Как найти вероятность двух независимых событий. Произведение событий

Изучение теории вероятности начинается с решения задач на сложение и умножение вероятностей. Стоит сразу упомянуть, что студент при освоении данной области знаний может столкнуться с проблемой: если физические или химические процессы можно представить визуально и понять эмпирически, то уровень математической абстракции очень высок, и понимание здесь приходит только с опытом.

Однако игра стоит свеч, ведь формулы - как рассматриваемые в данной статье, так и более сложные - используются сегодня повсеместно и вполне могут пригодиться в работе.

Происхождение

Как ни странно, толчком к развитию данного раздела математики стали… азартные игры. Действительно, игра в кости, бросание монетки, покер, рулетка - это типичные примеры, в которых используются сложение и умножение вероятностей. На примере задач в любом учебнике это можно увидеть наглядно. Людям было интересно узнать, как увеличить свои шансы на победу, и, надо сказать, некоторые в этом преуспели.

Например, уже в XXI веке один человек, чьего имени раскрывать мы не будем, использовал эти накопленные веками знания, чтобы буквально «обчистить» казино, выиграв в рулетку несколько десятков миллионов долларов.

Впрочем, несмотря на повышенный интерес к предмету, только к XX веку была разработана теоретическая база, делающая «теорвер» полноценной Сегодня же практически в любой науке можно встретить расчёты, использующие вероятностные методы.

Применимость

Важным моментом при использовании формул сложения и умножения вероятностей, условной вероятности является выполнимость центральной предельной теоремы. В противном случае хоть это и может и не осознаваться студентом, все вычисления, какими бы правдоподобными они ни казались, будут некорректны.

Да, у высокомотивированного учащегося возникает соблазн использовать новые знания при каждом удобном случае. Но в данном случае следует несколько притормозить и строго очертить рамки применимости.

Теория вероятности имеет дело со случайными событиями, которые в эмпирическом плане представляют собой результаты экспериментов: мы можем бросать кубик с шестью гранями, вытаскивать карту из колоды, предсказывать количество бракованных деталей в партии. Однако в некоторых вопросах использовать формулы из этого раздела математики категорически нельзя. Особенности рассмотрения вероятностей события, теорем сложения и умножения событий мы обсудим в конце статьи, а пока обратимся к примерам.

Основные понятия

Под случайным событием подразумевается некоторый процесс или результат, который может проявиться, а может и не проявиться в результате эксперимента. Например, мы подбрасываем бутерброд - он может упасть маслом вверх или маслом вниз. Любой из двух исходов будет являться случайным, и мы заранее не знаем, какой из них будет иметь место.

При изучении сложения и умножения вероятностей нам понадобятся ещё два понятия.

Совместными называются такие события, появление одного из которых не исключает появления другого. Скажем, два человека одновременно стреляют по мишени. Если один из них произведет успешный никак не отразится на возможности второго попасть в «яблочко» или промахнуться.

Несовместными будут такие события, появление которых одновременно является невозможным. Например, вытаскивая из коробки только один шарик, нельзя достать сразу и синий, и красный.

Обозначение

Понятие вероятности обозначается латинской заглавной буквой P. Далее в скобках следуют аргументы, обозначающие некоторые события.

В формулах теоремы сложения, условной вероятности, теоремы умножения вы увидите в скобках выражения, например: A+B, AB или A|B. Рассчитываться они будут различными способами, к ним мы сейчас и обратимся.

Сложение

Рассмотрим случаи, в которых используются формулы сложения и умножения вероятностей.

Для несовместных событий актуальна самая простая формула сложения: вероятность любого из случайных исходов будет равна сумме вероятностей каждого из этих исходов.

Предположим, что есть коробка с 2 синими, 3 красными и 5 жёлтыми шариками. Итого в коробке имеется 10 предметов. Какова доля истинности утверждения, что мы вытащим синий или красный шар? Она будет равна 2/10 + 3/10, т. е. пятьдесят процентов.

В случае же несовместных событий формула усложняется, поскольку добавляется дополнительное слагаемое. Вернемся к нему через один абзац, после рассмотрения ещё одной формулы.

Умножение

Сложение и умножение вероятностей независимых событий используются в разных случаях. Если по условию эксперимента нас устраивает любой из двух возможных исходов, мы посчитаем сумму; если же мы хотим получить два некоторых исхода друг за другом, мы прибегнем к использованию другой формулы.

Возвращаясь к примеру из предыдущего раздела, мы хотим вытащить сначала синий шарик, а затем - красный. Первое число нам известно - это 2/10. Что происходит дальше? Шаров остается 9, красных среди них всё столько же - три штуки. Согласно расчётам получится 3/9 или 1/3. Но что теперь делать с двумя числами? Правильный ответ - перемножать, чтобы получилось 2/30.

Совместные события

Теперь можно вновь обратиться к формуле суммы для совместных событий. Для чего мы отвлекались от темы? Чтобы узнать, как перемножаются вероятности. Сейчас нам это знание пригодится.

Мы уже знаем, какими будут первые два слагаемых (такие же, как и в рассмотренной ранее формуле сложения), теперь же потребуется вычесть произведение вероятностей, которое мы только что научились рассчитывать. Для наглядности напишем формулу: P(A+B) = P(A) + P(B) - P(AB). Получается, что в одном выражении используется и сложение, и умножение вероятностей.

Допустим, мы должны решить любую из двух задач, чтобы получить зачёт. Первую мы можем решить с вероятностью 0,3, а вторую - 0,6. Решение: 0,3 + 0,6 - 0,18 = 0,72. Заметьте, просто просуммировать числа здесь будет недостаточно.

Условная вероятность

Наконец, существует понятие условной вероятности, аргументы которой обозначаются в скобках и разделяются вертикальной чертой. Запись P(A|B) читается следующим образом: «вероятность события A при условии события B».

Посмотрим пример: друг дает вам некоторый прибор, пусть это будет телефон. Он может быть сломан (20 %) или исправен (80 %). Любой попавший в руки прибор вы в состоянии починить с вероятностью 0,4 либо не в состоянии этого сделать (0,6). Наконец, если прибор находится в рабочем состоянии, вы можете дозвониться до нужного человека с вероятностью 0,7.

Легко заметить, как в данном случае проявляется условная вероятность: вы не сможете дозвониться до человека, если телефон сломан, а если он исправен, вам не требуется его чинить. Таким образом, чтобы получить какие-либо результаты на «втором уровне», нужно узнать, какое событие выполнилось на первом.

Расчёты

Рассмотрим примеры решения задач на сложение и умножение вероятностей, воспользовавшись данными из предыдущего абзаца.

Для начала найдем вероятность того, что вы почините отданный вам аппарат. Для этого, во-первых, он должен быть неисправен, а во-вторых, вы должны справиться с починкой. Это типичная задача с использованием умножения: получаем 0,2*0,4 = 0,08.

Какова вероятность, что вы сразу дозвонитесь до нужного человека? Проще простого: 0,8*0,7 = 0,56. В этом случае вы обнаружили, что телефон исправен и успешно совершили звонок.

Наконец, рассмотрим такой вариант: вы получили сломанный телефон, починили его, после чего набрали номер, и человек на противоположном конце взял трубку. Здесь уже требуется перемножение трёх составляющих: 0,2*0,4*0,7 = 0,056.

А что делать, если у вас сразу два нерабочих телефона? С какой вероятностью вы почините хотя бы один из них? на сложение и умножение вероятностей, поскольку используются совместные события. Решение: 0,4 + 0,4 - 0,4*0,4 = 0,8 - 0,16 = 0,64. Таким образом, если вам в руки попадёт два сломанных аппарата, вы справитесь с починкой в 64% случаев.

Внимательное использование

Как говорилось в начале статьи, использование теории вероятности должно быть обдуманным и осознанным.

Чем больше серия экспериментов, тем ближе подходит теоретически предсказываемое значение к полученному на практике. Например, мы бросаем монетку. Теоретически, зная о существовании формул сложения и умножения вероятностей, мы можем предсказать, сколько раз выпадет «орёл» и «решка», если мы проведем эксперимент 10 раз. Мы провели эксперимент, и по стечению обстоятельств соотношение выпавших сторон составило 3 к 7. Но если провести серию из 100, 1000 и более попыток, окажется, что график распределения всё ближе подбирается к теоретическому: 44 к 56, 482 к 518 и так далее.

А теперь представьте, что данный эксперимент проводится не с монеткой, а с производством какого-нибудь новейшего химического вещества, вероятности получения которого мы не знаем. Мы провели бы 10 экспериментов и, не получив успешного результата, могли бы обобщить: «вещество получить невозможно». Но кто знает, проведи мы одиннадцатую попытку - достигли бы мы цели или нет?

Таким образом, если вы обращаетесь к неизведанному, к неисследованной области, теория вероятности может оказаться неприменима. Каждая последующая попытка в этом случае может оказаться успешной и обобщения типа «X не существует» или «X является невозможным» будут преждевременны.

Заключительное слово

Итак, мы рассмотрели два вида сложения, умножение и условные вероятности. При дальнейшем изучении данной области необходимо научиться различать ситуации, когда используется каждая конкретная формула. Кроме того, нужно представлять, применимы ли вообще вероятностные методы при решении вашей задачи.

Если вы будете практиковаться, то через некоторое время начнете осуществлять все требуемые операции исключительно в уме. Для тех, кто увлекается карточными играми, этот навык можно считать крайне ценным - вы значительно увеличите свои шансы на победу, всего лишь рассчитывая вероятность выпадения той или иной карты или масти. Впрочем, полученным знаниям вы без труда найдете применение и в других сферах деятельности.

  • Теорема. Вероятность суммы несовместных событий иравна сумме вероятностей этих событий:

  • Следствие 1. С помощью метода математической индукции формулу (3.10) можно обобщить на любое число попарно несовместных событий:

  • Следствие 2. Поскольку противоположные события являются несовместными, а их сумма – достоверным событием, то, используя (3.10), имеем:

  • Часто при решении задач формулу (3.12) используют в виде:

    (3.13)

    Пример 3.29. В опыте с бросанием игральной кости найти вероятности выпадения на верхней грани числа очков более 3 и менее 6.

    Обозначим события, связанные с выпадением на верхней грани игральной кости одного очка, через U 1 , двух очков через U 2 ,…, шести очков через U 6 .

    Пусть событие U – выпадение на верхней грани кости числа очков более 3 и менее 6. Это событие произойдет, если произойдет хотя бы одно из событий U 4 или U 5 , следовательно, его можно представить в виде суммы этих событий: . Т. к. событияU 4 и U 5 являются несовместными, то для нахождения вероятности их суммы используем формулу (3.11). Учитывая, что вероятности событий U 1 , U 2 ,…,U 6 равны , получим:

  • Замечание. Ранее задачи такого типа решали с помощью подсчета числа благоприятствующих исходов. Действительно, событию U благоприятствуют два исхода, а всего шесть элементарных исходов, следовательно, используя классический подход к понятию вероятности, получим:

    Однако классический поход к понятию вероятности, в отличие от теоремы о вероятности суммы несовместных событий, применим только для равновозможных исходов.

    Пример 3.30. Вероятность попадания в цель стрелком равна 0,7. Какова вероятность того, что стрелок не попадет в цель?

    Пусть событие − попадание стрелком в цель, тогда событие, состоящее в том, что стрелок не попадет в цель, является противоположным событиемсобытию, т. к. в результате каждого испытания всегда происходит одно и только одно из этих событий. Используя формулу (3.13), получим:

  • 3.2.10. Вероятность произведения событий

  • Определение. Событие называетсязависимым от события если вероятность события зависит от того, произошло событиеили нет.

    Определение. Вероятность события вычисленная при условии, что событиепроизошло, называетсяусловной вероятностью события и обозначается

    Теорема. Вероятность произведения событий иравна произведению вероятности одного из них на условную вероятность другого, вычисленную при условии, что первое имело место:

  • Условие независимости события от события можно записать в виде Из этого утверждения следует, что для независимых событий выполняется соотношение:

  • т. е. вероятность произведения независимых событий и, равна произведению их вероятностей.

    Замечание. Вероятность произведения нескольких событий равна произведению вероятностей этих событий, причем вероятность каждого следующего по порядку события вычисляется при условии, что все предыдущие имели место:

  • Если события независимые, то имеем:

  • Пример 3.31. В ящике 5 белых и 3 черных шара. Из него наугад последовательно без возвращения вытаскивают два шара. Найти вероятность того, что оба шара белые.

    Пусть событие − появление белого шара при первом вынимании,− появление белого шара при втором вынимании. Учитывая, что,(вероятность появления второго белого шара при условии, что первый вынутый шар был белым и его не возвратили в ящик). Так как событияизависимые, то вероятность их произведения найдем по формуле (3.15):

  • Пример 3.32. Вероятность попадания в цель первым стрелком 0,8; вторым – 0,7. Каждый стрелок выстрелил по мишени. Какова вероятность того, что хотя бы один стрелок попадет в цель? Какова вероятность того, что один стрелок попадет в цель?

    Пусть событие – попадание в цель первым стрелком,– вторым. Все возможные варианты можно представить в видетаблицы 3.5 , где «+» обозначает, что событие произошло, а «−» − не произошло.

    Таблица 3.5

  • Пусть событие – попадание хотя бы одним стрелком в цель, Тогда событиеявляется суммой независимых событийиследовательно, применить теорему о вероятности суммы несовместных событий в данной ситуации нельзя.

    Рассмотрим событие противоположное событиюкоторое произойдет тогда, когда ни один стрелок не попадет в цель, т. е. является произведением независимых событийИспользуя формулы (3.13) и (3.15), получим:

  • Пусть событие – попадание одним стрелком в цель. Это событие можно представить следующим образом:

    События и– независимые, событияитакже являются независимыми. События, являющиеся произведениями событийи– несовместными. Используя формулы (3.10) и (3.15) получим:

  • Свойства операций сложения и умножения событий:

  • 3.2.11. Формула полной вероятности. Формула Байеса

  • Пусть событие может произойти только вместе с одним из попарно несовместных событий (гипотез),,…,, образующих полную группу, т. е.

    Вероятность события находится по формулеполной вероятности:

  • Если событие уже произошло, то вероятности гипотез могут быть переоценены по формулеБайеса :

    (3.17)

    Пример 3.33. Имеются две одинаковых урны с шарами. В первой урне 5 белых и 10 черных шаров, во второй − 3 белых и 7 черных шаров. Выбирают наугад одну урну и вытаскивают из нее один шар.

      Найти вероятность того, что этот шар белый.

      Из наугад выбранной урны вытащили белый шар. Найти вероятность того, что шар вытащили из первой урны.

    Мы уже знаем, что вероятность – это численная мера возможности наступления случайного события, т.е. события, которое может произойти, а может и не произойти при осуществлении определенной совокупности условий. При изменении совокупности условий вероятность случайного события может измениться. В качестве дополнительного условия мы можем рассмотреть наступление другого события. Итак, если к комплексу условий, при котором происходит случайное событие А , добавить еще одно, состоящее в наступлении случайного события В , то вероятность наступления события А будет называться условной.

    Условная вероятность события А - вероятность появления события А при ус­ловии, что произошло событие В. Условная вероятностьобозначается (A ).

    Пример 16. В ящике имеются 7 белых и 5 черных шаров, отличаю­щихся лишь цветом. Опыт состоит в том, что случайным образом вынимают один шар и, не опуская его обратно, вынимают еще один шар. Какова вероятность, что, второй вынутый шар – черный, если при первом извлечении достали белый шар?

    Решение.

    Перед нами два случайных события: событие А – первый вынутый шар оказался белым, В – второй вынутый шар - черный. А и В несовместные события, воспользуемся классическим определением вероятности. Число элементарных исходов при извлечении первого шара – 12, а число благоприятных исходов достать белый шар – 7. Следовательно, вероятность P(А) = 7/12.

    Если первый шар оказался белым, то условная вероятность события В - появления второго черного шара (при условии, что первый шар был белым) - равна (В) = 5/11, так как перед выни­манием второго шара осталось 11 шаров, из которых 5 черных.

    Отметим, что вероятность появления черного шара при втором извлечении не зависела бы от цвета вынутого первого шара, если, вы­нув первый шар, мы положили бы его обратно в ящик.

    Рассмотрим два случайных события А и В. Пусть вероятности P(А) и (В) известны. Определим, чему равна вероятность появления и события А, и события В, т.е. произведения этих событий.

    Теорема умножения вероятностей. Вероятность произведения двух событий равна произведению вероятности одного из них на условную вероятность другого, вычисленную при том условии, что первое событие произошло:

    Р(А× В) = Р(А)× (В) .

    Так как для вычисления вероятности произведения не играет роли какое из рассмотренных событий А и В было первым, а какое вторым, то можно записать:

    Р(А× В) = Р(А) × (В) = Р(В) × (А).

    Теорему можно распространить на произведение п событий:

    Р(А 1 А 2 . А п) = Р(А х) Р(А 2 /А 1) .. Р(А п /А 1 А 2 ... А п-1).

    Пример 17. Для условий предыдущего примера вычислить вероятность извлечения двух шаров: а) белого шара первым, а черного вторым; б) двух черных шаров.

    Решение.

    а)Из предыдущего примера мы знаем вероятности достать из ящика белый шар первым и черный шар вторым, при условии, что первым извлекли белый шар. Для подсчета вероятности появления обоих событий вместе воспользуемся теоремой умножения вероятностей: Р(А× В) = Р(А) × (В)= .

    б) Аналогично рассчитаем вероятность вынуть два черных шара. Вероятность достать первым черный шар . Вероятность достать черный шар во второй раз при условии, что первый вынутый черный шар мы не опускаем обратно в ящик (черных шаров осталось 4, а всего шаров стало 11). Результирующую вероятность можно подсчитать по формуле Р(А×В)= Р(А) × (В) 0,152.

    Теорема умножения вероятностей имеет более простой вид, если события А и В независимые.

    Событие В называют независимым от события А, если вероят­ность события В не изменяется от того, произошло событие А или нет. Если событие В является независимым от события А, то его условная (В) равна обычной вероятности P(В):

    Оказывается, что если событие В будет независимым от события А , то и событие А будет независимым от В , т.е. (А)= P(А).

    Докажем это. Подставим равенство из определения независимости события В от события А в теорему умножения вероятностей: Р(А×В) = Р(А)× (В)= Р(А)× (В). Но с другой стороны Р(А× В) = Р(В) × (А). Значит Р(А) × (В)= Р(В) × (А) и (А)= P(А).

    Таким образом, свойство независимость (или зависимость) событий всегда взаимно и можно дать следующее определение: два события называются независимыми , если появление одного из них не изменяет вероятность появления другого.

    Следует отметить, что в основе независимости событий лежит независимость физической природы их происхождения. Это означает, что наборы случайных факторов, приводящих к тому или иному исходу испытания одного и другого случайного события, различны. Так, например, поражение цели одним стрелком никак не влияет (если, конечно, не придумывать никаких экзотических причин) на вероятность попадания в цель вторым стрелком. На практике независимые события встречаются очень часто, так как причинная связь явлений во многих случаях отсутствует или несущест­венна.

    Теорема умножения вероятностей для независимых событий. Вероятность произведения двух независимых событий равна произведению вероятности этих событий: Р(А×В) = Р(А) × P(В).

    Из теоремы умножения вероятностей для независимых событий вытекает следующее следствие.

    Если события А и В несовместные и P(A)¹0, P(В)¹0, то они зависимы.

    Докажем это способом от противного. Предположим, что несовместные события А и В независимы. Тогда Р(А×В) = Р(А) ×P(В). И так как P(A)¹0, P(В)¹0 , т.е. события А и В не являются невозможными, то Р(А×В)¹0. Но, с другой стороны, событие А ž В является невозможным как произведение несовместных событий (это рассматривалось выше). Значит Р(А×В)=0. получили противоречие. Таким образом, наше исходное предположение неверно. События А и В – зависимые.

    Пример 18 . Вернемся теперь к нерешенной задаче о двух стрелках, стреляющих по одной цели. Напомним, что при ве­роятности попадания в цель первым стрелком – 0,8, а вторым 0,7 необходимо найти вероятность поражения цели.

    События А и В – попадание в цель соответственно первым и вторым стрелком – совместные, поэтому для нахождения вероятности суммы событий А + В – поражение цели хотя бы одним стрелком – необходимо воспользоваться формулой: Р(А +В)=Р(А)+ Р(В) Р(А žВ). События А и В независимые, поэтому Р(А× В) = Р(А) × P(В).

    Итак, Р(А +В) = Р(А) + Р(В) - Р(А) × P(В).

    Р(А +В)= 0,8 + 0,7 – 0,8×0,7 = 0,94.

    Пример 19.

    Производится два независимых выстрела в одну и ту же мишень. Вероятность попадания при первом выстреле 0,6, а при втором - 0,8. Найти вероятность попадания в мишень при двух выстрелах.

    1) Обозначим попадание при первом выстреле как событие
    А 1 , при втором - как событие А 2 .

    Попадание в мишень предполагает хотя бы одно попада­ние: или только при первом выстреле, или только при втором, или и при первом, и при втором. Следовательно, в задаче требу­ется определить вероятность суммы двух совместных событий А 1 и А 2:

    Р(А 1 + А 2) = Р(А 1) + Р(А 2)-Р(А 1 А 2).

    2) Так как события независимы, то Р(А 1 А 2) = Р(А 1) Р(А 2).

    3) Получаем: Р(А 1 + А 2) = 0,6 + 0,8 - 0,6 0,8 = 0,92.
    Если события несовместны, то Р(А В) = 0 и Р(А + В) = = Р(А) + Р(В).

    Пример 20.

    В урне находятся 2 белых, 3 красных и 5 синих одинаковых по размеру шаров. Какова вероятность, что шар, случайным образом извлеченный из урны, будет цветным (не белым)?

    1) Пусть событие А - извлечение красного шара из урны,
    событие В - извлечение синего шара. Тогда событие (А + В)
    есть извлечение цветного шара из урны.

    2) Р(А) = 3/10, Р(В) = 5/10.

    3) События А и В несовместны, так как извлекается только
    один шар. Тогда: Р(А + В) = Р(А) + Р(В) = 0,3 + 0,5 = 0,8.

    Пример 21.

    В урне находятся 7 белых и 3 черных шара. Какова вероят­ность: 1) извлечения из урны белого шара (событие А); 2) из­влечения из урны белого шара после удаления из нее одного шара, который является белым (событие В); 3) извлечения из урны белого шара после удаления из нее одного шара, который является черным (событие С)?

    1) Р(А) = = 0,7 (см. классическую вероятность).

    2)Р В (А) = = 0,(6).

    3) Р С (А) = | = 0,(7).

    Пример 22.

    Механизм собирается из трех одинаковых деталей и счита­ется неработоспособным, если все три детали вышли из строя. В сборочном цехе осталось 15 деталей, из которых 5 нестандарт­ных (бракованных). Какова вероятность того, что собранный из взятых наугад оставшихся деталей механизм будет неработос­пособным?

    1) Обозначим искомое событие через А, выбор первой не­стандартной детали через А 1 , второй- через А 2 , третьей - через А 3

    2) Событие А произойдет, если произойдет и событие А 1 и событие А 2 , и событие А 3 т. е.

    А = А 1 А 2 А 3 ,

    так как логическое «и» соответствует произведению (см. раз­дел «Алгебра высказываний. Логические операции»).

    3) События А 1 , А 2 , А 3 зависимы, поэтому Р(А 1 А 2 А 3) =
    = Р(А 1) Р(А 2 /А 1) Р(А 3 /А 1 А 2).

    4)Р(А 1) = ,Р(А 2 /А 1) = ,Р(А 3 /А 1 А 2)= . Тогда

    Р(А 1 А 2 А 3) = 0,022.

    Для независимых событий: Р(А В) = Р(А) Р(В).

    Исходя из вышеуказанного, критерий независимости двух событий А и В:

    Р(А) = Р В (А) = Р (А), Р(В) = Р А (В) =Р (В).

    Пример 23.

    Вероятность поражения цели первым стрелком (событие А) равна 0,9, а вероятность поражения цели вторым стрелком (событие В) равна 0,8. Какова вероятность того, что цель будет поражена хотя бы одним стрелком?

    1) Пусть С - интересующее нас событие; противоположное событие - состоит в том, что оба стрелка промахнулись.

    3) Так как при стрельбе один стрелок не мешает другому, то события и независимы.

    Имеем: Р() = Р() Р() = =(1 - 0,9) (1 - 0,8) =

    0,1 0,2 = 0,02.

    4) Р(С) = 1 -Р() = 1 -0,02 = 0,98.

    Формула полной вероятности

    Пусть событие А может произойти в результате проявления одного и только одного события Н i (i = 1,2,... n) из некоторой полной группы несовместных событий H 1 , H 2,… H n . События этой группы обычно называют гипотезами.

    Формула полной вероятности. Вероятность события А рав­на сумме парных произведений вероятностей всех гипотез, об­разующих полную группу, на соответствующие условные ве­роятности данного события А:

    Р(А) = , где = 1.

    Пример 24.

    Имеется 3 одинаковые урны. В первой - 2 белых и 1 чер­ный шар, во второй - 3 белых и 1 черный шар, в третьей урне - 2 белых и 2 черных шара. Из выбранной наугад урны выбира­ется 1 шар. Какова вероятность того, что он окажется белым?

    Все урны считаются одинаковыми, следовательно, вероят­ность выбрать i-ю урну есть

    Р(H i) = 1/3, где i = 1, 2, 3.

    2) Вероятность вынуть белый шар из первой урны: (А) = .

    Вероятность вынуть белый шар из второй урны: (А) = .

    Вероятность вынуть белый шар из третьей урны: (А) = .

    3) Искомая вероятность:

    Р(А) = =0.63(8)

    Пример 25.

    В магазин для продажи поступает продукция трех фабрик, относительные доли которых: I - 50%, II - 30%, III - 20%. Для продукции фабрик брак соответственно составляет: I - 2%, П - 2%, III - 5%. Какова вероятность того, что изделие этой продукции, случайно приобретенное в магазине, окажется доб­рокачественным (событие А)?

    1) Здесь возможны следующие три гипотезы: H 1 , H 2, H 3 -
    приобретенная вещь выработана соответственно на I, II, III фабриках; система этих гипотез полная.

    Вероятности: P(H 1) = 0,5; Р(Н 2) = 0,3; Р(Н 3) = 0,2.

    2) Соответствующие условные вероятности события А рав­ны: (A) = 1-0,02 = 0,98; (A) = 1-0,03 = 0,97; (А) = = 1-0,05 = 0,95.

    3) По формуле полной вероятности имеем: Р(А) = 0,5 0,98 + + 0,3 0,97 + 0,2 0,95 = 0,971.

    Формула апостериорной вероятности (формула Бейеса)

    Рассмотрим ситуацию.

    Имеется полная группа несовместных гипотез H 1 , H 2, … H n , вероятности которых (i = 1, 2, ... п) известны до опыта (вероят­ности априори). Производится опыт (испытание), в результате которого зарегистрировано появление события А, причем изве­стно, что этому событию наши гипотезы приписывали опреде­ленные вероятности (i=1, 2, ...п). Каковы будут вероятности этих гипотез после опыта (вероятности апостериори)?

    Ответ на подобный вопрос дает формула апостериорной вероятности (формула Бейеса):

    , где i=1,2, ...п.

    Пример 26.

    Вероятность поражения самолета при одиночном выстреле для 1-го ракетного комплекса (событие А) равна 0,2, а для 2-го (событие В) - 0,1. Каждый из комплексов производит по одно­му выстрелу, причем зарегистрировано одно попадание в само­лет (событие С). Какова вероятность, что удачный выстрел при­надлежит первому ракетному комплексу?

    Решение.

    1) До опыта возможны четыре гипотезы:

    H 1 = А В - самолет поражен 1 -м комплексом и самолет поражен 2-м комплексом (произведение соответствует логичес­кому «и»),

    H 2 = А В - самолет поражен 1 -м комплексом и само­лет не поражен 2-м комплексом,

    H 3 = А В - самолет не поражен 1 -м комплексом и са­молет поражен 2-м комплексом,

    H 4 = А В - самолет не поражен 1 -м комплексом и са­молет не поражен 2-м комплексом.

    Эти гипотезы образуют полную группу событий.

    2) Соответствующие вероятности (при независимом действии комплексов):

    Р(H 1) = 0,2 0,1 = 0,02;

    Р(H 2) = 0,2 (1-0,1) = 0,18;

    Р(Н 3) = (1-0,2) 0,1 = 0,08;

    Р(H 4) = (1-0,2) (1-0,1) = 0,72.

    3) Так как гипотезы образуют полную группу событий, то должно выполняться равенство = 1.

    Проверяем: Р(H 1) + Р(Н 2) + Р(H 3) + Р(H 4) = 0,02 + 0,18 + + 0,08 + 0,72 = 1, таким образом, рассматриваемая группа гипо­тез верна.

    4) Условные вероятности для наблюдаемого события С при данных гипотезах будут: (С) = 0, так как по условию задачи зарегистрировано одно попадание, а гипотеза H 1 , предполагает два попадания:

    (С) = 1; (С) = 1.

    (С) = 0, так как по условию задачи зарегистрировано одно попадание, а гипотеза H 4 предполагает отсутствие попаданий. Следовательно, гипотезы H 1 , и H 4 отпадают.

    5)Вероятности гипотез H 2 и H 3 вычисляем по формуле Бейеса:

    0,7, 0,3.

    Таким образом, с вероятностью приблизительно 70% (0,7) можно утверждать, что удачный выстрел принадлежит первому ракетному комплексу.

    5.4. Случайные величины. Закон распределения дискретной случайной величины

    Достаточно часто на практике рассматриваются такие испытания, в результате реализации которых случайным образом получается некоторое число. Например, при бросании игрального кубика выпадает число очков от 1 до 6, при взятии 6 карт из колоды можно получить от 0 до 4 тузов. За определенный промежуток времени (скажем, день или месяц) в городе регистрируется то или иное количество преступлений, происходит какое-то количество дорожно-транспортных происшествий. Из орудия производится выстрел. Дальность полета снаряда также принимает какое-либо значение случайным образом.

    Во всех перечисленных испытаниях мы сталкиваемся с так называемыми случайными величинами.

    Числовая величина, принимающая то или иное значение в результате реализации испытания случайным образом, называется случайной величиной .

    Понятие случайной величины играет весьма важную роль в теории вероятностей. Если «классическая» теория вероятностей изучала главным образом случайные события, то современная теория вероятностей преимущественно имеет дело со случайными величинами.

    Далее будем обозначать случайные величины прописными латинскими буквами X, Y, Z и т.д., а их возможные значения – соответствующими строчными x, y, z. Например, если случайная величина имеет три возможных значения, то будем обозначать их так: , , .

    Итак, примерами случайных величин могут быть:

    1) количество очков, выпавших на верхней грани игрального кубика:

    2) число тузов, при взятии из колоды 6 карт;

    3) количество зарегистрированных преступлений за день или месяц;

    4) число попаданий в мишень при четырех выстрелов из пистолета;

    5) расстояние, которое пролетит снаряд при выстреле из орудия;

    6) рост случайно взятого человека.

    Можно заметить, что в первом примере случайная величина может принять одно из шести возможных значений: 1, 2, 3, 4, 5 и 6. Во втором и четвертом примерах число возможных значений случайной величины пять: 0, 1, 2, 3, 4. В третьем примере значением случайной величины может быть любое (теоретически) натуральное число или 0. В пятом и шестом примерах случайная величина может принимать любое действительное значение из определенного промежутка (а , b ).

    Если случайная величина может принимать конечное или счетное множество значений, то она называется дискретной (дискретно распределенной).

    Непрерывной случайной величиной называется такая случайная величина, которая может принимать все значения из некоторого конечного или бесконечного промежутка.

    Для задания случайной величины недостаточно перечислить ее всевозможные значения. Например, во втором и в третьем примерах случайные величины могли принимать одни и те же значения: 0, 1, 2, 3 и 4. Однако вероятности, с которыми эти случайные величины принимают свои значения, будут совершенно разными. Поэтому для задания дискретной случайной величины кроме перечня ее всех возможных значений нужно еще указать их вероятности.

    Соответствие между возможными значениями случайной величины и их вероятностями называютзаконом распределения дискретной случайной величины. , …, Х=

    Многоугольник распределения, также как и ряд распределения, полностью характеризует случайную величину. Он является одним из форм закона распределения.

    Пример 27. Случайным образом бросается монета. Построить ряд и многоугольник распределения числа выпавших гербов.

    Случайная величина, равная количеству выпавших гербов, может принимать два значения: 0 и 1. Значение 1 соответствует событию - выпадение герба, значение 0 – выпадению решки. Вероятности выпадения герба и выпадения решки одинаковы и равны . Т.е. вероятности, с которыми случайная величина принимает значения 0 и 1, равны . Ряд распределения имеет вид:

    X
    p

    При оценки вероятности наступления какого-либо случайного события очень важно предварительно хорошо представлять, зависит ли вероятность (вероятность события) наступления интересующего нас события от того, как развиваются остальные события. В случае классической схемы, когда все исходы равновероятны, мы уже можем оценить значения вероятности интересующего нас отдельного события самостоятельно. Мы можем сделать это даже в том случае, если событие является сложной совокупностью нескольких элементарных исходов. А если несколько случайных событий происходит одновременно или последовательно? Как это влияет на вероятность реализации интересующего нас события? Если я несколько раз кидаю игральную кость, и хочу, чтобы выпала "шестерка", а мне все время не везет, значит ли это, что надо увеличивать ставку, потому что, согласно теории вероятностей, мне вот-вот должно повезти? Увы, теория вероятности не утверждает ничего подобного. Ни кости, ни карты, ни монетки не умеют запоминать, что они продемонстрировали нам в прошлый раз. Им совершенно не важно, в первый раз или в десятый раз сегодня я испытываю свою судьбу. Каждый раз, когда я повторяю бросок, я знаю только одно: и на этот раз вероятность выпадения "шестерки" снова равна одной шестой. Конечно, это не значит, что нужная мне цифра не выпадет никогда. Это означает лишь то, что мой проигрыш после первого броска и после любого другого броска - независимые события. События А и В называются независимыми, если реализация одного из них никак не влияет на вероятность другого события. Например, вероятности поражения цели первым из двух орудий не зависят от того, поразило ли цель другое орудие, поэтому события "первое орудие поразило цель" и "второе орудие поразило цель" независимы. Если два события А и В независимы, и вероятность каждого из них известна, то вероятность одновременного наступления и события А, и события В (обозначается АВ) можно посчитать, воспользовавшись следующей теоремой.

    Теорема умножения вероятностей для независимых событий

    P(AB) = P(A)*P(B) вероятность одновременного наступления двух независимых событий равна произведению вероятностей этих событий.

    Пример 1 . Вероятности попадания в цель при стрельбе первого и второго орудий соответственно равны: р 1 = 0,7; р 2 = 0,8. Найти вероятность попадания при одном залпе обоими орудиями одновременно.

    как мы уже видели события А (попадание первого орудия) и В (попадание второго орудия) независимы, т.е. Р(АВ)=Р(А)*Р(В)=р1*р2=0,56. Что произойдет с нашими оценками, если исходные события не являются независимыми? Давайте немного изменим предыдущий пример.

    Пример 2. Два стрелка на соревнованиях стреляют по мишеням, причем, если один из них стреляет метко, то соперник начинает нервничать, и его результаты ухудшаются. Как превратить эту житейскую ситуацию в математическую задачу и наметить пути ее решения? Интуитивно понятно, что надо каким-то образом разделить два варианта развития событий, составить по сути дела два сценария, две разные задачи. В первом случае, если соперник промахнулся, сценарий будет благоприятный для нервного спортсмена и его меткость будет выше. Во втором случае, если соперник прилично реализовал свой шанс, вероятность поразить мишень для второго спортсмена снижается. Для разделения возможных сценариев (их часто называют гипотезами) развития событий мы будем часто использовать схему "дерева вероятностей". Эта схема похожа по смыслу на дерево решений, с которым Вам, наверное, уже приходилось иметь дело. Каждая ветка представляет собой отдельный сценарий развития событий, только теперь она имеет собственное значение так называемой условной вероятности (q 1 , q 2 , q 1 -1, q 2 -1).

    Эта схема очень удобна для анализа последовательных случайных событий. Остается выяснить еще один немаловажный вопрос: откуда берутся исходные значения вероятностей в реальных ситуациях? Ведь не с одними же монетами и игральными костями работает теория вероятностей? Обычно эти оценки берутся из статистики, а когда статистические сведения отсутствуют, мы проводим собственное исследование. И начинать его нам часто приходится не со сбора данных, а с вопроса, какие сведения нам вообще нужны.

    Пример 3. Допустим, нам надо оценить в городе с населением в сто тысяч жителей объем рынка для нового товара, который не является предметом первой необходимости, например, для бальзама по уходу за окрашенными волосами. Рассмотрим схему "дерева вероятностей". При этом значение вероятности на каждой "ветке" нам надо приблизительно оценить. Итак, наши оценки емкости рынка:

    1) из всех жителей города женщин 50%,

    2) из всех женщин только 30% красят волосы часто,

    3) из них только 10% пользуются бальзамами для окрашенных волос,

    4) из них только 10% могут набраться смелости попробовать новый товар,

    5) из них 70% обычно покупает все не у нас, а у наших конкурентов.


    По закону перемножения вероятностей, определяем вероятность интересующего нас события А ={житель города покупает у нас этот новый бальзам}=0,00045. Умножим это значение вероятности на число жителей города. В результате имеем всего 45 потенциальных покупательниц, а если учесть, что одного пузырька этого средства хватает на несколько месяцев, не слишком оживленная получается торговля. И все-таки польза от наших оценок есть. Во-первых, мы можем сравнивать прогнозы разных бизнес-идей, на схемах у них будут разные "развилки", и, конечно, значения вероятности тоже будут разные. Во-вторых, как мы уже говорили, случайная величина не потому называется случайной, что она совсем ни от чего не зависит. Просто ее точное значение заранее не известно. Мы знаем, что среднее количество покупателей может быть увеличено (например, с помощью рекламы нового товара). Так что имеет смысл сосредоточить усилия на тех "развилках", где распределение вероятностей нас особенно не устраивает, на тех факторах, на которые мы в состоянии повлиять. Рассмотрим еще один количественный пример исследования покупательского поведения.

    Пример 3. За день продовольственный рынок посещает в среднем 10000 человек. Вероятность того, что посетитель рынка заходит в павильон молочных продуктов, равна 1/2. Известно, что в этом павильоне в среднем продается в день 500 кг различных продуктов. Можно ли утверждать, что средняя покупка в павильоне весит всего 100 г?

    Обсуждение.

    Конечно, нельзя. Понятно, что не каждый, кто заходил в павильон, в результате что-то там купил.


    Как показано на схеме, чтобы ответить на вопрос о среднем весе покупки, мы должны найти ответ на вопрос, какова вероятность того, что человек, зашедший в павильон, что-нибудь там купит. Если таких данных в нашем распоряжении не имеется, а нам они нужны, придется их получить самим, понаблюдав некоторое время за посетителями павильона. Допустим, наши наблюдения показали, что только пятая часть посетителей павильона что-то покупает. Как только эти оценки нами получены, задача становится уже простой. Из 10000 человек, пришедших на рынок, 5000 зайдут в павильон молочных продуктов, покупок будет только 1000. Средний вес покупки равен 500 грамм. Интересно отметить, что для построения полной картины происходящего, логика условных "ветвлений" должна быть определена на каждом этапе нашего рассуждения так же четко, как если бы мы работали с "конкретной" ситуацией, а не с вероятностями.

    Задачи для самопроверки.

    1. Пусть есть электрическая цепь, состоящая из n последовательно соединенных элементов, каждый из которых работает независимо от остальных. Известна вероятность p невыхода из строя каждого элемента. Определите вероятность исправной работы всего участка цепи (событие А).


    2. Студент знает 20 из 25 экзаменационных вопросов. Найдите вероятность того, что студент знает предложенные ему экзаменатором три вопроса.

    3. Производство состоит из четырех последовательных этапов, на каждом из которых работает оборудование, для которого вероятности выхода из строя в течение ближайшего месяца равны соответственно р 1 , р 2 , р 3 и р 4 . Найдите вероятность того, что за месяц не случится ни одной остановки производства из-за неисправности оборудования.

    Теорема. (Умножения вероятностей) Вероятность произведения двух событий (совместного появления этих событий) равна произведению вероятности одного из них на условную вероятность другого, вычисленную при условии, что первое событие уже наступило.

    Также можно записать:

    Доказательство этой теоремы непосредственно вытекает из определения условной вероятности.

    Если события независимые, то , и теорема умножения вероятностей принимает вид:

    В случае произведения нескольких зависимых событий вероятность равна произведению одного из них на условные вероятности всех остальных при условии, что вероятность каждого последующего вычисляется в предположении, что все остальные события уже совершились.

    Из теоремы произведения вероятностей можно сделать вывод о вероятности появления хотя бы одного события .

    Если в результате испытания может появиться п событий, независимых в совокупности, то вероятность появления хотя бы одного из них равна

    Здесь событие А обозначает наступление хотя бы одного из событий A i , а q i – вероятность противоположных событий .

    Пример 1. Из полной колоды карт (52 шт.) одновременно вынимают четыре карты. Найти вероятность того, что среди этих четырех карт будет хотя бы одна бубновая или одна червонная карта.



    Решение.

    Обозначим появление хотя бы одной бубновой карты – событие А , появление хотя бы одной червонной карты – событие В . Таким образом нам надо определить вероятность события С = А + В .

    Кроме того, события А и В – совместны, т.е. появление одного из них не исключает появления другого.

    Всего в колоде 13 червонных и 13 бубновых карт.

    Найдем вероятность события, противоположного событию С (среди извлеченных карт не будет ни бубновых ни червовых):

    при вытаскивании первой карты вероятность того, что не появится ни червонной ни бубновой карты равна , при вытаскивании второй карты - , третьей - , четвертой - .

    Тогда вероятность того, что среди вынутых карт не будет ни бубновых, ни червонных равна .

    Искомая вероятность

    Пример 2. Чему равна вероятность того, что при бросании трех игральных костей 6 очков появится хотя бы на одной из костей?

    Решение .

    Вероятность выпадения 6 очков при одном броске кости равна . Вероятность того, что не выпадет 6 очков - . Вероятность того, что при броске трех костей не выпадет ни разу 6 очков равна .

    Тогда вероятность того, что хотя бы один раз выпадет 6 очков равна .

    Пример 3. В барабане револьвера находятся 4 патрона из шести в произвольном порядке. Барабан раскручивают, после чего нажимают на спусковой крючок два раза. Найти вероятности: а) хотя бы одного выстрела, б) двух выстрелов, в) двух осечек.

    Решение .

    Вероятность выстрела при первом нажатии на курок (событие А ) равна , вероятность осечки - Вероятность выстрела при втором нажатии на курок зависит от результата первого нажатия.

    Так если в первом случае произошел выстрел, то в барабане осталось только 3 патрона, причем они распределены по 5 гнездам, т.к. при втором нажатии на курок напротив ствола не может оказаться гнездо, в котором был патрон при первом нажатии на курок.

    Условная вероятность выстрела при второй попытке - если в первый раз был выстрел, - если в первый раз произошла осечка.

    Условная вероятность осечки во второй раз - , если в первый раз произошел выстрел, - если в первый раз была осечка.

    Рассмотрим вероятности того, что во втором случае произойдет выстрел (событие В ) или произойдет осечка (событие ) при условии, что в первом случае произошел выстрел (событие А ) или осечка (событие ).

    Два выстрела подряд

    Первая осечка, второй выстрел

    Первый выстрел, вторая осечка

    Две осечки подряд

    Эти четыре случая образуют полную группу событий (сумма их вероятностей равна единице)

    Анализируя полученные результаты, видим, что вероятность хотя бы одного выстрела равна сумме

    Пример 4. Два стрелка стреляют по мишени. Вероятность попадания в мишень при одном выстреле для первого стрелка равна 0,7, а для второго – 0,8. Найти вероятность того, что при одном залпе в мишень попадает только один из стрелков.

    Решение .

    Обозначим попадание в цель первым стрелком – событие А, вторым – событие В, промах первого стрелка – событие , промах второго – событие .

    Вероятность того, что первый стрелок попадет в мишень, а второй – нет равна

    Вероятность того, что второй стрелок попадет в цель, а первый – нет равна

    Тогда вероятность попадания в цель только одним стрелком равна

    Тот же результат можно получить другим способом – находим вероятности того, что оба стрелка попали в цель и оба промахнулись. Эти вероятности соответственно равны:

    Тогда вероятность того, что в цель попадет только один стрелок равна:

    Пример 5. Вероятность того, что взятая наугад деталь из некоторой партии деталей, будет бракованной равна 0,2. Найти вероятность того, что из трех взятых деталей 2 окажется не бракованными.

    Решение .

    Обозначим бракованную деталь – событие А, не бракованную – событие .

    Если среди трех деталей оказывается только одна бракованная, то это возможно в одном из трех случаев: бракованная деталь будет первой, второй или третьей.

    Пример 6. Вероятности того, что нужная деталь находится в первом, втором, третьем или четвертом ящике, соответственно равны 0,6, 0,7, 0,8, 0,9. Найти вероятности того, что эта деталь находится: а) не более, чем в трех ящиках; б) не менее, чем в двух ящиках.

    Решение .

    а) Вероятность того, что данная деталь находится во всех четырех ящиках, равна

    Вероятность того, что нужная деталь находиться не более, чем в трех ящиках равна вероятности того, что она не находится во всех четырех ящиках.

    б) Вероятность того, что нужная деталь находится не менее, чем в двух ящиках, складывается из вероятностей того, что деталь находиться только в двух ящиках, только в трех ящиках, только в четырех ящиках. Конечно, эти вероятности можно посчитать, а потом сложить, однако, проще поступить иначе. Та же вероятность равна вероятности того, что деталь не находится только в одном ящике и имеется вообще.