭС с МГД - установкой показана на рисунке. Газообразные продукты сгорания топлива, в которые вводится легкоионизируемая присадка (например, К 2 СО 3), направляются в МГД - канал, пронизанный магнитным полем большой напряженности. Кинетическая энергия ионизированных газов в канале преобразуется в электрическую энергию постоянного тока, который, в свою очередь, преобразуется в трехфазный переменный ток и направляется в энергосистему потребителям.

Принципиальная схема КЭС с МГД-генератором:
1 - камера сгорания; 2 – МГД - канал; 3 - магнитная система; 4 - воздухоподогреватель,
5 - парогенератор (котел); 6 - паровые турбины; 7 - компрессор;
8 - конденсатный (питательный) насос.

Билет №4

1.Классификация систем теплоснабжения

Принципиальные схемы систем теплоснабжения по способу подключения к ним систем отопления

По месту выработки теплоты системы теплоснабжения делятся на:

· Централизованные (источник производства тепловой энергии работает на теплоснабжение группы зданий и связан транспортными устройствами с приборами потребления тепла);

· Местные (потребитель и источник теплоснабжения находятся в одном помещении или в непосредственной близости).

По роду теплоносителя в системе:

· Водяные;

· Паровые.

По способу подключения системы отопления к системе теплоснабжения:

· зависимые (теплоноситель, нагреваемый в теплогенераторе и транспортируемый по тепловым сетям, поступает непосредственно в теплопотребляющие приборы);

· независимые (теплоноситель, циркулирующий по тепловым сетям, в теплообменнике нагревает теплоноситель, циркулирующий в системе отопления).

По способу присоединения системы горячего водоснабжения к системе теплоснабжения:

· закрытая (вода на горячее водоснабжение забирается из водопровода и нагревается в теплообменнике сетевой водой);

· Открытая (вода на горячее водоснабжение забирается непосредственно из тепловой сети).

Индивидуальный тепловой пункт предназначен для экономии тепла, регулирования параметров снабжения. Это комплекс, располагающийся в отдельном помещении. Может эксплуатироваться в частном или многоквартирном доме. ИТП (индивидуальный тепловой пункт), что это такое, как устроен и функционирует, рассмотрим подробнее.

ИТП: задачи, функции, назначение

По определению ИТП — тепловой пункт, обогревающий здания полностью или отчасти. Комплекс получает энергию из сети (ЦТП, центрального теплового пункта или котельной) и распределяет ее до потребителей:

  • ГВС (горячего водоснабжения);
  • отопления;
  • вентиляции.

При этом имеется возможность регуляции, так как режим обогрева в жилой комнате, подвале, на складе, отличается. На ИТП возлагаются следующие основные задачи.

  • Учет расхода тепла.
  • Защита от аварий, контроль за параметрами для безопасности.
  • Отключение системы потребления.
  • Равномерное распределение тепла.
  • Регулировка характеристик, управление температурными и другими параметрами.
  • Преобразование теплоносителя.

Для установки ИТП здания модернизируются, что обходится недешево, но несет в себе выгоды. Пункт располагают в отдельном техническом или подвальном помещении, пристройке к дому или отдельно расположенном рядом сооружении.

Преимущества наличия ИТП

Значительные расходы на создание ИТП допускаются в связи с преимуществами, которые следуют из наличия пункта в здании.

  • Экономичность (по потреблению — на 30%).
  • Снижение затрат на эксплуатацию до 60%.
  • Расход тепла контролируется и учитывается.
  • Оптимизация режимов снижает потери до 15%. Учитывается время суток, выходные дни, погода.
  • Тепло распределяется соответственно условиям потребления.
  • Расход можно регулировать.
  • Вид теплоносителя подлежит изменению в случае необходимости.
  • Низкая аварийность, высокая безопасность эксплуатации.
  • Полная автоматизация процесса.
  • Бесшумность.
  • Компактность, зависимость габаритов от нагрузки. Пункт можно разместить в подвале.
  • Обслуживание тепловых пунктов не требует многочисленного персонала.
  • Обеспечивает комфорт.
  • Оборудование комплектуется под заказ.

Управляемый расход тепла, возможность влияния на показатели привлекает в плане экономии, рационального расхода ресурса. Поэтому считается, что затраты окупаются в приемлемый период.

Виды ТП

Различие ТП — в количестве и видах систем потребления. Особенности типа потребителя предопределяют схему и характеристики требуемого оборудования. Отличается способ монтажа и расстановки комплекса в помещении. Выделяют следующие виды.

  • ИТП для единственного здания или его части, расположенный в подвале, техническом помещении или рядом стоящем сооружении.
  • ЦТП — центральный ТП обслуживает группу зданий или объектов. Располагается в одном из подвалов или отдельном сооружении.
  • БТП — блочный тепловой пункт. Включает один или несколько блоков, изготовленных и поставленных на производстве. Отличается компактным монтажом, применяется для экономии места. Может выполнять функцию ИТП или ЦТП.

Принцип работы

Схема конструкции зависит от источника энергии и специфики потребления. Наиболее популярная — независимая, для закрытой системы ГВС. Принцип работы ИТП следующий.

  1. Носитель тепла приходит в пункт по трубопроводу, отдавая температуру подогревателям отопления, ГВС и вентиляции.
  2. Теплоноситель идет в обратный трубопровод на теплогенерирующее предприятие. Используется повторно, но часть может быть израсходована потребителем.
  3. Потери тепла восполняются подпитками, имеющимися в ТЭЦ и котельных (подготовка воды).
  4. В тепловую установку поступает водопроводная вода, проходя через насос для холодного водоснабжения. Часть ее идет потребителю, остальное нагревается подогревателем 1 ступени, направляясь в контур ГВС.
  5. Насос ГВС перемещает воду по кругу, проходя через ТП, потребителя, возвращается с частичным расходом.
  6. Подогреватель 2 ступени действует регулярно при потере жидкостью тепла.

Теплоноситель (в данном случае — вода) движется по контуру, чему способствуют 2 циркуляционных насоса. Возможны его утечки, которые восполняет подпитка из первичной тепловой сети.

Принципиальная схема

Та или иная схема ИТП имеет особенности, зависящие от потребителя. Важен центральный поставщик тепла. Самый распространенный вариант — закрытая система ГВС с независимым присоединением отопления. В ТП по трубопроводу поступает носитель тепла, реализуется при подогреве воды для систем и возвращается. Для возврата имеется обратный трубопровод, идущий к магистрали на центральный пункт — предприятие по генерации тепла.

Отопление и ГВС устроено в виде контуров, по которым с помощью насосов перемещается носитель тепла. Первый принято проектировать, как замкнутый цикл с возможными утечками, восполняемыми из первичной сети. А второй контур — циркулярный, снабженный насосами для ГВС, подающий воду к потребителю для расходования. При потере тепла нагрев осуществляется второй нагревательной ступенью.

ИТП для разных целей потребления

Будучи оборудованным для отопления, ИТП имеет независимую схему, в которой установлен пластинчатый теплообменник со 100% нагрузкой. Потери давления предотвращается установкой сдвоенного насоса. Подпитка осуществляется от обратного трубопровода в тепловых сетях. Дополнительно ТП комплектуется приборами учета, блоком ГВС при наличии других необходимых узлов.


ИТП, предназначенный для ГВС — это независимая схема. Кроме того, она параллельная и одноступенчатая, укомплектованная двумя пластинчатыми теплообменниками, нагруженными по 50%. Есть насосы, компенсирующие снижение давления, приборы учета. Предполагается наличие других узлов. Подобные теплопункты функционируют по независимой схеме.

Это интересно! Принцип осуществления теплофикации для отопительной системы может быть основан на пластинчатом теплообменнике со 100% нагрузкой. А ГВС имеет двухступенчатую схему с двумя аналогичными устройствами, нагруженными на 1/2 каждый. Насосы различного назначения компенсируют снижающееся давление и подпитывают систему из трубопровода.

Для вентиляции применяют пластинчатый теплообменник со 100% нагрузкой. ГВС обеспечивается двумя такими устройствам, нагруженными на 50%. Посредством работы нескольких насосов компенсируется уровень давления и делается подпитка. Дополнение — устройство учета.

Этапы установки

ТП здания или объекта при установке проходит поэтапную процедуру. Одного лишь желания жильцов в многоквартирном здании недостаточно.

  • Получение согласия собственников помещений жилого здания.
  • Заявка теплоснабжающим компаниям на проектирование в конкретном доме, разработка техзадания.
  • Выдача технических условий.
  • Обследование жилого либо иного объекта под проект, определение наличия и состояния оборудования.
  • Автоматический ТП будут проектировать, разрабатывать и утверждать.
  • Заключается договор.
  • Проект ИТП жилого дома либо иного объекта реализуется, проводятся испытания.

Внимание! Все этапы можно реализовать за пару месяцев. Забота возлагается на ответственную специализированную организацию. Для успеха компания должна быть хорошо зарекомендована.

Безопасность эксплуатации

Автоматический теплопункт имеет обслуживание с работниками должной квалификации. Персонал знакомят с правилами. Есть и запреты: автоматика не запускается при отсутствии воды в системе, насосы не включают, если на вводе перекрыта запорная арматура.
Требуется контролировать:

  • параметры давления;
  • шумы;
  • уровень вибрации;
  • нагрев двигателя.

Регулирующий клапан нельзя подвергать чрезмерному усилию. Если система под давлением, регуляторы не разбирают. Перед пуском промывают трубопроводы.

Допуск к эксплуатации

Эксплуатация комплексов АИТП (автоматизированных ИТП) требует оформления допуска, для чего в Энергонадзор предоставляется документация. Это техусловия подключения и справка об их исполнении. Нужны:

  • согласованная проектная документация;
  • акт ответственности по эксплуатированию, балансу принадлежности от сторон;
  • акт готовности;
  • теплопункты должны иметь паспорт с параметрами теплоснабжения;
  • готовность устройства учета тепловой энергии — документ;
  • справка о наличии договора с энергокомпанией по обеспечению теплоснабжения;
  • акт приемки работ от компании, производящей монтаж;
  • Приказ, назначающий ответственного за техобслуживание, исправность, ремонт и безопасность АТП (автоматизированного теплового пункта);
  • список лиц, отвечающих за обслуживание установок АИТП и их ремонт;
  • копия документа о квалификации сварщика, сертификаты на электроды и трубы;
  • акты по иным действиям, исполнительная схема объекта автоматизированный теплопункт, включающая трубопроводы, арматуру;
  • акт по опрессовке, промывке отопления, ГВС, которые включает автоматизированный пункт;
  • инструктаж.


Составляется акт допуска, заводятся журналы: оперативный, по инструктажу, выдаче нарядов, обнаружению дефектов.

ИТП многоквартирного дома

Автоматизированный индивидуальный тепловой пункт в многоэтажном жилом здании транспортирует тепло от ЦТП, котельных или ТЭЦ (теплоэлектроцентраль) к отоплению, ГВС и вентиляции. Подобные новшества (автоматический тепловой пункт) сберегают до 40% и более тепловой энергии.

Внимание! Система использует источник — тепловые сети, к которым подключается. Необходимости согласования с этими организациями.

Множество данных требуется для расчетов режимов, нагрузки и результатов экономии для оплаты в ЖКХ. Без этой информации проект не будет выполнен. Без согласования ИТП не выдадут допуск к эксплуатации. Жильцы приобретают следующие выгоды.

  • Большая точность работы аппаратов по поддержанию температуры.
  • Подогрев производится с расчетом, включающим состояние наружного воздуха.
  • Снижаются суммы за услуги по счетам ЖКХ.
  • Автоматизация упрощает обслуживание объектов.
  • Снижаются затраты на ремонт, численность персонала.
  • Экономятся финансы на потребление тепловой энергии от централизованного поставщика (котельных, ТЭЦ, ЦТП).

Итог: как происходит экономия

Тепловой пункт системы отопления снабжают узлом учета при вводе, что является залогом экономии. С приборов снимают показания по расходу тепла. Сам учет не снижает расходы. Источник экономии — возможность смены режимов и отсутствие завышения показателей со стороны энергоснабжающих компаний, точное их определение. Невозможно будет списать на подобного потребителя дополнительные издержки, утечки, расходы. Окупаемость происходит в сроки 5 месяцев, как среднее значение с экономией до 30%.

Автоматизирована подача теплоносителя от централизованного поставщика — теплотрассы. Монтаж современного узла отопления и вентиляции позволяет учитывать при эксплуатации сезонные и суточные температурные изменения. Режим коррекции — автоматический. Теплопотребление уменьшается на 30% при окупаемости от 2 до 5 лет.