Как рассчитать и намотать импульсный трансформатор для полумостового блока питания? Как намотать трансформатор: пошаговая инструкция Как наматывать повышающий трансформатор эл удочку.

Импульсные трансформаторы (ИТ) являются востребованным прибором в хозяйственной деятельности. Часто устанавливают в блоки питания бытовой, компьютерной, специальной техники. Импульсный трансформатор своими руками создают мастера с минимальным опытом работы в области радиотехники. Что это за устройство, а также принцип работы будут рассмотрены далее.

Область применения

Задача импульсного трансформатора заключается в защите электрического прибора от короткого замыкания, чрезмерного увеличения значения напряжения, нагрева корпуса. Стабильность блоков питания обеспечена импульсными трансформаторами. Подобные схемы применяются в триодных генераторах, магнетронах. Импульсник применяется при работе инвертора, газового лазера. Данные приборы устанавливают в схемах в качестве дифференцирующего трансформатора.

Радиоэлектронная аппаратура основана на трансформаторной способности импульсных преобразователей. При использовании импульсного блока питания организовывается работа цветного телевизора, обычного компьютерного монитора и т. д. Помимо обеспечения потребителя током требуемой мощности и частоты, трансформатором выполняется стабилизация значения напряжения при работе оборудования.

Видео: Как работает импульсный трансформатор?

Требования к приборам

Преобразователи в блоках питания обладают рядом характеристик. Это функциональные устройства, имеющие определенную габаритную мощность. Они обеспечивают правильное функционирование элементов в схеме.

Импульсный бытовой трансформатор обладает надежностью и высоким перегрузочным порогом. Преобразователь отличается стойкостью к механическим, климатическим воздействиям. Поэтому схема импульсного блока питания телевизоров, компьютеров, планшетов. отличается повышенной электрической устойчивостью.

Приборы обладают небольшой габаритной характеристикой. Стоимость представленных агрегатов зависит от области применения, трудозатрат на изготовление. Отличие представленных трансформаторов от иных подобных приборов заключается в их высокой надежности.

Принцип работы

Рассматривая, как работает агрегат представленного типа, нужно понять отличия между обычными силовыми установками и устройствами ИТ. Намотка трансформатора имеет разную конфигурацию. Это две катушки, связанные магнитоприводом. В зависимости от количества витков первичной и вторичной намотки, на выходе создается электричество с заданной мощностью. Например, в трансформаторе преобразовывается напряжение 12 в 220 В.

На первичный контур подаются однополярные импульсы. Сердечник остается в состоянии постоянного намагничивания. На первичной намотке определяются импульсные сигналы прямоугольной формы. Интервал между ними во времени короткий. При этом появляются перепады индуктивности. Они отражаются импульсами на вторичной катушке. Эта особенность является основой принципов функционирования подобного оборудования.

Разновидности

Выделяют разные типы импульсной схемы силового оборудования. Агрегаты отличаются в первую очередь формой конструкции. От этого зависят эксплуатационные характеристики. По виду обмотки различают агрегаты:


Поперечное сечение сердечника бывает прямоугольное, круглое. Маркировка обязательно содержит информацию об этом факте. Также различают тип обмоток. Катушки бывают:

  • Спиральные.
  • Цилиндрические.
  • Конические.

В первом случае индуктивность рассеивания будет минимальной. Представленный тип преобразователя применяется для автотрансформаторов. Намотка при этом выполняется из фольги или тенты из специального материала.

Цилиндрический тип обмотки характеризуется низким показателем рассеивания индуктивности. Это простая, технологичная конструкция.

Конические разновидности значительно уменьшают рассеивание индуктивности. Емкость обмоток при этом мало увеличивается. Изоляция между двумя слоями обмоток пропорциональна напряжению между первичными витками. Толщина контуров увеличивается от начала к концу.

Представленное оборудование отличается различными эксплуатационными характеристиками. В их число входят габаритная мощность, напряжение на первичной, вторичной обмотке, масса и размер. При указании маркировки учитываются перечисленные характеристики.

Преимущества

Блоки питания с импульсным устройством обладают массой достоинств перед аналоговыми приборами. Именно по этой причине их подавляющее большинство изготавливается по представленной схеме.

Трансформаторы импульсного типа отличаются следующими преимуществами:

  1. Малый вес.
  2. Низкая цена.
  3. Повышенный уровень КПД.
  4. Расширенный диапазон напряжения.
  5. Возможность встроить защиту.

Меньшим весом конструкция обладает из-за увеличения частоты сигнала. Конденсаторы уменьшаются в объеме. Схема их выпрямления наиболее простая.

Сравнивая обычные и импульсные блоки питания, видно, что в последних потери энергии сокращаются. Они наблюдаются при переходных процессах. КПД при этом может составлять 90-98%.

Меньшие габариты агрегатов позволяют снизить затраты на производство. Материалоемкость конечного продукта значительно уменьшается. Запитывать представленные аппараты можно от тока с различными характеристиками. Цифровые технологии, которые применяются при создании малогабаритных моделей, позволяют применять в конструкции специальные защитные блоки. Они предотвращают появление короткого замыкания, прочие аварийные ситуации.

Единственным недостатком импульсных разновидностей устройств является появление высокочастотных помех. Их приходится подавлять различными методами. Поэтому в некоторых разновидностях точных цифровых приборов подобные схемы не используются.

Разновидности материалов

Представленное оборудование изготавливается из различных материалов. Создавая блоки питания представленного типа, потребуется рассмотреть все возможные варианты. Применяются следующие материалы:

  1. Электротехническая сталь.
  2. Пермаллой.
  3. Феррит.

Одним из лучших вариантов является альсифер. Однако его практически не найти в свободной продаже. Поэтому, желая создать оборудование самостоятельно, его не рассматривают в качестве возможного варианта.

Чаще всего для создания сердечника применяется электротехническая сталь марок 3421-3425, 3405-3408. Магнитно-мягкими характеристиками известен пермаллой. Это сплав, который состоит из никеля и железа. Его легируют в процессе обработки.

Для импульсов, интервал которых находится в пределах наносекунды, используется феррит. Этот материал имеет высокое удельное сопротивление.

Расчет

Чтобы создать и намотать трансформаторные контуры самостоятельно, потребуется произвести расчет импульсного трансформатора. Применяется специальная методика. Сначала определяют ряд исходных характеристик оборудования.

Например, на первичной обмотке установлено напряжение 300 В. Частота преобразования равняется 25 кГц. Сердечник выполнен из ферритового кольца типоразмером 31 (40х25х11). Сначала потребуется определить площадь сердечника в поперечном сечении:

П = (40-25)/2*11 = 82,5 мм².

На основе полученных данных можно найти диаметр сечения провода, который потребуется для создания контуров:

Д = 78/181 = 0,43 мм.

Площадь сечения в этом случае равняется 0,12 м². Максимально допустимый ток на первичной катушке при таких параметрах не должен превышать 0,6 А. Габаритную мощность можно определить по следующей формуле:

ГМ = 300 * 0,6 = 180 Вт.

На основе полученных показателей можно самостоятельно рассчитать параметры всех составляющих будущего прибора. Создать трансформатор этого типа станет увлекательным занятием для радиолюбителя.

Подобный аппарат является надежным и качественным при правильной последовательности всех действий. Расчет проводится для каждой схемы индивидуально. При изготовлении подобного оборудования вторичная обмотка должна замыкаться на нагрузку потребителя. В противном случае прибор не будет считаться безопасным.

От типа сборки, материалов и прочих параметров зависит работа трансформатора. Качество схемы напрямую зависит от импульсного блока. Поэтом расчетам, выбору материалов уделяется высокое значение.

Интересное видео: Импульсный трансформатор своими руками

Рассмотрев особенности импульсных трансформаторов, можно понять их важность для многих радиоэлектронных схем. Создать подобное устройство самостоятельно можно только после соответствующего расчета.

!
В этой статье речь пойдет о том, как правильно мотать импульсный трансформатор.

Автор YouTube канала «Open Frime TV» Роман, не так давно собирал импульсный блок питания на микросхеме IR2153, а сейчас он расскажет, как самостоятельно намотать импульсный трансформатор для самодельного блока питания.

Так уж сложилось, что первый намотанный автором трансформатор был на ферритовом кольце, и после этого он уже не мог мотать на ш-образных, и на то есть несколько причин. Первое - это относительно небольшое место намотки ш-образных сердечников, а у тороидальных же можно растянуть по всему кольцу. И отсюда появляется вторая проблема, если намотали много витков, то потом закрыть половинки сердечника сложно.






Да, вы можете сказать, что обратной стороной медали будет распространенность таких сердечников в блоках питания компьютера, но вы попробуйте сначала разберите нормально сердечник, не сломав его. Хотя уже было экспериментально доказано, что поломанный сердечник после склейки работает так же, как и новый, но душе спокойнее, когда используется цельный феррит.


Еще одно, при одинаковых размерах ферритовое кольцо имеет большую мощность, чем ш-образный сердечник. Вот к примеру, несколько сердечников. Ш-образный может выдать мощность 150-180Вт, а примерно такой же по размеру тороид может выдать 250Вт.


Для сравнения, вот еще один тороид, который всего на 1 см больше предыдущего, а этот уже может выдать 600Вт мощности.


Автор надеется, что приведенные им доводы были весьма вескими, и советует переходить на намотку трансформаторов на тороидальные сердечники. Ну а теперь собственно переходим к намотке. Для этого нам понадобится сердечник. Они бывают разных типов. Вот такие, еще производства СССР и вот такие сделанные в Китае:




Можно использовать как те, так и другие. У сердечников, изготовленных в Советском Союзе должна быть маркировка 2000НМ, а при выборе китайских необходимо следить за проницаемостью, она должна быть в районе 2000-2200.




С этим разобрались, идем дальше. Как видим, китайские сердечники уже покрыты краской и по сути можно мотать прямо на сердечник без изоляции.


Но тогда провод будет скользить по поверхности. Если вас, как и автора такое не устраивает, то для изоляции можно использовать вот такую желтую высоковольтную майларовую ленту:


Или же можно использовать вот такой термоскотч:


Применять в данном случае классическую синюю изоленту крайне нежелательно, так как при нагреве она сильно задерживает тепло. Перед изготовлением трансформатора вы уже знаете какое напряжение и мощность он должен выдать. Вот и автор придумал себе следующее техническое задание: необходимо намотать трансформатор на 24В, мощностью 80Вт для будущего проекта паяльной станции.


С расчетами нам поможет следующая программа:


Ссылку на нее автор оставил в описании под видеороликом (ссылка ИСТОЧНИК в конце статьи). В программе водим необходимое значение. Если делаете импульсный блок питания по схеме автора, то просто повторяете действия как на экране (более подробно это показано в видеоролике автора внизу страницы).

Отличия будут в нескольких параметрах. Первое - это частота.


Она зависит от номинала вот этого резистора:


Посчитать ее можно в онлайн калькуляторе. Сюда достаточно забить номинал конденсатора и резистора. На выходе получим частоту.


Также у вас будут свои выходные напряжения и диаметры проводов.


Когда разобрались с данными приступаем к выбору сердечника. Если у вас есть в наличие сердечники, то замеряем их размер с помощью линейки или штангенциркуля, а потом ищем в программе такой же типоразмер. Когда указали свой сердечник, программа покажет габаритную мощность, и вы уже понимаете подходит он или нужно искать новый.




Если в наличии нет сердечников, то просто начните перебирать разные размеры. Таким образом находим нужный сердечник, а потом остается только купить его в магазине. Надеюсь, вам стал понятен принцип выбора сердечников. У автора в наличии были сердечники с минимальной мощностью 250Вт, их можно спокойно использовать. Да, будет небольшой перерасход материала, но это не страшно, лучше большая мощность, чем меньшая.

Автор решил использовать сердечник с заведомо большей мощности, потому что на нем будет нагляднее видно процесс намотки. Когда ввели все данные в программу, нажимаем кнопку «рассчитать», и получаем необходимые параметры для намотки.


Как вы помните, нам нужно получить напряжение 24В на выходе, но по расчетам получается 26В. В таком случае можно изменять частоту и искать такое значение, при котором на выходе будет нужное напряжение. Вместе с изменением частоты изменяются и параметры обмотки. Вот к примеру, мы нашли частоту 38кГц, при которой на выходе получаем напряжение ровно 24В. Переходим в онлайн калькулятор, и изменяя номинал резистора, находим значение, при котором будет нужная частота в 38кГц, а потом уже непосредственно при запайке резистора на плату, на нем выставляем нужный номинал.




Можно переходить к намотке. Изолируем сердечник.


Теперь можно мотать первичную обмотку, но на глаз равномерно распределить будет сложно, поэтому сделаем разметку. Нам понадобится листик и транспортир. Делаем 2 диаметра: внутренний и наружный. Ставим точку отсчета и с помощью транспортира делим нашу разметку на то количество, сколько нужно витков. Потом вырезаем ее, и с помощью скотча приклеиваем на сердечник.






Далее нужно отмотать необходимую длину провода для намотки. Сделать это можно зная длину одного витка, а также количество витков. Замеряем один виток и умножаем на количество, а также добавляем 5% из-за того, что провод ложится не виток к витку, а немного растянуто, а еще и выводы необходимо сделать.

Когда узнали длину провода, отматываем его, отрезаем и можно мотать. Для этого автор пользуется вот таким приспособлением:




На него наматывается провод и потом спокойно продевая его в сердечник производится намотка строго по разметке. Для крепления витков можно использовать суперклей.




Теперь осталось подпаять многожильный провод к первички и заизолировать тем же термоскотчем.


Вот и все - первичка готова, приступаем к изготовлению вторички. Направление намотки первички и вторички может не совпадать - это неважно. Процедура намотки вторички практически не отличается от намотки первичной обмотки, такая же разметка, витков правда меньше, но процесс идентичен.




А теперь самое важное. Вот здесь путается большинство людей, это то, как сделать среднюю точку. Итак, сейчас автор продемонстрирует это максимально наглядно. Вот мы намотали одну половину вторички - это будет средней точкой.

После ряда статьей про электрошоковые устройства я заметил, что у начинающих радиолюбителей возникает много вопросов связанные с намоткой катушек и трансформаторов, и вот решил об этом подробно написать.

Для начала нужно поискать старый блок питания, самый лучший вариант бп от компьютера, в нем как раз есть трансформаторы нужной величины.

Итак выпаиваем для начала трансформатор, снимаем сердечик (если трудно снимается, желательно подогреть феррит зажигалкой), после чего с каркаса нужно снять все заводские обмотки.


Обмотка содержит 12 витков с отводом от середине. Как это делают: Сначала аккуратно мотаем 6 витков, затем провод скручиваем и делаем отвод, потом мотаем еще 6. Старайтесь все витки мотать в одном ряду, виток к витку!


После намотки первичной обмотки, ее нужно изолировать. Изоляцию лично в делаю при помощи прозрачного скотча, хотя можно использовать тонкую изоляционную ленту или конденсаторную бумагу. В общей сложности на первичку ставим 5- 6 слоев изоляции.


Вторичная обмотка намотана в том же направлении, что и первичная (важно!). Содержит обмотка от 400 до 600 витков, если мотать больше, то возрастает опасность пробоя. Обмотку мотаем по слоям, в каждом слою 50 - 70 витков, после завершении намотки первого слоя ставим изоляция скотчем ии мотаем второй слой.

Трансформатор представляет собой агрегат, предназначенный для передачи электроэнергии с измененными показателями по сети к конечному потребителю. Это оборудование отличается определенной схемой. Трансформаторы могут понижать или повышать напряжение.

Со временем сердечнику может потребоваться перемотка. В этом случае радиолюбитель сталкивается с вопросом, как намотать трансформатор . Этот процесс занимает достаточно много времени и требует концентрации внимания. Однако сложного ничего в перемотке контура нет. Для этого существует пошаговая инструкция.

Конструкция

Трансформатор работает по принципу электромагнитной индукции. Он может иметь различную конструкцию магнитопривода. Однако одной из самых распространенных является тороидальная катушка. Ее конструкция была изобретена еще Фарадеем. Чтобы понимать, как намотать тороидальный трансформатор или прибор любой другой конструкции, необходимо изначально рассмотреть конструкцию его катушки.

Тороидальные устройства преобразуют переменное напряжение одной мощности в другую. Бывают однофазные и трехфазные конструкции. Они состоят из нескольких элементов. В состав конструкции входит сердечник из ферромагнитной стали. Есть резиновая прокладка, первичная, вторичная намотка, а также изоляция между ними.

Обмотка имеет экран. покрыт и сердечник. Также применяется предохранитель, крепежные элементы. Чтобы соединить обмотки в единую систему, применяется магнитопривод.

Приспособление для намотки

Тороидальные трансформаторы могут быть разных видов. Это необходимо учитывать в процессе создания контура. Намотать трансформатор 220/220 , 12/220 или прочие разновидности можно при помощи специального инструмента.

Чтобы упростить процесс, можно изготовить особый аппарат. Он состоит из которые скреплены между собой металлическим прутом. Он имеет форму рукояти. Этот вертел поможет быстро намотать контуры. Прутик должен быть не толще 1 см. Он будет пронизывать каркас насквозь. При помощи дрели выполнить этот процесс будет проще.

Дрель крепится на плоскости стола. Она будет находиться параллельно. Рукоять должна свободно вращаться. Прут вставляется в патрон дрели. Перед этим на металлический штырь нужно надеть колодку с каркасом будущего трансформатора. Прут может иметь резьбу. Этот вариант считается предпочтительнее. Колодку можно будет зажать с обеих сторон при помощи гайки, текстолитовыми пластинами или дощечками из дерева.

Другие инструменты

Чтобы намотать трансформатор 12/220, импульсный, ферритовый или прочие разновидности конструкций, необходимо подготовить еще несколько инструментов. Вместо представленной выше конструкции можно воспользоваться индуктором от телефона, устройством для перемотки пленки, машиной для шпули с ниткой. Вариантов существует множество. Они должны обеспечить плавность, равномерность процесса.

Также потребуется подготовить прибор для размотки. По своему принципу подобное оборудование похоже на представленные выше устройства. Однако при обратном процессе можно производить вращение без ручки.

Чтобы не считать число витков самостоятельно, следует приобрести специальный прибор. Он будет учитывать количество витков на катушке. Для этих целей может подойти обыкновенный водяной счетчик или велосипедный спидометр. При помощи гибкого валика выбранный прибор учета соединяется с наматывающим оборудованием. Можно сосчитать количество витков катушки устно.

Расчеты

Чтобы понять, как намотать импульсный трансформатор, необходимо произвести расчеты. Если же осуществляется перемотка уже существующей катушки, можно просто запомнить изначальное количество ее витков и приобрести провод идентичного сечения. В этом случае без расчетов можно обойтись.

Но если требуется создать новый трансформатор, нужно определить количество и тип материалов. Например, для устройства с рабочей нагрузкой от 12 до 220 В потребуется аппарат от 90 до мощностью. Взять магнитопривод можно, например, из старого телевизора. Сечение проводника определяется в соответствии с мощностью агрегата.

Количество витков катушек определяется для 1В. Этот показатель приравнивается к 50 Гц. Первичная (П) и вторичная (В) обмотки рассчитываются так:

  • П = 12 х 50/10 = 60 витков.
  • В = 220 х 50/10 = 1100 витков.

Чтобы определить в них токи, применяется следующая формула:

  • Тп = 150: 12 = 12,5 А.
  • Тв = 150: 220 = 0,7 А.

Полученный результат необходимо учесть при выборе материалов для создания нового прибора.

Изоляция слоев

Чтобы намотать ферритовый трансформатор или другую разновидность приборов, необходимо изучить еще один нюанс. Между определенными слоями проводников следует устанавливать Чаще всего для этого применяется конденсатная или кабельная бумага. Все необходимые материалы можно приобрести в специализированных магазинах. Бумага должна обладать достаточной плотностью, быть ровной без просветов или отверстий.

Между отдельными катушками изоляционные слои создаются из более прочных материалов. Чаще всего применяется лакоткань. Ее с обеих сторон обкладывают бумагой. Это необходимо еще и для выравнивания поверхности перед проведением намотки. Если лакоткань найти не удалось, вместо нее можно использовать сложенную в несколько слоев бумагу.

Бумагу режут на полоски, ширина которых должна быть больше, чем контур. Они должны выходить за края обмотки на 3-4 мм. Лишний материал будет подворачиваться вверх. Это позволит хорошо защитить края катушки.

Каркас

Чтобы понять, как правильно намотать трансформатор , следует уделить внимание каждой детали этого процесса. Подготовив изоляцию, провод и инструмент, следует сделать каркас. Для этого можно взять картон. Внутренняя часть каркаса должна быть больше стержня сердечника.

Для О-образного магнитопривода необходимо подготовить 2 катушки. Для сердечника Ш-образной формы потребуется один контур. В первом варианте круглый сердечник необходимо покрыть изоляционным слоем. Только после этого приступают к намотке.

Если же магнитопривод будет Ш-образный, каркас выкраивают из гильзы. Из картона вырезаются щетки. Катушку в этом случае необходимо будет завернуть в компактную коробку. Щетки надеваются на гильзы. Подготовив каркас, можно приступать к намотке проводника.

Пошаговая инструкция намотки

Будет достаточно просто. Для этого катушку с проводом следует установить в оборудовании для размотки. С нее будет снят старый провод. Каркас будущего трансформатора нужно поставить в оборудование для намотки. Далее можно производить вращательные движения. Они должны быть размеренные, без рывков.

В процессе такой процедуры провод со старой катушки будет перемещен на новый каркас. Между проводом и поверхностью стола расстояние должно составлять не менее 20 см. Это позволит положить руку и фиксировать кабель.

На стол нужно заранее выложить все необходимые инструменты и оборудование. Под рукой должна быть бумага изоляционная, ножницы, наждачная бумага, паяльник (включенный в сеть), ручка или карандаш. Одной рукой необходимо поворачивать ручку устройства для наматывания, а второй - проводник фиксировать. Нужно чтобы витки укладывались равномерно, ровно.

Рассматривая пошаговую инструкцию, как намотать трансформатор , следует уделить внимание последующим операциям. После укладывания проводника каркас потребуется заизолировать. Сквозь его отверстие необходимо продеть конец провода, выведенный из контура. Фиксация будет временной.

Опытные радиолюбители рекомендуют перед проведением намотки сначала потренироваться. Когда получится накладывать витки ровно, можно приступать к работе. Угол натяжения и провода должны быть постоянными. Каждый следующий слой не требуется мотать до упора. Иначе проводник может соскользнуть с предназначенного для него места.

В процессе наматывания витков нужно установить счетчик на нулевую отметку. Если же его нет, нужно проговаривать количество поворотов проволоки вслух. При этом следует максимально сконцентрироваться, чтобы не сбиться со счета.

Изоляцию нужно будет прижать кольцом из мягкой резины или клеем. Каждый последующий слой будет на 1-2 витка меньше, чем предыдущий.

Процесс соединения

Рассматривая, как намотать трансформатор , необходимо изучить процесс соединения проводов. Если при наматывании жила оборвется, следует произвести процесс спайки. Эта процедура может потребоваться и в том случае, если изначально предполагается создавать контур из нескольких отдельных кусков проволоки. Спайку выполняют в соответствии с толщиной провода.

Для проволоки толщиной до 0,3 мм необходимо очистить концы на 1,5 см. Затем их можно просто скрутить и спаять при помощи соответствующего инструмента. Если же жила толстая (более 0,3 мм), можно спаять концы напрямую. Скручивание в этом случае не потребуется.

Если же провод очень тонкий (менее 0,2 мм), его можно сварить. Их скручивают без проведения процедуры зачистки. Место соединения подносят в пламя зажигалки или спиртовки. В месте соединения должен появиться наплыв из металла. Место соединения проводов нужно обязательно изолировать лакотканью или бумагой.

Испытание

Изучив процедуру, как намотать трансформатор, следует учесть еще несколько рекомендаций. Количество витков тонкого проводника может достигать несколько тысяч. В этом случае лучше использовать специальное счетное оборудование. Обмотку защищают сверху бумагой. Для толстого проводника наружная защита не требуется.

Чтобы оценить надежность изоляции, необходимо поочередно касаться выведенным проводником каждого выхода сетевых контуров. Процедуру проверки нужно выполнять очень осторожно. Следует исключить вероятность удара током.

Рассмотрев пошаговую инструкцию намотки трансформатора, можно отремонтировать старый или создать новый прибор. При четком следовании всем ее пунктам удается создать надежный, долговечный агрегат.

И все таки меня пригласили! Теперь дело со статьями пойдет более оперативно. Темой следующей части изначально я хотел сделать схемотехнику какого нибудь блока, а чего ждать? Но тут вспомнил свою школьную молодость и саму великую проблему с которой сталкивался - как изготовить неведомое для меня на тот момент зверя устройство - импульсный трансформатор . Прошло десять лет и я понимаю, что у многих (и не только начинающих) радиолюбителей, электронщиков и студентов возникают такие трудности - они попросту их боятся, а как следствие стараются избегать мощных импульсных источников питания (далее ИИП ).
После этих размышлений я пришел к выводу, что первая тема должна быть именно про трансформатор и ни о чем другом! Хотелось бы еще оговориться: что я подразумеваю под понятием «мощный ИИП» - это мощности от 1 кВт и выше или в случае любителей хотя бы 500 Вт.

Рисунок 1 - Вот такой трансформатор на 2 кВт для Н-моста у нас получится в итоге

Великая битва или какой материал выбрать?

Когда-то внедрив в свой арсенал импульсную технику думал, что трансформаторы можно делать только на доступном всем феррите. Собрав первые конструкции первым делом решил выставить их на суд более опытных товарище и очень часто слышал такую фразу: «Ваш феррит гавно не самый лучший материал для импульсника» . Сразу я решил узнать у них какую же альтернативу можно ему противоспоставить и мне сказали - альсифер или как его еще называют синдаст.

Чем же он так хорош и действительно ли лучше феррита?

Для начала надо определиться что должен уметь почти идеальный материал для трансформатора:
1) должен быть магнитомягким , то есть легко намагничиваться и размагничиваться:


Рисунок 2 - Гистерезисные циклы ферромагнетиков: 1) жесткий цикл, 2) мягкий цикл

2) материал должен обладать как можно большей индукцией насыщения, что позволит либо уменьшить габариты сердечника, либо при их сохранение повысить мощность.

Насыщение

Явление насыщения трансформатора состоит в том, что, несмотря на увеличение тока в обмотке, магнитный поток в сердечнике, достигнув некоторой максимальной величины, далее практически не изменяется.
В трансформаторе режим насыщения приводит к тому, что передача энергии из первичной обмотки во вторичную частично прекращается. Нормальная работа трансформатора возможна лишь тогда, когда магнитный поток в его сердечнике изменяется пропорционально изменению тока в первичной обмотке. Для выполнения этого условия необходимо, чтобы сердечник не был в состоянии насыщения, а это возможно лишь тогда, когда его объём и сечение не меньше вполне определённой величины. Следовательно, чем больше мощность трансформатора, тем большим должен быть его сердечник.


3) материал должен иметь как можно меньшие потери на перемагничивание и токи Фуко

4) свойства материала не должны сильно изменяться при внешнем воздействии: механические усилия (сжатие или растяжение), изменение температуры и влажности.

Теперь рассмотрим свойства феррита и насколько он соответствует предъявленным выше требованиям.

Феррит - является полупроводником, а значит обладает собственным высоким электрическим сопротивлением. Это означает, что на высоких частотах потери на вихревые токи (токи Фуко ) будут достаточно низкими. Получается как минимум одно условия из списка выше у нас уже выполнено. Идем дальше…
Ферриты бывают термостабильными и не стабильными, но этот параметр не является определяющим для ИИП. Важно то, что ферриты работают стабильно в температурном диапазоне от -60 и до +100 о С и это у самый простых и дешевых марок.


Рисунок 3 - Кривая намагничивания на частоте 20 кГц при разных температурах

И наконец-то самый главный пункт - на графике выше мы увидели параметр, который будет определять практически все - индукция насыщения . Для феррита она обычно принимается 0,39 Тл. Стоит запомнить, что при разных условиях - этот параметр будет меняться. Он зависит как от частоты, так и от температуры работы и от других параметров, но особый акцент стоит сделать на первых двух.

Вывод: феррит ништяк! отлично подходит для наших задач.

Несколько слов об альсифере и чем он отличается

1) альсифер работает в чуть большем широком спектре температур: от -60 и до +120 о С - подходит? Еще лучше чем феррит!
2) коэффициент потерь на гистерезис у альсиферов постоянный лишь в слабых полях (при малой мощности), в мощном поле они растут и очень сильно - это очень серьезный минус, особенно на мощностях более 2 кВт, так что тут проигрывает.
3) индукция насыщения до 1,2 Тл! , в 4 раза больше чем у феррита! - главный параметр и так обгоняет, но не все так просто… Конечно это достоинство никуда не уйдет, но пункт 2 ослабляет его и очень сильно - определенно плюс.

Вывод: альсифер лучше чем феррит, в этом дядьке мне не соврали.

Результат битвы: любой прочитав описание выше скажет альсифер нам подавай! И правильно… но попробуйте найти сердечник из альсифера и чтобы с габаритной мощностью 10 кВт? Тут обычно человек приходит в тупик, оказывается их и нету особо в продаже, а если и есть, то на заказ напрямую у производителя и цена вас испугает.
Получается используем феррит, тем более если оценивать в целом, то он проигрывает очень незначительно… феррит оценивается относительно альсифера в «8 из 10 попугаев».

Хотел я обратиться к своему любимому матану, но решил этого не делать, т.к. +10 000 знаков к статье считаю избыточным. Могу лишь посоветовать книгу с очень хорошими расчетами авторства Б. Семенова «Силовая электроника: от простому к сложному». Смысла пересказывать его выкладки с некими добавлениями смысла не вижу

Итак, приступаем к выполнению расчета и изготовлению трансформатора

Первым делом хочется сразу вспомнить очень серьезный момент - зазор в сердечнике. Он может «убить» всю мощность или добавить еще так на 30-40%. Хочу напомнить, что делаем мы трансформатор для Н-моста , а он относится к - прямоходовым преобразователям (forward по-буржуйский). Это значит, что зазор в идеале должен быть 0 мм.
Как-то раз, обучаясь курсе на 2-3 решил собрать сварочный инвертор, обратился к топологии инверторов Kemppi. Там я увидел в трансформаторах зазор 0,15 мм. Стало интересно для чего же он. Подходить к преподавателям не стал, а взял и позвонил в российское представительство Kemppi! А что терять? На моей удивление меня соединили с инженером-схемотехником и он рассказал мне несколько теоретических моментов, которые позволили мне «выползти» за потолок в 1 кВт.
Если в кратце - зазор в 0,1-0,2 мм просто необходим! Это увеличивает скорость размагничивания сердечника, что позволяет прокачать через трансформатор большую мощность. Максимальный эффект от такого финта ушами зазора достиг в топологии «косой мост» , там введение зазор 0,15 мм дает прирост 100%! В нашем Н-мосту эта прибавка скромнее, но 40-60% думаю тоже не дурно.

Для изготовления трансформатора нам понадобится вот такой набор:

А)
Рисунок 4 - Ферритовый сердечник Е70/33/32 из материала 3С90 (чуть лучший аналог N87)

Б)
Рисукок 5 - Каркас для сердечника Е70/33/32 (тот что больше) и дроссель D46 из распыленного железа

Габаритная мощность такого трансформатора составляет 7,2 кВт. Такой запас нам нужен для обеспечения пусковых токов в 6-7 раз больше номинальных (600% по ТЗ). Такие пусковые токи правда бывают лишь у асинхронных двигателей, но учесть необходимо все!
Неожиданно «всплыл» некий дроссель, он понадобится в нашей дальнейшей схеме (аж 5 штук) и поэтому решил показать как и его наматывать.

Далее необходимо посчитать параметры намотки. Я использую программу от известного в определенных кругах товарища Starichok51 . Человек с огромными знаниями и всегда готовый учить и помогать, за что ему спасибо - в своей время помог встать на путь истинный. Называется программа - ExcellentIT 8.1 .

Привожу пример расчета на 2 кВт:


Рисунок 6 - Расчет импульсного трансформатора по мостовой схеме на 2 кВт повышающий

Как производить расчет:
1) Выделено красным. Это вводные параметры, которые обычно выставляются по умолчанию:
а) максимальная индукция. Помните для феррита она 0,39 Тл, но у нас трансформатор работает на достаточно высокой частоте, поэтому программа выставляет 0,186 сама. Это индукция насыщения в саааамых плохих условиях, включая нагрев до 125 градусов
б) частота преобразования, она задается нами и чем она определяется на схеме будет в следующих статьях. Частота эта должна быть от 20 до 120 кГц. Если меньше - мы будет слышать работу транса и свист, если выше , то наши ключи (транзисторы) будут иметь большие динамические потери. А IGBT ключи даже дорогие работают до 150 кГц
в) коэф. заполнения окна - важный параметр, ибо место на каркасе и сердечнике ограничено, не стоит его делать больше 0,35 иначе обмотки не влезут
г) плотность тока - этот параметр может быть до 10 А/мм 2 . Это максимальный ток, который может протекать через проводник. Оптимальное значение 5-6 А/мм 2 - в условиях жесткой эксплуатации: плохое охлаждение, постоянная работа на предельной нагрузке и прочее. 8-10 А/мм 2 - можно ставить если у вас устройство идеально вентилируется и стоит over 9000 несколько куллеров.
д) питание на входе. Т.к. мы рассчитываем трансформатор для DC->DC 48В в 400В, то ставим входное напряжение как в расчете. Откуда цифра взялась. В разряженном состоянии аккумулятор отдает 10.5В, дальше разряжать - снижать срок службы, умножаем на количество батарей (4 шт) и получаем 42В. Возьмем с запасом 40В. 48В берется из произведения 12В * 4 шт. 58В берется из соображения, что в заряженном состоянии батарея имеет напряжение 14,2-14,4В и по аналогии умножаем на 4.

2) Выделено синим.
а) ставим 400В, т.к. это запас для обратной связи по напряжению и для нарезки синуса необходимо минимум 342В
б) номинальный ток. Выбираем из соображения 2400 Вт / 220(230) В = 12А. Как видите везде я беру запас не менее 20%. Так поступает любой уважающий себя производитель качественной техники. В СССР такой запас был эталонный 25% даже для самых сложных условий. Почему 220(230)В - это напряжение на выходе уже чистого синуса.
в) минимальный ток. Выбирается из реальных условий, этот параметр влияет на размер выходного дросселя, поэтому чем больше минимальный ток, тем меньше дроссель, а значит и дешевле устройство. Я опять же выбрал худший вариант 1А, это ток на 2-3 лампочки или 3-4 роутеров.
г) падение на диодах. Т.к. у нас на выходе будут диоды быстродействующие (ultra-fast), то падение на них 0.6В в худших условиях (превышена температура).
д) диаметр провода. У меня некогда купленная катушка меди 20 кг на такой случай и как раз с диаметром 1 мм. Тут ставим тот, который у вас есть. Только более 1,18 мм ставить не советую, т.к. начнет сказываться скин-эффект

Скин-эффект

Скин-эффект - эффект уменьшения амплитуды электромагнитных волн по мере их проникновения вглубь проводящей среды. В результате этого эффекта, например, переменный ток высокой частоты при протекании по проводнику распределяется не равномерно по сечению, а преимущественно в поверхностном слое.
Если говорить не как гугл, а моим колхозным языком, то если взять проводник большого сечения, то он не будет использоваться полностью, т.к. токи на большей частоте протекают по поверхности, а центр проводника будет «пустой»

3) Выделено зеленым. Тут все просто - топология у нас планируется «полный мост» и выбираем ее.

4) Выделено оранжевым. Происходит процесс выбора сердечника, все интуитивно понятно. Большое количество стандартных сердечников уже есть в библиотеки, как и наш, но если что можно и добавить путем ввода габаритов.

5) Выделено фиолетовым. Выходные параметры с расчетами. Отдельным окном выделил коэф. заполнения окна, помните - не более 0,35, а лучше не более 0,3. Так же даны все необходимые значения: количество витков для первичной и вторичной обмотки, количество проводов ранее заданного диаметра в «косе» для намотки.
Так же даны параметры для дальнейшего расчета выходного дросселя: индуктивность и пульсации напряжения.

Теперь необходимо рассчитать выходной дроссель. Нужен он чтобы сгладить пульсации, а так же чтобы создать «равномерный» ток. Расчет проводится в программе того же автора и называется она DrosselRing 5.0 . Расчет для нашего трансформатора приведу:


Рисунок 7 - Расчет выходного дросселя для повышающего DC-DC преобразователя

В данном расчете все проще и понятнее, работает по тому же принципу, выходные данные: количество витков и количество проводов в косе.

Стадии изготовления

Теперь у нас есть все данные для изготовления трансформатора и дросселя.
Главное правило намотки импульсного трансформатора - все без исключения обмотки должны быть намотаны в одну сторону!

Стадия 1:

Рисунок 8 - Процесс намотки вторичной (высоковольтной) обмотки

Мотаем на каркас необходимое число витков в 2 провода диаметром 1 мм. Запоминаем направление намотки, а лучше отмечаем маркером на каркасе.

Стадия 2:

Рисунок 9 - Изолируем вторичную обмотку

Изолируем вторичную обмотку фторопластовой лентой толщиной 1 мм, такая изоляция выдерживает не менее 1000 В. Так же дополнительно пропитываем лаком, это еще +600В к изоляции. Если нету фторопластовой ленты, то изолируем обычным сантехническим фумом в 4-6 слоев. Это тот же фторопласт, только 150-200 мкм толщиной.

Стадия 3:

Рисунок 10 - Начинаем мотать первичную обмотку, распаиваем провода на каркас
Намотку проводим в одну сторону со вторичной обмоткой!

Стадия 4:

Рисунок 11 - Выводим хвост первичной обмотки

Доматывает обмотку, изолируем ее так же фторопластовой лентой. Желательно еще и пропитать лаком.

Стадия 5:


Рисунок 12 - Пропитываем лаком и распаиваем «хвост». Намотка обмоток окончена
Стадия 6:

Рисунок 13 - Завершаем намотку и изоляцию трансформатора киперной лентой с окончательной пропиткой в лаке

Киперная лента

Киперная лента - хлопчатобумажная (реже шёлковая или полушелковая) тесьма из киперной ткани шириной от 8 до 50 мм, саржевого или диагонального переплетения; суровая, отбельная или гладкокрашеная. Материал ленты отличается высокой плотностью за счет переплетения, он толще, чем у своего ближайшего аналога - миткалевой ленты - из-за использования более толстых нитей.
Спасибо википедии.

Стадия 7:

Рисунок 14 - Так выглядит законченный вариант трансформатора

Зазор 0,15 мм устанавливается в процессе склеивания, путем вкладывания между половинками сердечника подходящей пленки. Лучший вариант - пленка для печати. Сердечник склеивается клеем моментом (хорошим) или эпоксидной смолой. 1-й вариант на века, 2-й позволяет в случае чего разобрать трансформатор без повреждений, например, если понадобится домотать еще обмотку или добавить витков.

Намотка дросселя

Теперь по аналогии необходимо намотать дроссель, конечно мотать на тороидальном сердечнике сложнее, но такой вариант будет компактнее. Все данные у нас имеются из программы, материал сердечника распыленное железо или пермаллой. Индукция насыщения у данного материала 0,55 Тл.

Стадия 1:


Рисунок 15 - Обматываем кольцо фторопластовой лентой

Эта операция позволяет избежать случая с пробоем обмотки на сердечник, это бывает редко, но мы же за качество и делаем для себя!

Стадия 2:

Рисунок 16 - Наматываем нужное количество витков и изолируем

В данном случае количество витков не уместится в один слой намотки, поэтому необходимо после намотки первого слоя произолировать и намотать второй слой с последующей изоляцией.
ИИП Добавить метки