Какой ракетный двигатель самый лучший.

Турбореактивный двигатель. Вместо вращения винта самолета, теплохода или ротора электрогенератора газовая турбина может быть использована как реактивный двигатель. Воздух и продукты горения выбрасываются из газовой турбины с большой скоростью. Реактивная сила тяги, возникающая при этом, может быть использована для движения самолета, теплохода или железнодорожного состава.

Основное отличие турбореактивного двигателя от турбовинтового заключается в том, что в нем газовая турбина используется лишь для приведения в действие воздушного компрессора и отнимает у газовой струи, выходящей из камеры сгорания, лишь небольшую часть энергии. В результате газовая струя имеет на выходе из турбины высокую скорость и создает реактивную силу тяги.

Успешное использование турбореактивных двигателей в авиации началось в 40-х годах созданием реактивных истребителей, а первый в нашей стране реактивный пассажирский самолет ТУ-104 вышел на линию Москва - Иркутск в 1956 г. (см. цветную вклейку III).

Турбореактивными двигателями оборудованы известные всему миру самолеты ИЛ-62, ТУ-154 и первый в мире сверхзвуковой пассажирский самолет ТУ-144 (рис. 41). Четыре его двигателя общей мощностью обеспечивают скорость полета полетная масса самолета 180 т.

Мощность и сила тяги турбореактивного двигателя может быть значительно увеличена за счет использования режима форсажа. С этой целью в струю горячего газа, выходящего из турбины, впрыскивается топливо. Так как в струе горячего газа, выходящего из турбины, имеется большое количество кислорода, происходит горение топлива. В результате этого процесса, называемого дожиганием, температура, давление и, следовательно, скорость истечения газовой струи повышаются. За счет такого режима работы сила тяги двигателя кратковременно может быть увеличена на 25-30 % на малых скоростях и до 70% при больших скоростях полета.

Рис. 41. Первый турбореактивный пассажирский сверхзвуковой самолет ТУ-144

Форсажными камерами позади турбины обычно оборудуются реактивные двигатели истребителей (см. цветную вклейку III). Имеются такие камеры и у двигателей самолета ТУ-144.

Прямоточный воздушно-реактивный двигатель. Самолетный реактивный двигатель может быть устроен и значительно проще, без компрессора и газовой турбины, так как при большой скорости движения самолета надобность в компрессоре отпадает. Повышения давления воздуха перед камерой сгорания можно добиться выбором формы воздухозаборника и камеры сгорания (рис. 42).

Если площадь поперечного сечения воздушного потока у входа двигателя меньше, чем у камеры сгорания, то скорость движения воздуха в камере сгорания меньше, чем у входа, так как за единицу времени через поперечное сечение двигателя должно проходить одно и то же количество воздуха. Согласно закону Бернулли в том участке трубы, где скорость движения газа меньше, давление выше.

Рис. 42. Прямоточный воздушно-реактивный двигатель

Впрыскивание и сжигание горючего повышает температуру и давление воздуха в камере сгорания, и он выходит из камеры сгорания с большой скоростью. Скорость истечения горячего воздуха к продуктов горения повышается еще и за счет уменьшения площади поперечного сечения отверстия на выходе, поэтому скорость газов на выходе из двигателя значительно превышает по абсолютной величине скорость движения самолета относительно воздуха

Так как скорость воздуха относительно самолета на выходе двигателя равна скорости движения самолета относительно воздуха, то в результате работы реактивного двигателя в системе отсчета, связанной с самолетом, некоторое количество воздуха массой попадает в двигатель со скоростью а выбрасывается из него со скоростью следовательно, его импульс изменяется на величину Импульс самолета согласно закону сохранения импульса изменяется на величину, равную по абсолютному значению, но противоположную по направлению. Это изменение импульса самолета вызывается реактивной силой отдачи газовой струи.

Реактивные двигатели рассмотренного типа называются прямоточными воздушн еактивными двигателями.

При таких серьезных достоинствах, как простота устройства и малые размеры, широкому применению прямоточных воздушно-реактивных двигателей в авиации препятствует необходимость предварительного разгона самолета с помощью двигателей другого типа. Этого недостатка не имеет пульсирующий воздушно-реактивный двигатель.

Пульсирующий воздушно-реактивный двигатель. Главное отличие пульсирующего воздушн еактивного двигателя от прямоточного заключается в применении специальных клапанов в камере сгорания со стороны входа воздуха (рис. 43). Клапаны закрываются, если давление в камере сгорания превышает давление набегающего потока воздуха, и открываются, если давление в камере сгорания становится меньше давления набегающего потока воздуха. Это позволяет работать без предварительного разгона самолета.

При впрыскивании и поджигании порции топлива температура и давление воздуха в камере сгорания резко повышаются, клапаны со стороны воздухозаборника в это время закрыты. Расширение нагретого воздуха и продуктов горения приводит к выбросу струи горячих газов через открытое

Рис. 43. Пульсирующий воздушно-реактивный двигатель

Рис. 44. Реактивный двигатель на твердом топливе

сопло двигателя и созданию реактивной силы. Так как доступа новым порциям воздуха в камеру сгорания в это время нет и подача топлива прекратилась, горение прекращается и давление в камере сгорания резко уменьшается. Это приводит к открыванию клапанов со стороны воздухозаборника и поступлению порции воздуха. В этот момент в камеру впрыскивается горючее. Сжигание новой порции горючего приводит вновь к повышению давления в камере, клапаны на входе закрываются, и происходит выброс порции горячих газов через сопло на выходе, создающий реактивную силу тяги двигателя. Частота пульсаций достигает нескольких тысяч в минуту.

Ракетные двигатели. Реактивные двигатели, не использующиг для своей работы окружающую среду, например воздух земной атмосферы, называются ракетными двигателями. Основные части ракетного двигателя - камера сгорания и сопло. В принципе для ракетного двигателя могут быть использованы различные источники энергии, но на практике пока применяются в основном химические ракетные двигатели. Сжигание горючего в камере сгорания химического ракетного двигателя приводит к образованию продуктов горения в газообразном состоянии. Выход струи газа через сопло приводит к возникновению реактивной силы.

Наиболее просто устроены ракетные двигатели, работающие на твердом топливе (РДТТ) (рис. 44). Примером твердого ракетного топлива может служить порох. РДТТ находят применение в военной технике. Ракетные снаряды с РДТТ успешно применялись в годы Великой Отечественной войны на реактивных установках - «катюшах» (рис. 45).

Постоянная готовность РДТТ к работе, простота и надежность позволяют использовать их в баллистических ракетах, которыми вооружены атомные подводные лодки, и в межконтинентальных баллистических ракетах.

Недостатком РДТТ является трудность управления его работой. Значительно удобнее в управлении жидкостные реактивные двигатели (ЖРД). Применение в качестве горючего и окислителя жидких веществ позволяет также получить больший выход энергии на единицу массы топлива и использовать более высокие скорости истечения газовой струи. Если для РДТТ максимальная скорость истечения составляет 2-3 км/с, то у ЖРД она

Рис. 45. (см. скан) Гвардейские минометы «катюши»

может достигать 3-5 км/с. Этими преимуществами ЖРД объясняется широкое их использование в ракетно-космической технике.

Впервые возможность и необходимость использования ЖРД для запуска человека или автоматических устройств в космическое пространство была обоснована Константином Эдуардовичем Циолковским в статье «Исследование мировых пространств реактивными приборами», опубликованной в 1903 г. В этой работе К. Э. Циолковский предложил конструкцию космической ракеты с ЖРД (рис. 46), проанализировал возможности использования различных химических веществ в качестве горючего и окислителей, рассмотрел способы управления полетом ракеты.

Первая советская жидкостная ракета «ГИРД-09» была создана в 1933 г. под руководством Сергея Павловича Королева по проекту М. К. Тихонравова. Двигатель ракеты работал на жидком кислороде и бензине.

Рис. 46. Конструкция жидкостной ракеты по К. Э. Циолковскому

Дальнейшая успешная разработка ракетно-космической техники, выполненная под руководством академика С. П. Королева, позволила осуществить в нашей стране запуск первого в мире искусственного спутника Земли (4 октября 1957 г.), полет вокруг Земли первого в мире космонавта Ю. А. Гагарина (12 апреля 1961 г.), осуществить запуск межпланетных автоматических станций на Луну, Марс, Венеру. Жидкостные реактивные двигатели для советских космических ракет разработаны под руководством академика В а-лентина Петровича Глушко.

Мощность первой ступени ракеты-носителя «Восток» с ЖРД РД-107 (рис. 47) достигала 15 млн. кВт! Ракета-носитель «Протон», выводившая в космическое пространство советские ИСЗ «Протон» с массой 12,2 т, имеет мощность около 45 млн. кВт! Двигатели этой, космической ракеты развивают мощность, в 7 раз превосходящую мощность крупнейшей в мире Красноярской гидроэлектростанции! Схема устройства жидкостной ракеты представлена на рисунке 48.

Масштабы современной космической техники можно охарактеризовать параметрами ракетных систем, с помощью которых был произведен запуск космических кораблей «Союз» и «Аполлон» в ходе осуществления совместной советско-американской программы. Трехступенчатая ракета-носитель советского космического корабля «Союз» с жидкостно-ракетными двигателями имеет общую длину 49,3 м, максимальный диаметр по стабилизаторам 10,3 м, стартовую массу 330 т.

Американский космический корабль «Аполлон» выводился на орбиту двухступенчатой ракетой-носителем «Сатурн-1В» общей

(см. скан)

Рис. 47. Ракетный двигатель РД-107:1 - рулевые камеры сгорания и сопла; 2 - основные камеры сгорания; 3 - насос подачи окислителя; 4-насос подачи горючего; 5 - силовая рама; 6 - трубопроводы окислителя; 7 - трубопроводы горючего

Рис. 48. Схема устройства жидкостной ракеты: 1 - полезней груз; 2 - окислитель; 3- горючее; 4 - насосы; 5 - камера сгорания; 6 - сопло

высотой 68,2 м, с максимальным размахом стабилизирующих поверхностей 12,4 м и массой 587 т.

Интересно отметить, что в некоторых вариантах американской ракеты-носителя «Сатурн» в качестве горючего и окислителя используются, как и предлагал К. Э. Циолковский, жидкий водород и жидкий кислород.

Мощность, сила тяги и КПД ракетного двигателя. Полезную мощность ракетного двигателя можно определить, считая приближенно, что вся полезная работа его затрачивается на сообщение кинетической энергии струе газов:

где m - масса газов, выброшенных ракетным двигателем за секунд, - масса газов, выброшенных двигателем за 1 с, и - скорость истечения газов. Это приближение близко к истине в том случае, если масса ракеты много больше массы газов, выбрасываемых двигателем за 1 с, так как тогда изменение кинетической энергии ракеты много меньше кинетической энергии выброшенных газов. За малый интервал времени в результате выброса струи газов импульс ракеты изменяется на величину

К числу основных параметров и характеристик ЖРД относятся следующие.

1. Тяга ЖРД - равнодействующая реактивной силы ЖРД и сил давления окружающей среды, действующих на его внешние поверхности, за исключением сил внешнего аэродинамического сопротивления.

где - секундный массовый расход топлива (кг/с);

W а – скорость истечения на срезе сопла камеры (м/с);

F a – площадь среза сопла (м 2);

Р а – давление на срезе сопла;

Р n – давление окружающей среды.

Различают тягу на земле (на уровне моря) и в пустоте. Из определения тяги ЖРД следует, что тяга двигателя в пустоте имеет наибольшее значение, а при наличии давления окружающей атмосферы тяга соответственно снижается. Например, тяга ЖРД SSME космического корабля «Спейс-Шаттл» в пустоте равна 2,09 МН, а на земле - 1,67 МН; тяга самого мощного в мире ЖРД РД-170 каждого из четырех блоков первой ступени ракеты-носителя (РН) "Энергия" составляет 7,4 МН на земле и

8,06 МН в пустоте.

2. Удельный импульс тяги ЖРД - отношение тяги ЖРД к массовому секундному расходу топлива ЖРД.

Аналогично тяге удельный импульс тяги ЖРД максимален в пустоте и соответственно уменьшается при наличии давления окружающей среды. Удельный импульс тяги является важнейшим параметром двигателя, характеризует эффективностьжидкого ракетного топлива и совершенство конструкции двигателя. Например, для ЖРД SSME удельный импульс в пустоте (I п) равен 4464 м/с, а на земле (I з) - 3562 м/с.

3. Удельная масса ЖРД - отношение массы залитого ЖРД к его наибольшей тяге на основном режиме, причем масса залитого ЖРД определяется массой ЖРД (массой конструкции ЖРД) и компонентов топлива, заполняющих его трубопроводы и агрегаты при работе. При наличии нескольких основных режимов ЖРД его удельную массу определяют по наибольшей тяге. Удельная масса ЖРД F-1 и SSME равна 1,48 и 1,02 г/Н соответственно.

4. Тип жидкостного ракетного топлива (ЖРТ ). Обычно каждую ДУ конструируют для вполне определенного топлива, причем от него в значительной степени зависят удельные параметры ЖРД и эффективность их применения в составе ЛА. В настоящее время наибольшее применение в качестве топлива находят жидкий кислород и жидкий водород, жидкий кислород и углеводо­родное горючее (керосин и метан), а также четырехокись азота и несимметричный диметилгидразин (НДМГ).

5. Время работы ЖРД - время от первой команды на запуск ЖРД до первой команды на его выключение. Для ЖРД многократного включения время работы равно суммарному времени работы ЖРД, соответствующему всем циклам работы. Обычно для ЖРД одноразового включения время работы не превышает 1000 с. Для двигателей многократного включения кроме времени их работы (суммарного времени непрерывной работы при каждом цикле) задают число циклов работы, а также минимальное и максимальное время (паузу) между ними. Например, ЖРД J-2 третьей ступени РН "Сатурн-5" при первом цикле работал 180 с, а затем следовала пауза 4,5 ч, после чего двигатель повторно работал 300 с.

6. Ресурс работы ЖРД - суммарное время работы ЖРД, в течение которого гарантируется обеспечение всех его параметров. Обычно ресурс работы ЖРД в несколько (три и более) раз превышает время его работы в составе ЛА. Для ЖРД, используемых в составе многоразовых транспортных космических кораблей (МТКК), указанный ресурс превышает время работы в одном полете в десятки раз. Например, ЖРД SSME рассчитан на 55 полетов, и ресурс его работы (без капитального ремонта) согласно техническому заданию составляет 27·10 3 с (7,5 ч).

Ресурс работы ЖРД малой тяги (ЖРДМТ), являющихся ЖРД многократного включения, характеризуется как временем работы, так и числом циклов работы. Например, для ЖРД R-40А (основного ЖРД ДУ реактивной системы управления МТКК "Спейс-шаттл") ресурс работы составляет 2·10 4 с и 5·10 4 циклов работы.

7. Число основных режимов работы . Различают однорежимные ЖРД (двигатели с одним основным режимом работы) и многорежимные ЖРД (двигатели с несколькими основными режимами работы). ЖРД большой тяги являются однорежимными двигателями, но в последнее время за рубежом опубликовано большое число проектов двухрежимных ЖРД, в основном для одно- и двухступенчатых МТКК.

8. Диапазон изменения тяги. Для выполнения программы полета ЛА часто возникает необходимость в изменении тяги двигателя, что обеспечивается изменением массового расхода топлива в камеру ЖРД. Например, тяга ЖРД SSME в полете может изменяться в диапазоне 65...109 % P ном. Например, на 60...80-й секунде полета МТКК "Спейс-шаттл" тяга всех трех ЖРД SSME снижается примерно до 65 % Р ном для уменьшения нагрузок на корабль в зоне максимального скоростного напора. Перед выключением тяга указанных двигателей непрерывно снижается, чтобы перегрузки на космонавтов не превышали значения 3g. .

9. Давление в камере Р к - среднее статическое давление продуктов сгорания в начале камеры сгорания у смесительной головки. Р к определяет массу ЖРД. Чем выше Р к , тем меньше габариты, а, следовательно, и масса двигателя. Поэтому стремятся к повышению давления в камере. У современных двигателей Р к = 25…30 МПа.

10. Импульс тяги ЖРД - интеграл от тяги ЖРД по времени. Значение импульса тяги ЖРД равно площади под кривой зависимости тяги от времени работы.

Что первое приходит на ум при словосочетании «ракетные двигатели»? Конечно же, загадочный космос, межпланетные полеты, открытие новых галактик и манящее сияние далеких звезд. Во все времена небо притягивало к себе человека, оставаясь при этом неразгаданной тайной, но создание первой космической ракеты и ее запуск открыли человечеству новые горизонты исследований.

Ракетные двигатели по своей сути – это обычные реактивные двигатели с одной немаловажной особенностью: для создания реактивной тяги в них не используется атмосферный кислород в качестве окислителя топлива. Все, что нужно для его работы, находится либо непосредственно в его корпусе, либо в системах подачи окислителя и топлива. Именно эта особенность и дает возможность использовать ракетные двигатели в открытом космосе.

Видов ракетных двигателей очень много и все они разительно отличаются между собой не только особенностями конструкции, но и принципом работы. Именно поэтому каждый вид нужно рассматривать отдельно.

Среди основных рабочих характеристик ракетных двигателей особое внимание уделяется удельному импульсу – отношению величины реактивной тяги к массе расходуемого за единицу времени рабочего тела. Значение удельного импульса отображает эффективность и экономичность двигателя.

Химические ракетные двигатели (ХРД)

Этот тип двигателей на сегодняшний день является единственным, который массово используется для выведения в открытый космос космических аппаратов, кроме того, он нашел применение и в военной промышленности. Химические двигатели делятся на твердо- и жидкотопливные в зависимости от агрегатного состояния ракетного топлива.

История создания

Первыми ракетными двигателями были твердотопливные, а появились они несколько веков назад в Китае. С космосом их тогда мало что связывало, зато с их помощью можно было запускать военные ракеты. В качестве топлива использовался порошок, по составу напоминающий порох, только процентное соотношение его составляющих было изменено. В результате при окислении порошок не взрывался, а постепенно сгорал, выделяя тепло и создавая реактивную тягу. Такие двигатели с переменным успехом дорабатывались, совершенствовались и улучшались, но их удельный импульс все равно оставался малым, то есть конструкция была неэффективной и неэкономичной. Вскоре появились новые виды твердого топлива, позволяющие получить больший удельный импульс и развивать большую тягу. Над его созданием в первой половине ХХ века трудились ученые СССР, США и Европы. Уже во второй половине 40-х годов был разработан прототип современного топлива, используемого и сейчас.

Ракетный двигатель РД — 170 работает на жидком топливе и окислителе.

Жидкостные ракетные двигатели – это изобретение К.Э. Циолковского, который предложил их в качестве силового агрегата космической ракеты в 1903 году. В 20-х годах работы по созданию ЖРД начали проводиться в США, в 30-хх годах – в СССР. Уже к началу Второй мировой войны были созданы первые экспериментальные образцы, а после ее окончания ЖРД стали выпускаться серийно. Использовались они в военной промышленности для оснащения баллистических ракет. В 1957 году впервые в истории человечества был запущен советский искусственный спутник. Для его запуска использовалась ракета, оснащенная РЖД.

Устройство и принцип работы химических ракетных двигателей

Твердотопливный двигатель вмещает в своем корпусе топливо и окислитель в твердом агрегатном состоянии, причем контейнер с топливом – это одновременно и камера сгорания. Топливо обычно имеет форму стержня с центральным отверстием. В процессе окисления стержень начинает сгорать от центра к периферии, а газы, полученные в результате сгорания, выходят через сопло, образуя тягу. Это самая простая конструкция среди всех ракетных двигателей.

В жидкостных РД топливо и окислитель находятся в жидком агрегатном состоянии в двух раздельных резервуарах. По каналам подачи они попадают в камеру сгорания, где смешиваются и происходит процесс горения. Продукты сгорания выходят через сопло, образуя тягу. В качестве окислителя обычно используется жидкий кислород, а топливо может быть разным: керосин, жидкий водород и т.д.

Плюсы и минусы химических РД, их сфера применения

Достоинствами твердотопливных РД являются:

  • простота конструкции;
  • сравнительная безопасность в плане экологии;
  • невысокая цена;
  • надежность.

Недостатки РДТТ:

  • ограничение по времени работы: топливо сгорает очень быстро;
  • невозможность перезапуска двигателя, его остановки и регулирования тяги;
  • небольшой удельный вес в пределах 2000-3000 м/с.

Анализируя плюсы и минусы РДТТ, можно сделать вывод, что их использование оправдано только в тех случаях, когда нужен силовой агрегат средней мощности, достаточно дешевый и простой в исполнении. Сфера их использования – баллистические, метеорологические ракеты, ПЗРК, а также боковые ускорители космических ракет (ими оснащаются американские ракеты, в советских и российских ракетах их не использовали).

Достоинства жидкостных РД:

  • высокий показатель удельного импульса (порядка 4500 м/с и выше);
  • возможность регулирования тяги, остановки и перезапуска двигателя;
  • меньший вес и компактность, что дает возможность выводить на орбиту даже большие многотонные грузы.

Недостатки ЖРД:

  • сложная конструкция и пуско-наладочные работы;
  • в условиях невесомости жидкости в баках могут хаотично перемещаться. Для их осаждения нужно использовать дополнительные источники энергии.

Сфера применения ЖРД – это в основном космонавтика, так как для военных целей эти двигатели слишком дорогие.

Несмотря на то, что пока химические РД – единственные способные обеспечить вывод ракет в открытый космос, их дальнейшее усовершенствование практически невозможно. Ученые и конструкторы убеждены, что предел их возможностей уже достигнут, а для получения более мощных агрегатов с большим удельным импульсом необходимы другие источники энергии.

Ядерные ракетные двигатели (ЯРД)

Этот тип РД в отличие от химических вырабатывает энергию не при сгорании топлива, а в результате нагревания рабочего тела энергией ядерных реакций. ЯРД бывают изотопными, термоядерными и ядерными.

История создания

Конструкция и принцип работы ЯРД были разработаны еще в 50-хх годах. Уже в 70-хх годах в СССР и США были готовы экспериментальные образцы, которые успешно проходили испытания. Твердофазный советский двигатель РД-0410 с тягой в 3,6 тонны испытывался на стендовой базе, а американский реактор «NERVA» должен был устанавливаться на ракету «Сатурн V» до того, как спонсирование лунной программы было остановлено. Параллельно велись работы и над созданием газофазных ЯРД. Сейчас действуют научные программы по разработке ядерных РД, проводятся эксперименты на космических станциях.

Таким образом, действующие модели ядерных ракетных двигателей уже есть, но пока ни один из них так и не был задействован вне лабораторий или научных баз. Потенциал таких двигателей довольно высокий, но и риск, связанный с их использованием, тоже немалый, так что пока они существуют только в проектах.

Устройство и принцип действия

Ядерные ракетные двигатели бывают газо-, жидко- и твердофазными в зависимости от агрегатного состояния ядерного топлива. Топливо в твердофазных ЯРД – это ТВЭЛы, такие же, как в ядерных реакторах. Они находятся в корпусе двигателя и в процессе распада делящегося вещества выделяют тепловую энергию. Рабочее тело – газообразный водород или аммиак – контактируя с ТВЭЛом, поглощает энергию и нагревается, увеличиваясь в объеме и сжимаясь, после чего выходит через сопло под высоким давлением.

Принцип работы жидкофазного ЯРД и его устройство аналогично твердофазным, только топливо находится в жидком состоянии, что позволяет увеличить температуру, а значит и тягу.

Газофазные ЯРД работают на топливе в газообразном состоянии. Обычно в них используется уран. Газообразное топливо может удерживаться в корпусе электрическим полем или же находится в герметичной прозрачной колбе – ядерной лампе. В первом случае возникает контакт рабочего тела с топливом, а также частичная утечка последнего, поэтому кроме основной массы топлива в двигателе должен быть предусмотрен его запас для периодического пополнения. В случае с ядерной лампой утечки не происходит, а топливо полностью изолировано от потока рабочего тела.

Преимущества и недостатки ЯРД

Ядерные ракетные двигатели имеют огромное преимущество в сравнении с химическими – это высокий показатель удельного импульса. Для твердофазных моделей его величина составляет 8000-9000 м/с, для жидкофазных – 14000 м/с, для газофазных – 30000 м/с. Вместе с тем, их использование влечет за собой заражение атмосферы радиоактивными выбросами. Сейчас ведутся работы по созданию безопасного, экологичного и эффективного ядерного двигателя, и главным «претендентом» на эту роль является газофазный ЯРД с ядерной лампой, где радиоактивное вещество находится в герметичной колбе и не выходит наружу с реактивным пламенем.

Электрические ракетные двигатели (ЭРД)

Еще один потенциальный конкурент химических РД – электрический РД, работающий за счет электрической энергии. ЭРД может быть электротермическим, электростатическим, электромагнитным или импульсным.

История создания

Первый ЭРД был сконструирован в 30-х годах советским конструктором В.П. Глушко, хотя идея создания такого двигателя появилась еще в начале ХХ века. В 60-х годах ученые СССР и США активно работали над созданием ЭРД, и уже в 70-х годах первые образцы начали использоваться в космических аппаратах в качестве двигателей управления.

Устройство и принцип работы

Электроракетная двигательная установка состоит из самого ЭРД, строение которого зависит от его типа, систем подачи рабочего тела, управления и электропитания. Электротермический РД нагревает поток рабочего тела за счет тепла, выделяемого нагревательным элементом, или в электрической дуге. В качестве рабочего тела используется гелий, аммиак, гидразин, азот и другие инертные газы, реже – водород.

Электростатические РД делятся на коллоидные, ионные и плазменные. В них заряженные частицы рабочего тела ускоряются за счет электрического поля. В коллоидных или ионных РД ионизация газа обеспечивается ионизатором, высокочастотным электрическим полем или газоразрядной камерой. В плазменных РД рабочее тело – инертный газ ксенон – проходит через кольцевой анод и попадает в газоразрядную камеру с катод-компенсатором. При высоком напряжении между анодом и катодом вспыхивает искра, ионизирующая газ, в результате чего получается плазма. Положительно заряженные ионы выходят через сопло с большой скоростью, приобретенной за счет разгона электрическим полем, а электроны выводятся наружу катодом-компенсатором.

Электромагнитные РД имеют свое магнитное поле – внешнее или внутреннее, которое ускоряет заряженные частицы рабочего тела.

Импульсные РД работают за счет испарения твердого топлива под действием электрических разрядов.

Преимущества и недостатки ЭРД, сфера использования

Среди преимуществ ЭРД:

  • высокий показатель удельного импульса, верхний предел которого практически не ограничен;
  • малый расход топлива (рабочего тела).

Недостатки:

  • высокий уровень потребления электроэнергии;
  • сложность конструкции;
  • небольшая тяга.

На сегодняшний день использование ЭРД ограничено их установкой на космические спутники, а в качестве источников электроэнергии для них применяются солнечные батареи. Вместе с тем именно эти двигатели могут стать теми силовыми установками, которые дадут возможность исследовать космос, поэтому работы по созданию их новых моделей активно ведутся во многих странах. Именно эти силовые установки чаще всего упоминали фантасты в своих произведениях, посвященных покорению космоса, их же можно встретить и в научно-фантастических фильмах. Пока именно ЭРД является надеждой на то, что люди все же смогут путешествовать к звездам.

Очевидно, что эффективность РД можно оценивать только с позиций ЛА, т.е. критерии качества РД должны вытекать из целей ЛА как объекта высшего уровня иерархии. Из курса ОУЛА известно, что критерием эффективности УБР является конечная скорость ступени или Л А в момент окончания активного участка: чем больше значение , тем больше будет дальность полета при фиксированной полезной нагрузке. Идеальное значение конечной скорости в конце активного участка полета (действует только сила тяги ДУ, нет атмосферы и поля тяготения Земли) определяет формула К.Э.Циолковского:

, (3.1)
где - массовое число;

- конечная масса в момент окончания АУТ;

- соответственно массы топлива, конструкции ракеты и полезной нагрузки;

Эффективная скорость истечения рабочего тела.

Отсюда ясно, что необходимо увеличивать значение удельного импульса

(), увеличивать мaccу топлива на борту и снижать массу конструкции двигательной установки. Создавать двигатели сложно, но сущест-вует экзогенность целей, т.е. их наперед ясность разработчикам.

Из (3.1) следует, что конечная скорость линейно зависит от удельного импульса при постоянном массовом числе . Неизбежные потери скорости на преодоление силы тяжести, сопротивление атмосферы и противодавление атмосферы (уменьшение удельного импульса) при вариации удельного импульса в связи с рассмотрением различных топлив меняются по разному в зависимости от ограничений по нагрузке на тягу, массу топлива, и собственно тягу. Влияние удельного импульса возрастает с увеличением дальности полета. Для УБР с дальностью 12 000 км и удельным импульсом в пустоте 2500 м/с увеличение на 1% приводит к росту дальности на 600 км. Для УБР средней дальности (L=2500 км) с тем же значением удельного импульса увеличение на 1% приводит к росту дальности всего на 70 км.

Степень влияния массы конструкции двигательной установки на конечную скорость ЛА зависит от того, на какой ступени он установлен. Для первой ступени масса ракеты существенно больше массы конструкции ДУ и поэтому влияние изменения массы конструкции ДУ на конечную скорость последней ступени незначительно. А масса конструкции двигателя последней ступени вносит свой вклад в значения и оказывает существенное влияние на конечную скорость ЛА.

Конец работы -

Эта тема принадлежит разделу:

Курс лекций по направлениям двигательные установки летательных аппаратов дула

Гоу впо мгту им н э баумана.. в е медведев а г минашин с д панин б б петрикевич..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Краткий исторический экскурс
Человечество впервые увидело реактивное движение на примере каракатицы – живого существа, передвигающего отбрасыванием воды и сокращением мышц внутри организма. Порох, состоящий из смеси с

Тяга ракетного двигателя
Энтальпию продуктов сгорания в камере сгорания в кинетическую энергию струи можно преобразовать различными способами: подводом теплоты и массы по тракту постоянной геометрии, ускорением в сужающихс

Удельные параметры ракетного двигателя
Абсолютная величина тяги РД никак не характеризует степень совершенства РД. Для ЖРД качественным показателем является удельный импульс тяги (удельный импульс) - величина импульса тяги двигателя с е

Расходный комплекс камеры
Задается соотношением. Размерность: в СИ β [м/с], в ТСЕ β[сек]. Характеризует удельный импульс, создаваемый только камерой сгорания (корпусом двигателя) без со

Коэффициент тяги
Задается соотношением. Коэффициент тяги показывает увеличение тяги двигателя вследствие наличия сопла. Иногда КТ называют безразмерной тягой. Теоретическое значение

Геометрическая степень расширения сопла
Эта величина не только определяет размеры сопла, но и характеризует основные параметры работы сопла: (или скорость). Связь между основными параметрами определяется известными из газовой динамики с

Топлива ракетных двигателей
Под топливом РД будем понимать вещество или совокупность веществ, способных к химическим реакциям с выделением энергии и к образованию высокотемпературных продуктов для создания тяги. Таких веществ

Жидкие ракетные топлива
По назначению жидкие ракетные топлива (ЖРТ) подразделяют на основные, пусковые и вспомогательные. Основные предназначены для создания тяги маршевых двигателей, т. е. разгона полезной нагрузки, а та

Коэффициент избытка окислителя
Рассмотрим соотношение компонентов в двухкомпонентном топливе. Горючее содержит преимущественно элементы с электроположительной валентностью (С, Н, AI, В и др.), а окислитель - с электроотрицательн

Твердые ракетные топлива
К твердым топливам, являющимися источниками энергии на борту ракеты и рабочего тела двигателей, предъявляют ряд требований, схожих с требованиями к жидким топливам. Ясно, что нужны рецептуры с наиб

ЛЕКЦИЯ 4
Продукты сгорания твердого топлива оказывают воздействие на материалы тракта и для массового совершенства тепловой защиты ДУ необходимо выбирать или создавать рецептуры с меньшим значением величины

Гибридные топлива
Гибридным называют топливо, в котором один компонент перед запуском двигателя находится в твердом виде, а другой - в жидком. Твердый компонент размещен в корпусе двигателя (аналогия с РДТТ), жидкий

Горение жидких топлив
С момента впрыска в камеру до полного преобразования в конечные продукты сгорания компоненты проходят путь сложных превращений. Рабочий процесс в камере должен обеспечить максимальную полноту сгора

Горение твердых топлив
Горение твердых топлив есть последовательность процессов в соответствии со схемой рис. 4.3. После прогрева поверхностного слоя баллиститного топлива устройством запуска ДУ происходит газификация то

Горение гибридных топлив
Горение происходит по поверхности твердого компонента, капли жидкого компонента движутся вместе с продуктами сгорания как жидкогазовая смесь, продукты испарения жидкости диффундируют к поверхности

Термодинамические расчеты состава и параметров рабочего тела
Моделирование рабочих процессов в РД начинает с расчета равновесного состава продуктов сгорания и значений термодинамических параметров (и др.). Кроме того, необходимо знать переносные св

Термогазодинамика потока рабочего тела
Перейдем к термогазодинамике потоков – определению параметров движущегося рабочего тела. Рассмотрим наиболее простую модель движения газа: одномерное установившееся адиабатическое (изоэнтропическое

Течение газа в соплах
Сопло является трансформатором энергии в ракетном двигателе и его назначение - получение наибольшего значения скорости истечения рабочего тела, существенно превышающего значение скорости звука. Это

Профилирование сопла
В сопле камеры двигателя происходит расширение и разгон продуктов сгорания (рабочего тела), т.е. преобразование тепловой энергии, получаемой в камере сгорания, в кинетическую энергию движения газов

Потери удельного импульса в ракетных двигателях (в камере ЖРД и РДТТ)
Отличие параметров продуктов сгорания (рабочего тела) при действительном рабочем процессе в камере ЖРД, корпусе и СБ РДТТ (горение, расширение) от параметров идеального рабочего процесса учитываетс

Потери удельного импульса в сопле
Коэффициент потерь удельного импульса в сопле РД представляется в виде: где - составляющие потерь в сопле. Представление аддитивной суммой не совсем корректно ввид

Конвективный теплообмен
Перенос в движущейся среде любой субстанции (массы, импульса, теплоты) происходит как молекулярным хаотическим движением, так и конвективным (макроскопическим) движением молей газа или жидкости. Ко

Двигателя твердого топлива
Газовая фаза продуктов сгорания топлив содержит кислородосодержащие компоненты (и др.), которые через пограничный слой подходят к нагретой поверхности материалов тракта сопла и окисляют их. Возник

Радиационный теплообмен в ракетных двигателях
В высокотемпературных продуктах сгорания топлив ракетных двигателей происходят процессы переноса энергии в форме излучения - атомно-молекулярного перехода части внутренней энергии вещества в поток

Оценка эффективности ракетного двигателя

Очевидно, что эффективность РД можно оценивать только с позиций ЛА, т.е. критерии качества РД должны вытекать из целей ЛА как объекта высшего уровня иерархии. Из курса ОУЛА известно, что критерием эффективности УБР является конечная скорость ступени или Л А в момент окончания активного участка: чем больше значение , тем больше будет дальность полета при фиксированной полезной нагрузке. Идеальное значение конечной скорости в конце активного участка полета (действует только сила тяги ДУ, нет атмосферы и поля тяготения Земли) определяет формула К.Э.Циолковского:

, (3.1)
где - массовое число;

- конечная масса в момент окончания АУТ;

- соответственно массы топлива, конструкции ракеты и полезной нагрузки;

- эффективная скорость истечения рабочего тела.

Отсюда ясно, что необходимо увеличивать значение удельного импульса

(), увеличивать мaccу топлива на борту и снижать массу конструкции двигательной установки. Создавать двигатели сложно, но сущест-вует экзогенность целей, т.е. их наперед ясность разработчикам.

Из (3.1)следует, что конечная скорость линейно зависит от удельного импульса при постоянном массовом числе . Неизбежные потери скорости на преодоление силы тяжести, сопротивление атмосферы и противодавление атмосферы (уменьшение удельного импульса) при вариации удельного импульса в связи с рассмотрением различных топлив меняются по разному в зависимости от ограничений по нагрузке на тягу, массу топлива, и собственно тягу. Влияние удельного импульса возрастает с увеличением дальности полета. Для УБР с дальностью 12 000 км и удельным импульсом в пустоте 2500 м/с увеличение на 1% приводит к росту дальности на 600 км. Для УБР средней дальности (L=2500 км) с тем же значением удельного импульса увеличение на 1% приводит к росту дальности всего на 70 км.

Степень влияния массы конструкции двигательной установки на конечную скорость ЛА зависит от того, на какой ступени он установлен. Для первой ступени масса ракеты существенно больше массы конструкции ДУ и поэтому влияние изменения массы конструкции ДУ на конечную скорость последней ступени незначительно. А масса конструкции двигателя последней ступени вносит свой вклад в значения и оказывает существенное влияние на конечную скорость ЛА.