Классификация насосов по принципу действия.

Как подать воду на верхний этаж небоскрёба ― построить водонапорную башню на один этаж выше? Как заставить работать двигатель внутреннего сгорания ― пустить течь топливо без меры и самотёком? Чтобы каждый камушек мостовой не отзывался в голове сотрясением мозга, может попробовать надуть автомобильное колесо ртом? С насосами и помпами все подобные ситуации разрешаются на раз. Кстати, эти два понятия означают одно и то же, но одно – по-русски, другое – по-английски.

Насосы и способы их классификации

Насос ― это приспособление для перемещения жидкостей или газов за счёт создаваемой им разницы давлений на входе и выходе. Цели применения насосов, объёмы перекачивания, разнообразные химический состав и свойства перекачиваемого вещества требуют разновидности в конструкциях и принципах действия насосов. Разнообразие устройств в свою очередь требует создания классификаций. Их много, ведь в каждой их них за основу берутся разные критерии. Насосы классифицируются по:

  • - сфере применения;
  • - принципу действия;
  • - разнице в конструкции;
  • - назначению и месту использования.

Так вот, каждая конкретная модель насоса не относится к какой-то одной классификации, наоборот, её можно охарактеризовать в каждой из классификаций.

Разделение насосов по сферам применения

Тут всё просто: насосы бывают бытовыми и промышленными. То есть, часть насосов служит для нас, обывателей, в повседневной жизни, другая же, более значительная, обслуживает все хозяйственные отрасли: промышленность, сельское хозяйство и транспорт.

Бытовые насосы применяют в индивидуальном водоснабжении, в нецентрализованных системах отопления и канализации, для нужд личного транспорта и т.д. Естественно, мощность их намного ниже, нежели у промышленных.

Промышленные насосы применяются в системах подачи воды и охлаждения для промышленных установок, в водоочистных системах, в системах смазки и подачи топлива, а также для повышения давления и промывки узлов и деталей под давлением, для перекачки нефтепродуктов и продуктов питания, для обеспечения котлов водой. В химической отрасли, где нежелательно присутствие человека из-за агрессивности некоторых веществ и т.п. От производительности таких насосов зависит рентабельность заводов и предприятий сферы услуг, потому на мощности (читай, стоимости) этих насосов не экономят.

Классификация насосов по принципу действия

Вот два главных направления в такой классификации: насосы объёмного типа и динамические насосы.

Объёмные насосы работают за счёт изменения объёма камеры и, как следствие, изменяющейся благодаря этому величине давления. Вот это изменившееся давление и понуждает перемещаться жидкости или газы. Все насосы объемного типа способны к самовсасыванию. Это способность насоса всасывать воздух и воду за счёт разряжения в камере после того, как из неё ушла жидкость.

Наиболее известны из насосов объёмного типа является поршневые. Рабочим органом у них служит плунжер или поршень. Перемещаясь в цилиндрической камере, поршень создаёт избыточное давление. Для впуска (выпуска) рабочего вещества из камеры нагнетания служат нагнетательный и всасывающий клапаны. Внешний их вид зависит от объектов применения. Они могут быть вертикальными и горизонтальными, многоцилиндровыми и одноцилиндровыми, одноразовыми и многократного действия. Эти насосы имеют разный объём цилиндра, разную скорость перемещения поршня, следовательно, и разную производительность.

К роторным насосам относятся зубчатые, шестерённые, шиберные, винтовые, лабиринтные и тому подобные насосы. Хотя они довольно разные по устройству, их объединяет общий принцип работы: внутри зафиксированного корпуса перемещают

(продавливают) жидкость либо роторы, либо винты, либо кулачки, либо лопасти, либо другие детали, способные выполнять такие функции. Интересны импеллерные насосы: в эксцентрическом корпусе гибкие лопасти, находящиеся на колесе, сгибаются при его вращении и вытесняют жидкость. Конструкция роторных насосов значительно проще поршневых, отсутствуют даже всасывающий и нагнетательный клапаны, потому применяются эти насосы гораздо чаще поршневых.

Многие вакуумные насосы тоже относятся к роторным, главное, чтобы между деталями роторов, работающими на нагнетание, соблюдалась полная герметичность. Этот тип насосов работает исключительно на самовсасывание.

Перистальтические насосы в работе выглядят несколько экзотично. Они представляют собой многослойный гибкий рукав, изготовленный из эластомера. Вал с расположенными на нём роликами, вращаясь, пережимает роликами рукав, протискивая жидкость дальше по рукаву.

Динамические насосы работают за счёт динамических сил, то есть сил движения. Им недоступно самовсасывание, зато у них уравновешен процесс работы, благодаря чему практически отсутствует вибрация, и подача вещества происходит равномерно. Также они два или более раз преобразуют энергию. К ним относятся центробежные, вихревые и струйные насосы.

Центробежные насосы имеют внутри рабочее колесо, которое, проходя через жидкость, увеличивает кинетическую энергию двигающейся жидкости. Эта энергия благодаря увеличению скорости водотока увеличивает кинетическое, а затем и потенциальное давление воды, заставляя её перемещаться.

Вихревые насосы своей работой похожи на центробежные, но увеличение водотока здесь вызывается завихрениями жидкости. Они создаются благодаря эксцентричности корпуса, из-за чего регулярно изменяются зазоры между кожухом и лопастями. Такие насосы мобильны (из-за малой массы) и компактны, но их недостаток ― КПД менее 50%.

Струйные насосы ― это гидроэлеваторы и эрлифты. Первые перекачивают нужное вещество благодаря кинетической энергии рабочей жидкости, вторые работают в паре с компрессором ― смесь воздуха и перекачиваемого вещества перемещается из-за подъёмной силы воздушных пузырьков.

Классификация насосов по разнице в конструкции

Конструкционные особенности часто видимы даже на глаз: мы же не раз сталкивались с такой ситуацией, когда какой-то механизм нельзя поставить на нужное нам место (не подходят соединения, резьбы, несовместимость по размерам). Помимо этого, даже внутри одного типа насосов конструкции не совпадают. Для примера хватит взгляда на роторные насосы: роторы у них есть у всех, но рабочие детали у всех их разные (у одних кулачки, у других ― винты, у третьих ― лопатки или лопасти). По конструкции насосы могут быть изготовлены и в вертикальном, и в горизонтальном исполнении.

Классификация насосов по назначению

Начнём с наиболее часто используемых водяных насосов. Они бывают поверхностными и погружными. Как следует из самого определения, поверхностные находятся не ниже уровня земли, в скважину к воде опускается шланг или труба, забор воды происходит благодаря всасыванию. Часто такие насосы снабжаются автоматикой, срабатывающей от изменения давления при включении-выключении любого крана в этой водонапорной системе, и тогда они называются уже не насосами, а станциями. В колодцах и скважинах же чаще применяются погружные насосы, находящиеся непосредственно в самой воде. Иногда они снабжаются поплавками, которые отключают насос при отсутствии воды.

Дренажные насосы практически всегда являются погружными. Их цель ― откачивать воду из погребов, подвалов, прудов, систем индивидуальной канализации, бассейнов. Дренажные насосы перекачивают загрязнённую воду, потому в них должно быть как можно меньше трущихся деталей, соприкасающихся с водой.

Циркуляционные насосы наиболее часто применяются в отопительных системах домов для быстрейшей циркуляции теплоносителя (воды или антифриза). Они обычно бесшумны, компактны и встраиваются непосредственно в трубопровод. Правильный выбор такого насоса прост: за час он должен троекратно прогнать через себя теплоноситель.

Фекальные насосы предназначаются для перекачки грязных и сточных вод, в том числе и канализационных, где содержатся во взвешенном состоянии довольно крупные частицы. Они попадают в воду не только после туалетов, но и после септиков, из моечного оборудования и стиральных машин, из канализации спортивных клубов и предприятий общепита, гостиниц. В таких местах с большой вероятностью в сбросовые и канализационные системы попадают разные крупные и волокнистые предметы, способные забить трубопроводы. Потому многие фекальные насосы снабжаются режуще-измельчающим механизмом, которым не по силам только металл и камни, но кто же будет бросать их в канализацию.

Классификация насосов по:

  • 1. Расположению. В зависимости от расположения вала насосы бывают горизонтальные и вертикальные.
  • 2. Создаваемому напору центробежные и осевые насосы разделяются на три группы: низконапорные - до 20, средненапорные - от 20 до 60, высоконапорные - более 60 м вод. ст.
  • 3. По способу привода насосы разделяются на электроприводные и паровые (привод приводится в действие отбором пара из паровой турбины).
  • 4. По области применения: отопление, горячее водоснабжение, кондиционирование, водоснабжение, водоотведение, специального назначения.
  • 5. По числу рабочих колес они делятся на одноступенчатые многоступенчатые. Одноступенчатые насосы имеют одно рабочее колесо, а многоступенчатые - два и больше, которые применяются в случаях, когда требуемый напор не может быть достигнут одним рабочим колесом.

Классификация насосов по принципу действия:

  • 1. По характеру сил, преобладающих в насосе: объёмные, в которых преобладают силы давления и динамические, в которых преобладают силы инерции.
  • 2. По характеру соединения рабочей камеры с входом и выходом из насоса: периодическое соединение (объёмные насосы) и постоянное соединение входа и выхода (динамические насосы).
  • 3. Объёмные насосы используются перекачки вязких жидкостей. В этих насосах одно преобразование энергии - энергия двигателя непосредственно преобразуется в энергию жидкости (механическая => кинетическая + потенциальная).

Это высоконапорные насосы, они чувствительны к загрязнению перекачиваемой жидкости. Рабочий процесс в объёмных насосах неуравновешен (высокая вибрация), поэтому необходимо создавать для них массивные фундаменты. Также для этих насосов характерна неравномерность подачи. Большим плюсом таких насосов можно считать способность к сухому всасыванию (самовсасыванию).

4. Для динамических насосов характерно двойное преобразование энергии (1 этап: механическая => кинетическая + потенциальная; 2 этап: кинетическая => потенциальная). В динамических насосах можно перекачивать загрязнённые жидкости, они обладают равномерной подачей и уравновешенностью рабочего процесса. В отличие от объёмных насосов, они не способны к самовсасыванию.

Насосы по принципу действия подающего элемента подразделяют на насосы возвратно-поступательного действия, роторные и динамические.

Насосы возвратно-поступательного действия. Перемещение жидкости происходит в результате осевого движения поршня или мембраны в цилиндре насоса, который через всасывающий и нагнетательный клапаны периодически соединяется с подводящим и напорным трубопроводами. При увеличении рабочего объема насоса вследствие движения поршня или мембраны жидкость всасывается через всасывающий клапан или вентиль, а при обратном ходе поршня из-за уменьшения рабочего объема через нагнетательный клапан или вентиль вытесняется в напорный трубопровод.

По виду вытеснителя насосы подразделяют на поршневые и мембранные.

Признаками классификации поршневых насосов могут служить:

  • а) способ действия поршня;
  • б) положение поршня и цилиндра (радиальное с внешними полостями, радиальное с внутренними полостями, аксиальное, горизонтальное, вертикальное);
  • в) форма поршня (клапанный, крыльчатый, дисковой, плунжерный, ступенчатый);
  • г) вид привода (рычажный, шатунный от качающегося диска, поворотный, прямодействующий).

Соответственно этому различают насосы простого или двойного действия, горизонтальные или вертикальные, радиальные или аксиальные, клапанные, крыльчатые, дисковые, плунжерные многоступенчатые с рычажным, кулачковым приводом или с качающимся приводным диском, а также прямодействующие.

Мембранные насосы классифицируют по расположению и количеству мембранных цилиндров, а также по типу привода.

Роторные насосы. Роторные насосы работают главным образом по принципу вытеснения, причем один или несколько вращающихся поршней или винтов образуют друг с другом в цилиндре насоса рабочие полости, причем размеры полости всасывания наибольшие, а напорной полости - наименьшие; поэтому жидкость из полости всасывания и выталкивается в напорную полость. Однако некоторые роторные насосы имеют постоянные рабочие полости (объем вытеснения) как на входе, так и на выходе. Принципиальные различия и некоторые преимущества роторных насосов над поршневыми заключаются:

  • а) во вращающихся поршнях;
  • б) в отсутствии клапанов в цилиндрах;
  • в) в уравновешивании масс или моментов.

По конструктивному исполнению рабочих органов все роторные насосы делят на пять основных типов, а именно: шестеренные, винтовые, коловратные, пластинчатые, роликовые.

Динамические насосы. В отличие от поршневых и роторных эти насосы работают по динамическому принципу. В результате вращения рабочих колес внутри рабочего пространства насоса кинетическая энергия от рабочего колеса передается перекачиваемой жидкости, которая в последующих элементах (диффузоре, направляющем аппарате, спирали) в большей части преобразуется в энергию давления.

По принципу действия насосы прежде всего подразделяют на лопастные и вихревые. Если лопастной насос не обладает, как правило, свойством самовсасывания, то вихревой - обычно работает по принципу самовсасывания. Кроме того, в вихревых насосах в подавляющей степени происходит непрямой обмен энергии между вторичным потоком жидкости, находящейся в рабочем колесе, и перекачиваемой жидкостью в боковом канале корпуса насоса.

Лопастные насосы подразделяют:

  • 1. По направлению потока на выходе из рабочего колеса - на центробежные насосы радиального, диагонального типов и на осевые;
  • 2. По прохождению жидкости за рабочим колесом - с направляющим аппаратом, спиральным или кольцевым отводом;
  • 3. По направлению потока жидкости в рабочем колесе или между рабочими колесами - на одно- и двухпоточные;

В многооступенчатых насосах применяют одностороннее или симметричное расположение рабочих колес.

В заключение следует еще указать на деление, или классификацию, насосов по всасывающей способности: самовсасывающие, частично самовсасывающие (с предвключенным ступенями всасывания или всасывающими устройствами) и не самовсасывающие.

Вихревые насосы по форме рабочего колеса можно классифицировать на открытые (звездообразные), закрытые (с периферийнообоковым каналом) и чисто вихревые, а по прохождению потока на одно- и многоступенчатые насосы.

Классификация по виду перекачиваемой среды . От физических и химических свойств перекачиваемой среды неизбежно зависят конструкции насоса, принцип его работы, а также выбор материала. На этом основании вид перекачиваемой среды целесообразно принять в качестве второго признака для классификации насосов. Поэтому определены шесть типичных перекачиваемых сред для насосов. В соответствии с этим насосы предназначены для чистых и слегка загрязненных жидкостей, загрязненных жидкостей и взвесей, легко загазованных жидкостей, газожидкостных смесей, агрессивных жидкостей, жидких металлов.

ГЛАВА 8. ПЕРЕМЕЩЕНИЕ ЖИДКОСТЕЙ. СЖАТИЕ И ПЕРЕМЕЩЕНИЕ ГАЗОВ

Жидкости и газы в химических производствах часто необходимо перемещать через аппараты, а также по трубопроводам между аппаратами, установками, цехами, складами и т.д. Энергия, необходимая для перемещения жидкости, сообщается ей гидравлическими машинами, носящими название насосов.

Многие технологические процессы протекают в газовой фазе при высоких и низких давлениях. В этом случае приходится осуществлять как сжатие или разрежение газа, так и его транспортирование. Машины, предназначенные для осуществления таких процессов, называются компрессорными.

Насосы

Насосами называются гидравлические машины, в которых энергия двигателя передается перемещаемой жидкости вследствие повышения ее гидродинамического напора (давления).

Классификация насосов и их основные характеристики

Различают насосы двух основных типов: динамические и объемные.

В динамических насосах жидкость перемещается при воздействии сил на незамкнутый объем жидкости, который непрерывно сообщается со входом в насос и выходом из него.

В объемных насосах жидкость перемещается (вытесняется) при периодическом изменении замкнутого объема жидкости, который периодически сообщается со входом и выходом из него.

Динамические насосы по виду сил, действующих на жидкость, подразделяются на лопастные насосы и насосы трения.

К лопастным относятся насосы, в которых энергия передается жидкости при обтекании лопастей вращающегося рабочего колеса (или нескольких колес) насоса. Лопастные насосы, в свою очередь, делятся нацентробежные и осевые , причем в центробежных насосах жидкость движется через рабочее колесо от его центра к периферии, а в осевых – в направлении оси колеса.

Насосы трения представляют собой насосы, в которых жидкость перемещается преимущественно под воздействием сил трения. К ним относятся, в частности, вихревые и струйные насосы.

Объемные насосы – это такие, в которых жидкость, вытесняется из замкнутого пространства телом, движущимся возвратно-поступательно (поршневые, плунжерные, диафрагмовые насосы) или имеющим вращательные движения (шестеренные, пластинчатые, винтовые насосы).

Основные параметры насосов. Основными параметрами насоса любого типа являются производительность, напор и мощность. Производительность , или подача , (м /сек) определяется объемом жидкости, подаваемой насосом в нагнетательный трубопровод в единицу времени. Напор Н (м) характеризует удельную энергию, которая сообщается насосом единице веса перекачиваемой жидкости. Этот параметр показывает, насколько возрастает энергия жидкости при прохождении ее через насос, и определяется с помощью уравнения Бернулли. Напор можно представить как высоту, на которую может быть поднят 1 кг перекачиваемой жидкости за счет энергии, сообщаемой ей насосом. Поэтому напор не зависит от плотности перекачиваемой жидкости. Полезная мощность , затрачиваемая насосом на сообщение жидкости энергии, равна произведению удельной энергии Н на весовой расход жидкости:

. (8.1)

Мощность на валу больше полезной мощности в связи с потерями энергии в насосе, которые учитываются коэффициентом полезного действия (к.п.д.) насоса :

. (8.2)

Коэффициент полезного действия насоса характеризует совершенство конструкции и экономичность эксплуатации насоса. Величина отражает относительные потери мощности в самом насосе и выражается произведением

. (8.3)

В выражение (8.3) входят величины: – коэффициент подачи, или объемный к.п.д ., представляющий собой отношение действительной производительности насоса к теоретической (учитывает потери производительности при утечках жидкости через зазоры и сальники насоса, а также вследствие неодновременного перекрытия клапанов и выделения воздуха из перекачиваемой жидкости при давлении ниже атмосферного во время всасывания); гидравлический к.п.д. – отношение действительного напора насоса к теоретическому (учитывает потери напора при движении жидкости через насос); – механический к.п.д ., характеризующий потери мощности на механическое трение в насосе (в подшипниках, сальниках и т.д.).

Значение зависит от конструкции и степени износа насоса и в среднем составляет: для центробежных насосов 0,6 ¸ 0,7; для поршне-вых насосов 0,8 ¸ 0,9; для совершенных центробежных насосов боль-шой производительности 0,93 ¸ 0,95.

Мощность, потребляемая двигателем, или номинальная мощность двигателя , больше мощности на валу вследствие механических потерь в передаче от электродвигателя к насосу и в самом электродвигателе. Эти потери учитываются введением в уравнение (8.2) к.п.д. передачи и к.п.д. двигателя :

. (8.4)

Произведение представляет собой полный к.п.д. насосной установки h, который определяется как отношение полезной мощности к номинальной мощности двигателя и характеризует полные потери мощности насосной установки:

. (8.5)

Из уравнений (8.3) и (8.5) следует, что полный к.п.д. насосной установки может быть выражен произведением пяти величин:

.(8.6)

Установочная мощность двигателя рассчитывается по величине с учетом возможных перегрузок в момент пуска насоса, возникающих в связи с необходимостью преодоления инерции покоящейся массы жидкости:

, (8.7)

гдеb – коэффициент запаса мощности, значения которого определяют в зависимости от номинальной мощности двигателя :

Напор. Высота всасывания . Рассмотрим схему насосной установки, представленной на рис. 8.1. Введем обозначения: p 0 – давление в емкости 1 (приемная емкость), из которой насосом 2 засасывается жидкость; p 2 – давление в напорной емкости 3; pвс – давление во всасывающем патрубке насоса; рн – давление в нагнетательном патрубке насоса; Нвс – высота всасывания; Нн – высота нагнетания; Нг – геометрическая высота подачи жидкости; h – расстояние по вертикали между уровнями установки манометра М и вакуумметраВ .

Используем для определения напора насоса уравнение Бернулли (5.34). Примем за плоскость сравнения уровень жидкости в приемной емкости (сечение 0 - 0). Уравнение Бернулли для плоскостей 0 - 0 и
1 - 1:

. (8.8)


Рис. 8.1. Схема насосной установки: 1 – приемная емкость; 2 – насос; 3 – напорная емкость, М – манометр, В – вакуумметр

Уравнение Бернулли для плоскостей 1"- 1" и 2 - 2:

В этих условиях: и – средние скорости жидкости в приемной и напорной емкостях (в плоскостях 0 - 0 и 2 - 2 соответственно); , – средние скорости жидкости во всасывающем и нагнетательном патрубках насоса; hп.вс, hп.н – потери напора во всасывающем и нагнетательном трубопроводах.

Скорость жидкости пренебрежимо мала по сравнению со скоростью во всасывающем трубопроводе и может быть исключена из уравнения (8.8). Тогда из этого уравнения удельная энергия Евх жидкости на входе в насос

. (8.8а)

Аналогично << ; пренебрегая величиной и учитывая, что , определяем по уравнению (8.9) удельную энергию жидкости на выходе из насоса:

. (8.9а)

Вычитая из левой части уравнения (8.9а) левую часть уравнения (8.8а), находим напор насоса:

. (8.10)

Если диаметры всасывающего и нагнетательного патрубков равны, то = и уравнение (8.10) упрощается:

. (8.11)

Уравнения (8.10) и (8.11) применяют для расчета напора при проектировании насосов. Для определения напора действующего насоса пользуются показаниями манометра () и вакуумметра (). Выразим абсолютные давления и pвс через показания манометра и вакуумметра:

; ,

где – атмосферное давление.

Подставив полученные значения и pвс в уравнение (8.11), имеем

(8.12)

Иное выражение для напора насоса может быть получено, если из правой части уравнения (8.9а) вычесть правую часть уравнения (8.8):

, (8.13)

где hп= hп.н+ hп.вс – суммарное гидравлическое сопротивление всасывающего и нагнетательного трубопроводов.

Уравнение (8.13) используют при подборе насосов для технологических установок. Всасывание жидкости насосом происходит под действием разности давлений в приемной емкости p 0 и на входе в насос pвс или под действием разности напоров . Высота всасывания может быть определена из уравнения (8.8)

. (8.14)

Поскольку ~ 0, то

. (8.15)

Если жидкость перекачивается из открытой емкости, то p 0 = p а (p а – атмосферное давление). Давление на входе в насос p вс должно быть больше давления насыщенного пара p н перекачиваемой жидкости при температуре всасывания (p вс > p н) , в противном случае жидкость в насосе начнет кипеть. При образовании пара и выделении из жидкости растворенных в ней газов возможен разрыв потока и уменьшение высоты всасывания до нуля, следовательно,

. (8.16)

На высоту всасывания насосов оказывает влияние явление кавитации. Кавитация возникает при высоких скоростях вращения рабочих колес центробежных насосов в условиях, когда происходит интенсивное парообразование в жидкости, находящейся в насосе. Пузырьки пара попадают вместе с жидкостью в область более высоких давлений, где мгновенно конденсируются, что сопровождается гидравлическими ударами, шумом и сотрясением насоса. Кавитация приводит к быстрому его разрушению. При кавитации производитель-ность и напор насоса резко снижаются.

Динамические насосы

Центробежные насосы относятся к динамическим насосам, в них всасывание и нагнетание жидкости происходит равномерно и непрерывно под действием центробежной силы, возникающей при вращении рабочего колеса с лопатками, заключенного в спиралеобразном корпусе.

В одноступенчатом центробежном насосе (рис. 8.2) жидкость из всасывающего трубопровода 5 поступает вдоль оси рабочего колеса 2 в корпус 1 насоса и, попадая на лопатки 3, приобретает вращательное движение.

Центробежная сила отбрасывает жидкость в спиралеобразный канал переменного сечения между корпусом и рабочим колесом, в котором скорость жидкости уменьшается до значения, равного скорости в нагнетательном трубопроводе 8. При этом, как следует из уравнения Бернулли, происходит преобразование кинетической энергии потока жидкости (динамического напора) в статический напор, что обеспечивает повышение давления жидкости. На входе в рабочее колесо создается пониженное давление, и жидкость из приемной емкости непрерывно поступает в насос. Давление, развиваемое центробежным насосом, зависит от вращения рабочего колеса. Вследствие значительных зазоров между колесом и корпусом насоса разрежение, возникающее при вращении колеса, недостаточно для подъема жидкости по всасывающему трубопроводу, если он и корпус насоса не залиты жидкостью. Поэтому перед пуском центробежный насос заливают перекачиваемой жидкостью. Чтобы жидкость не выливалась из насоса и всасывающего трубопровода при заливке насоса или при кратковременных остановках его, на конце всасывающей трубы, снабженной фильтром 7, погруженном в жидкость, устанавливают обратный клапан 6. Напор одноступенчатых центробежных насосов (с одним рабочим колесом) ограничен. Для создания более высоких напоров применяют многоступенчатые насосы, имеющие несколько рабочих колес в общем корпусе, расположенных последовательно на одном валу. Жидкость, выходящая из первого колеса, поступает по специальному отводному каналу в корпусе на второе колесо, где ей сообщается дополнительная энергия, из второго колеса через отводной канал – в третье колесо и т.д. Таким образом, ориентировочно (без учета потерь) можно считать, что напор многоступенчатого насоса равен напору одного колеса, умноженному на число колес. Число рабочих колес в многоступенчатом насосе обычно не превышает пяти.

Рис. 8.2. Схема центробежного насоса:
1 – корпус; 2 – рабочее колесо; 3 – лопатки;
4 – линии для залива насоса перед пуском;
5 – всасывающий трубопровод; 6 – обратный клапан; 7 – фильтр; 8 – нагнетательный трубопровод; 9 – вал; 10 – сальник

Основное уравнение центробежных машин . (Теория рабочего колеса). При движении жидкости между лопастями вращающегося рабочего колеса, каждая частица совершает сложное движение, перемещаясь вдоль лопастей с относительной скоростью w и вращаясь вместе с колесом с окружной скоростью , где w – угловая скорость.

Абсолютная скорость движения частицы определяется геометрическим сложением скоростей и (рис. 8.3)

Рис. 8.3. Картина скоростей в центробежном насосе

Графическая связь между указанными скоростями выразится двумя параллелограммами скоростей (рис. 8.3) и (рис. 8.4), где а – при входе, б – при выходе жидкости из рабочего колеса. b – угол наклона лопатки и, следовательно, вектора скорости к вектору окружной скорости , взятому с противоположным знаком.

Рис. 8.4. Параллелограммы скоростей на входе (а) и выходе (б) из рабочего колеса

Допустим, что колесо неподвижно, а жидкость движется между его лопастями с теми же относительными скоростями, как и при вращении колеса. Тогда энергия единицы веса жидкости будет

при входе ,

при выходе ,

где p 1 и p 2 – давления при входе и выходе жидкости из колеса. Если не учитывать потери энергии при движении, то

.

Когда же колесо вращается, то жидкость, двигаясь между лопастями и вращаясь вместе с ними, приобретает дополнительную энергию, равную работе центробежной силы, отнесенной к единице веса, А . Поэтому

. (8.17)

Величину А можно определить из следующих соображений: центробежная сила, действующая на единицу веса жидкости, равна , где r – радиус вращения, – центробежное ускорение, – масса жидкости, отнесенная к единице веса. При перемещении указанной массы жидкости на бесконечно малое расстояние dr элементарная работа центробежной силы будет:

,

а при перемещении с окружности радиусом r 1 на окружность с радиусом r 2 (см. рис. 8.3) –

. (8.18)

Введем это выражение для А в уравнение (8.17):

. (8.19)

Из параллелограмма скоростей (рис. 8.4) следует

(8.20)

Подставляя значения и из уравнений (8.20) в уравнение (8.19), после преобразований получаем

Левая часть уравнения представляет собой полный теоретический напорH т , развиваемый между лопастями рабочего колеса. Поэтому окончательно получим

. (8.22)

Уравнение (8.22), являющееся выражением для теоретического напора, развиваемого центробежным насосом с бесконечно большим числом лопастей, было выведено Л.Эйлером.

Радиальные составляющие абсолютных скоростей с r1 и с r2 , как видно из рис. 8.4, характеризуются уравнениями:

, .

По теореме синусов из рис. 8.4 б следует, что

откуда , по аналогии .

В конструкциях центробежных насосов с целью уменьшения гидравлических сопротивлений жидкость входит в рабочее колесо в радиальном направлении; при этом угол между скоростями и близок к a 1 = 90 °, cosa 1 = 0. Тогда из уравнения (8.22) следует, что

. (8.22а)

В уравнении (8.22а) выразим через , тогда

. (8.22б)

Производительность центробежного насоса соответствует расходу жидкости через каналы и между лопатками рабочего колеса (рис. 8.3):

где d – толщина лопаток; z – число лопаток; с r1 и с r2 – радиальные составляющие абсолютных скоростей на входе в колесо и выходе из него.

Угол a 2 между векторами скоростей и определяется следующим образом. Из уравнения (8.23) следует:

откуда .

Из параллелограмма скоростей (рис. 8.4б) следует, что и ; угол a 2 можно определить из соотношения . Уравнение (8.22а) можно преобразовать следующим образом. Из рис. 8.4б следует, что . Подставляя значение в уравнение (8.22а), имеем . В свою очередь, и уравнение для теоретического напора принимает вид

. (8.22б)

Уравнение для производительности насоса (8.23) можно представить в виде

откуда . Подставляя выражение для в уравнение (8.22б), находим

Уравнение (8.22в) характеризует зависимость теоретического напора, развиваемого насосом, от окружной скорости, подачи и геометрических характеристик насоса (b 2 ,D 2 ,b 2 ,d,z ). При (при закрытой задвижке) теоретический напор максимален и равен , по мере увеличения подачи величина уменьшается для лопаток, загнутых противоположно направлению вращения колеса (), как это обычно и бывает в насосах, для уменьшения в них гидравлического сопротивления.

Действительный напор насоса меньше теоретического, так как часть энергии жидкости расходуется на преодоление гидравлических сопротивлений внутри насоса и жидкость в нем при конечном числе лопаток не движется по подобным траекториям. Действительный напор составляет ,где гидравлический к.п.д. насоса, равный 0,8 - 0,95; – коэффициент, учитывающий реальное число лопаток в насосе, равный 0,6 - 0,8.

Законы пропорциональности. Производительность и напор центробежного насоса зависят от числа оборотов рабочего колеса. Из уравнения (8.23) следует, что производительность насоса пропорциональна радиальной составляющей абсолютной скорости на выходе из колеса, т.е. ~ с r2 . Если изменить число оборотов насоса от , до , что вызовет изменение производительности от до , то при условии сохранения подобия траектории движения частиц жидкости, параллелограммы скоростей в любых сходственных точках потоков будут геометрически подобны (рис. 8.5). Соответственно:

. (8.24)

Рис. 8.5. Подобие параллелограммов скоростей при изменении числа оборотов рабочего колеса

Согласно уравнению (8.22б) напор центробежного насоса пропорционален квадрату окружной скорости:

. (8.25)

Мощность, потребляемая насосом, пропорциональна произведению производительности насоса на его напор Н. С учетом зависимостей (8.24) и (8.25) получим

. (8.26)

Уравнения (8.24) – (8.26) носят название законов пропорциональ-ности. Практически такой строгой зависимости между параметрами насоса нет. Законы пропорциональности соблюдаются при изменении числа оборотов колеса не более чем в два раза.

Характеристики насосов. Графические зависимости напора Н , мощности на валу N в и к.п.д. насоса от производительности называются характеристиками насоса (рис. 8.6). Эти зависимости получают при испытании центробежных насосов, изменяя степень открытия задвижки на нагнетательном трубопроводе; они приводятся в каталогах на насосы. Из рис. 8.6 следует, что с увеличением производительности при n = const напор насоса уменьшается, потреб-ляемая мощность возрастает, а к.п.д. проходит через максимум.

Рис. 8.6. Характеристики центробежного насоса

Небольшой начальный участок H = f(), где напор слегка возрастает с увеличением производительности, соответствует неустойчивой работе насоса. Насос потребляет наименьшую мощность при закрытой напорной задвижке (при = 0 ). Поэтому пуск центробежных насосов во избежание перегрузки двигателя производят именно при закрытой задвижке. Наиболее благоприятный режим эксплуатации центробежного насоса при данном числе оборотов соответствует максимуму на кривой = f( ).

Рис. 8.7. Универсальная характеристика центробежного насоса

Для выбора рабочего режима насоса пользуются универсальными характеристиками, на которых в графической форме представлена связь между напором, производительностью, числом оборотов и к.п.д. Для построения универсальных характеристик требуются испытания насоса при разных числах оборотов и построение серии главных характеристик при n = const , а также кривых = f( ). Совокупность серии главных характеристик и линий равных к.п.д. составляет универсальную характеристику центробежного насоса (см. рис. 8.7). Линия а - а соответствует максимальным значениям к.п.д. при данном числе оборотов рабочего колеса.

Работа насосов на сеть . При выборе насоса необходимо учитывать характеристику сети, т.е. трубопровода и аппаратов, через которые транспортируется жидкость.

Характеристика сети выражает зависимость между объемным расходом жидкости и потребным напором Н п , необходимым для перемещения жидкости по данной сети. Напор Н п может быть определен как сумма геометрической высоты подачи и потерь напора при одинаковых давлениях в напорной и приёмной ёмкостях (8.19). В общем случае потребный напор находится из (8.13). Потери напора определяют по зависимости

гдеk – коэффициент производительности, который учитывает полное гидравлическое сопротивление, как трубопровода, так и аппаратов, с которыми соединен трубопровод.

K также будет зависеть от .

. (8.28)

Совмещение характеристик сети и насоса показано на рис. 8.8. Точка А пересечения этих характеристик называется рабочей точкой. Она отвечает наибольшей производительности насоса при его работе на данную сеть. Насос должен быть выбран так, чтобы рабочая точка соответствовала требуемым производительности и напору в области наибольших к.п.д.

Регулирование производительности насоса. При выборе насоса по его характеристике следует учесть возможность регулирования производительности насоса . Оно может осуществляться путем большего или меньшего прикрытия нагнетательной задвижки. На рис.8.8 точка А соответствует предельной производительности насоса для данной сети, так как при дальнейшем увеличение производительности насоса напор, создаваемый насосом, уменьшается, а напор со стороны сети увеличивается. Точка А соответствует полному открытию нагнетательной задвижки. Прикрывая задвижку, мы увеличиваем гидравлическое сопротивление сети. Поэтому пересечение характеристик сети и насоса произойдет, например, в точке А¢ (левее), следовательно, производительность насоса уменьшится до , а напор увеличится. Напор, развиваемый

Рис. 8.8. Совмещение характеристик насоса и сети

насосом, в этом случае характеризуется линией 1 – 3, причем часть его 2 – 3 идет на преодоление сопротивления сети с открытой задвижкой, а часть 1 – 2 напора поглощается сопротивлением прикрытой задвижки. При этом следует учитывать, что регулирование насоса задвижкой связано с бесполезным расходом энергии на преодоление сопротивления задвижки.

Для существенного уменьшения производительности имеет смысл снизить число оборотов электродвигателя, если это не приведет к уменьшению напора насоса ниже потребного, или заменить насос. Аналогичным образом можно добиться увеличения производительности насоса: повышение числа оборотов; замена насоса; снижение гидравлического сопротивления сети, например, путем увеличения диаметра трубопроводов.

Совместная работа насосов. Совместная работа насосов на общую нагнетательную линию применяется в тех случаях, когда требуемые значения или Н п (либо оба) не могут быть обеспечены одним насосом. Соединение насосов может быть параллельным или последовательным.

Рис. 8.9. Совместная работа насосов: а – параллельное соединение;
б – последовательное соединение

При необходимости увеличения диапазона производительности насосы включаются на параллельную работу (рис. 8.9а). Обычно характеристику насосов (в данном примере одинаковых) получают сложением абсцисс характеристик каждого из насосов для данного напора. Совмещение характеристик сети с общей характеристикой насосов показывает, что рабочая точка В в этом случае соответствует производительности большей, чем производительность одного насоса (точка А ). Однако общая производительность всегда будет меньше суммы производительностей насосов, работающих отдельно друг от друга на данную сеть, что связано с параболической формой характеристики сети. Напор при этом также возрастает, но незначительно.

Последовательная работа насосов осуществляется тогда, когда необходимо резкое увеличение напора при том же диапазоне производительности (особенно в области малых значений ). В этом случае общую характеристику получают сложением напоров насосов для каждого значения производительности. На рис. 8.9б представлена общая характеристика двух одинаковых насосов, соединенных последовательно. Рабочая точка В соответствует суммарному напору и производительности ( и ) . При таком соединении насосов удается значительно увеличить напор, если характеристика сети является достаточно крутой.

Осевые (пропеллерные) насосы. Эти насосы применяют для перемещения больших количеств жидкости при небольших напорах, в частности, в оросительных и конденсационных установках, а также для создания циркуляции жидкости в различных аппаратах. На рис. 8.10 приведена схема пропеллерного насоса.

Рис. 8.10. Схема осевого насоса: 1 – рабочее колесо с лопатками; 2 – корпус; 3 – направляющий аппарат; 4 – вал

Рабочее колесо 1 с лопатками винтового профиля, имеющими форму пропеллера, при вращении в корпусе 2 сообщает жидкости движение в осевом направлении. При этом поток несколько закручивается. Для гашения вращательного движения и преобразования его в поступательное вдоль оси после рабочего колеса устанавливается в корпусе насоса 2 направляющий аппарат 3. По расположению вала 4 осевые насосы бывают горизонтальные и вертикальные. Объемная производительность осевых насосов достигает 30 м 3 /с при напоре 20 м, к.п.д. достигает 90%. Высота всасывания их мала и редко достигает 3 м.

Вихревые насосы . На рис. 8.11 показана схема вихревого насоса.

Рис. 8.11. Схема вихревого насоса:1 – рабочее колесо; 2 – радиальные лопатки; 3 – межлопастное пространство; 4 – кольцевой канал; 5, 6 – всасывающий и нагнетательный патрубки; 7 – разделитель потоков; 8 – вал рабочего колеса; 9 – корпус

При вращении рабочего колеса 1 по стрелке (рис. 8.11) жидкость через всасывающий патрубок 5 поступает на лопасти рабочего колеса и перемещается к нагнетательному патрубку 6.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-08-20

Насос представляет собой агрегат, который посредством всасывания и нагнетания жидкости перемещает ее при помощи кинетической или потенциальной энергии. Такие приборы применяются сегодня в различных сферах деятельности человека. Агрегаты представленного типа можно встретить как в промышленности, так и в быту.

Существующие виды насосов разнообразны. Они отличаются принципом действия и областью применения. В продаже представлены конструкции, способные работать не только с жидкостью, но и газами, в вакууме, для передачи теплоты, магнитного потока и т. д. Чтобы разобраться в этом многообразии, необходимо рассмотреть основные виды представленных устройств. Это позволит выбрать из огромного количества существующих конструкций оптимальный вариант оборудования.

Классификация

Современные насосы, виды и принцип работы которых отличаются по различным критериям, отличаются особенностями конструкции, применением и по ряду прочих характеристик. Для перемещения жидкостей под определенным напором сегодня используется 2 типа агрегатов. К первой категории относятся насосы-машины, а ко второй - насосы-аппараты. Они включают в себя множество подвидов оборудования.

Насосы-машины приводятся в действие двигателем. К ним относятся лопастные, поршневые, роторные и прочие разновидности.

Насосы-аппараты функционируют от других источников энергии. В не предусмотрено наличие рабочих механизмов. В эту группу входят струйные, гидравлические, магнитогидродинамические насосы, а также газлифты, вытеснители и т. д.

По назначению виды насосов для воды делят на несколько основных групп. К ним относятся водоподъемные, циркуляционные, дренажные агрегаты.

Тип рабочей камеры

Чтобы понять, каким разнообразием отличается представленное оборудование, необходимо рассмотреть фото видов насосов (представлено далее). По принципу особенностей внутренней камеры агрегата различают две большие группы приборов. Это объемные и динамические разновидности. Они включают в себя множество различных агрегатов.

Жидкость в объемном насосе перемещается под воздействием периодического изменения внутреннего пространства в камере. К этой категории устройств относятся крыльчатые, возвратно-поступательные и роторные приборы. Входящие в эту группу приборы классифицируются по ряду признаков. Их выбирают в соответствии с условиями эксплуатации прибора.

В динамических насосах жидкость транспортируется под воздействием сил внутри камеры. К этой категории относятся лопастные, электромагнитные насосы и приборы трения. Такие устройства отличаются видом сил, которые действуют на жидкость, направлением ее движения, типом отвода, а также конструкцией колеса.

При выборе той или иной разновидности оборудования потребитель руководствуется классификацией по целевому признаку, соответствию условиям отрасли и эксплуатации.

Назначение

Существующие разновидности насосов классифицируют по признаку применения в различных сферах деятельности человека. Существуют агрегаты для перекачки чистой воды, сточных вод, способствующие повышению напора в системе, а также обеспечения постоянной циркуляции в отопительных коммуникациях.

Отдельно также выделяют виды пожарных насосов . Они используют оборудование высокой мощности. При этом создается большой напор воды.

Дренажные насосы предназначены для перемещения загрязненной дождевой, грунтовой воды. В подобных устройствах предусмотрено наличие измельчающей системы, а также фильтрующих компонентов. Это малогабаритные, неприхотливые приборы, отличающиеся доступностью для покупателей. Поэтому их используют повсеместно.

Фекальное оборудование отличается повышенным диаметром отверстий и наличием режущего механизма. Они способны отводить субстанции различной консистенции. Их устанавливают в яму или резервуар, где они находятся на протяжении всего времени их эксплуатации.

Повышающие давление агрегаты устанавливаются перед прибором, который требует при работе излишнего давления жидкости.

Центробежные агрегаты

Описывая виды насосов по принципу действия , следует рассмотреть основные из них. Одним из самых часто используемых человечеством приборов является центробежный агрегат. Он используется в системах подачи воды, агрессивных, вязких жидкостей, сточных, грунтовых вод.

Прибор передает кинетическую энергию от рабочего колеса (вращается в процессе работы) той субстанции, которая находится между его лопастями. Центробежная сила, образующаяся при этом, передает жидкость внутрь корпуса прибора. Затем она перемещается далее по системе. На место переместившейся субстанции поступает новая жидкость. Так обеспечивается непрерывная работа насоса.

Подвод жидкости к колесу может осуществляться не только с одной стороны. Встречаются более сложные центробежные конструкции. В них подвод осуществляется с двух сторон. Такой подход предоставляет возможность уравнивать давление субстанции, которое она осуществляет на лопасти колеса.

Одной из основных технических характеристик подобных насосов является коэффициент быстроходности. При выборе той или иной модели необходимо учитывать существующие особенности работы оборудования. В этом случае оно проработает долго и эффективно.

Многоступенчатые и осевые конструкции

Изучая виды насосов, характеристики которых отличаются по принципу устройства, следует также уделить внимание осевым и многоступенчатым конструкциям. Они также достаточно распространены в промышленном производстве и быту.

Многоступенчатые разновидности позволяют создавать большой напор жидкости. Она проходит последовательно через несколько рабочих колес. Каждый из этих конструкционных элементов передает определенную энергию субстанции.

При выборе подобного оборудования важно обращать внимание на зависимость показателей напора и мощности, высоты всасывания на стадии подачи, КПД. Последняя характеристика достигает максимума в определенном режиме работы оборудования. При увеличении подачи КПД снижается. Подобные конструкции способны обеспечить напор воды в размере 65-138 тыс. м³/ч. При этом высота водяного столба может составлять 18,5-95 м. Именно такое оборудование применяется при пожаротушении высотных зданий.

Рассматривая виды и типы насосов, следует сказать также про устройство осевых насосов. Они способны за короткое время переместить большой объем жидкости. Рабочее колесо передает поверхностью своих лопастей определенную энергию субстанции. Именно с такой силой движется жидкость в системе. Ее частицы движутся по кривой. Попадая в выпрямляющий аппарат, их траектория выравнивается. До выхода из агрегата жидкость движется вдоль оси насоса. Такой принцип циркуляции и послужил для определения названия подобной техники.

Осевые насосы могут иметь в своей конструкции жесткие лопасти или поворотные конструкционные элементы. В первом варианте элементы пропеллера закреплены неподвижно. Во втором варианте в систему встроен механизм, поворачивающий лопасти, меняющий угол их наклона.

Вихревые и роторные конструкции

Разбираясь в вопросах классификации современного напорного оборудования, необходимо сказать несколько слов о том, какие виды насосов еще востребованы в хозяйственной деятельности человека. По принципу устройства внутреннего механизма выделяют вихревый тип конструкции.

Такие агрегаты характеризуются хорошими показателями самовсасывания. Они способны стартовать без предварительного заполнения трубы жидкостью, которая присутствует в корпусе прибора. Основной сферой применения подобного оборудования является перемещение испаряющихся быстро субстанций, капельных жидкостей, насыщенных газами. Также их применяют в комбинации с насосами центробежного типа.

Вихревые приборы могут быть открытого или закрытого класса. В последнем варианте жидкость из ячеек периферии рабочего колеса при возникновении центробежной силы перемещается в канал корпуса. Далее она передает часть своей энергии находящейся внутри среде. После этого жидкость перемещается в следующую ячейку. При такой организации насос вихревого типа развивает напор в несколько раз больше, чем у центробежных разновидностей. Однако их КПД будет ниже.

В основные виды насосов вошли также роторные разновидности. Они подают небольшое количество жидкости. Они бывают зубчатыми, шиберными, винтовыми, коловратными, лабиринтовыми и т. д. Все они отличаются идентичным принципом действия. Такие конструкции не имеют в своем составе нагнетательного и всасывающего клапана. Это упрощает конструкцию, делая ее долговечнее и практичнее.

Поршневые конструкции

В продаже представлены также поршневые виды насосов . Они отличаются разнообразными конструкционными решениями. Благодаря такой особенности они применяются в широком спектре отраслей.

Действие агрегата происходит посредством периодического всасывания и нагнетания внутри цилиндра во время движения рабочего элемента. Им является плунжер или поршень. Объем перемещаемой жидкости не меняется. Периодически ускоряется или замедляется время перемещения рабочего механизма.

Поршневые насосы могут быть приводными, прямодействующими. Конструкция имеет в своем составе нагнетательный и всасывающий клапан. Субстанция, перемещающаяся по системе, получает кинетическую энергию. Ее величина пропорциональна давлению при ее нагнетании.

Поршневые насосы могут быть вертикальными, горизонтальными, многократного или одинарного действия. В их состав могут входить один или несколько цилиндров. Конструкция отличается значительной сложностью организации. При значительных габаритах это относительно тихое устройство. Их КПД высок, а работа отличается высокой независимостью при подаче от напора.

Струйные конструкции

Существующие виды водяных насосов насчитывают большое количество вариантов конструкций. Одним из востребованных типов оборудования является струйный агрегат. Он относится к группе насосов-аппаратов. Такая конструкция отличается большим разнообразием. Сфера применения струйных насосов широка.

Представленное оборудование имеет простую и практичную конструкцию, отличается долговечностью при эксплуатации. Их КПД невысок, составляет всего около 30 %. Ярким примером струйной конструкции является водоструйный насос. Он преобразует потенциальную энергию жидкости в кинетическую в конической сужающейся насадке. Далее подаваемая смешивается с рабочей субстанцией в камере. После этого кинетическая энергия снова переходит в потенциальную.

Водяные насосы

Изучая виды насосов для воды , следует выделить несколько групп подобного оборудования. Приборы представленного типа могут быть поверхностными или погружными.

К первой категории относятся приборы, которые монтируются вне водяной поверхности. Они способны поднимать воду на поверхность с глубины до 8 м. Это производительное оборудование, практичностью и ремонтопригодностью. При работе агрегат не издает шума. Его стоимость приемлема практически для любого покупателя. К таким приборам относятся центробежные и вихревые типы конструкции.

Погружные разновидности подвешивают при помощи троса непосредственно над водой. Они касаются жидкости, передавая ее на поверхность. Такие устройства позволяют транспортировать воду даже с большой глубины. Эти приборы обеспечивают в жилых домах. Их применяют в системах орошения, подачи технической и питьевой воды в резервуар. При затоплении помещения погружные насосы также эффективно эксплуатируются.

Конструкция в этом случае сложна и требовательна. Могут возникать затруднения в процессе технического обслуживания техники. Вода, в которую погружается агрегат, должна быть чистой, без большого количества примесей.

Циркуляционные конструкции

Циркуляционные виды насосов применяются в системах отопления. Теплоноситель перемещается с заданной скоростью по системе. Его температура постепенно понижается. Помещение обогревается при определенном уровне движения теплоносителя. Такие приборы применяют даже в многоэтажных домах, в которых система отопительных труб и радиаторов характеризуется разветвлениями.

Чем толще подводящие коммуникации, тем большая мощность насоса требуется. В месте врезки насоса в систему происходит перепад давления. Чтобы оборудование работало эффективно, требуется обеспечить необходимый уровень производительности.

Рассмотрев основные виды насосов, можно понять особенности подобного оборудования, их отличия и характерные особенности эксплуатации. Разнообразие конструкций позволяет применять представленную технику в различных сферах хозяйственной деятельности человека.

Центробежные насосы являются самыми распространённым насосами в мире. Благодаря своей конструкции и стабильной работе этот тип насосов нашел широкое применение, как для решения бытовых задач, так и для основных технологических процессов в самых различных отраслях промышленности. В данной статье будет дано полное описание центробежных насосов, рассказано как работает центробежный насос, его классификация и основные области использования.

Основным элементом центробежного насоса является рабочее колесо (импеллер), расположенное внутри спирального корпуса (улитка), которое имеет лопасти, направленные в обратную сторону относительно вращению самого колеса. Импеллер устанавливается на вал, который соединен с приводом насоса. При старте работы агрегата рабочее колесо начинает вращаться, и жидкость через всасывающий патрубок поступает вдоль оси вращения колеса.

Под действием центробежной силы, жидкость перемещается по каналам между лопастями в радиальном направлении (от центра импеллера к его периферии) в спиральную камеру корпуса насоса, а затем и в нагнетательный патрубок насоса. На периферии рабочего колеса располагается зона повышенного давления. В центре же давление понижено, что обеспечивает постоянное поступление жидкости в насос.

Конструкция центробежных насосов

Центробежный насос состоит из следующих основных частей:

  • Всасывающий патрубок
  • Нагнетательный патрубок
  • Спиральный корпус (проточная часть насоса)
  • Рабочее колесо (импеллер)
  • Уплотнение вала
  • Картер насос

Классификация центробежных насосов

Центробежные насосы можно классифицировать по конструктивным исполнениям его основных элементов, по типу установки и назначению.

По расположению патрубков насосов

  • Насос «ин-лайн» типа. У данного типа насоса всасывающий и нагнетательный патрубок находятся на одной линии друг напротив друга. Перекачиваемая жидкость проходит сквозь насос. Насос устанавливается на прямых участках трубопровода.
    • Консольные насосы. Жидкость поступает в центр рабочего колеса (импеллера). Патрубки расположены под 90˚С относительно друг друга.

    По количеству ступеней насоса


    • Многоступенчатый насос имеет на валу более одного последовательно соединённых колес. Такой тип насосов используется для обеспечения высокого напора при сравнительно небольшом расходе. Высокий напор создается благодаря сумме напоров, создаваемых каждым отдельным колесом. Перекачиваемая жидкость переходит последовательно от одной ступени к другой.

  • По типу уплотнения вала

    Для защиты от попадания перекачиваемой жидкости в окружающую среду и в механическую часть центробежного насоса используются различные уплотнительные системы. По типу применяемой системы насосы можно разделить на:

    • Центробежные насосы с сальниковым уплотнением (ссылка на сальниковое уплотнение)
    • Центробежные насосы с торцевым уплотнением (одинарным или двойным) (ссылка на торцевое уплотнение)
    • Центробежные насосы с магнитной муфтой (ссылка на магнитную муфту)
    • Центробежные насосы герметичные с мокрым ротором (ссылка на мокрый ротор)
    • Центробежные насосы с динамическим уплотнением (ссылка на динамическое уплотнение)

    По типу соединения с электродвигателем

    Центробежные насосы разделяются также по типу соединения гидравлической части насоса с электродвигателем. Выделяют типы:

    • Насос с соединительной муфтой. Упругая муфта — это элемент, позволяющий соединить вал электродвигателя и вал, на котором крепится рабочее колесо. Для этого используется, как обычная муфта, так и муфта с промежуточным элементом. Использование промежуточного элемента позволяет не отсоединять электродвигатель при техническом обслуживании насоса, например при замене торцевого уплотнения.
    • Моноблочный насос. У данного типа насосов рабочее колесо крепится либо сразу на удлиненном валу электродвигателя, либо для соединения вала двигателя и насоса используется неподвижная постоянная глухая муфта.

      По назначению

      Благодаря своим конструкционным возможностям назначение центробежного насоса может быть самым различным. По данному показателю выделяют следующие типы центробежных насосов:

      • Дренажные
      • Скважинные
      • Фекальные
      • Шламовые
      • Пищевые
      • Санитарные
      • Пожарные
      • Самовсасывающие

      Материальное исполнение центробежных насосов

      Центробежные насосы применяются практически во всех отраслях промышленности, перекачивают самые различные жидкости, начиная с воды и заканчивая высоко агрессивными и абразивными суспензиями.

      Поэтому выбор материалов для основных элементов центробежных насосов очень широкий и чаще всего он основывается на стойкости данного материала к свойствам перекачиваемой жидкости (ссылка на таблице хим. стойкости) и условиям работы самого насоса.

      Можно выделить следующие основные материалы:

      Металлическое исполнение

      • Чугун
      • Бронза
      • Углеродистая сталь
      • Нержавеющая сталь
      • Дуплекс
      • Супер-дуплекс
      • Титан
      • И.т.д

      Футерованные и пластиковые исполнения

      При работе с высоко агрессивными жидкостями, например с кислотами, металлическое исполнение не всегда может обеспечить необходимой коррозионной защиты. Либо применения сверхстойких сплавов может привести к значительному удорожанию всей конструкции.

      Поэтому широкое распространение приобрело использования самых различных пластиков, в качестве основного материала контактирующего со средой в центробежных насосах.

      Можно выделить два основных типа:

      • Футерованные насосы. Футеровка – это процесс нанесения пластикового покрытия на металлический корпус насоса. Все элементы контактирующие с перекачиваемой средой покрыты слоем полимера, что значительно увеличивает коррозионною устойчивость всей проточной части. Современные технологии обеспечивают отличное сцепление между покрытием и корпусом, т.к при отливке полимер заполняет все полости и зазоры.

      • Пластиковые центробежные насосы. Основные элементы насоса, контактирующие со средой, выполнены из цельного пластика, обработанного на специальных станках.


      Материалы для футерованных и пластиковых насосов:

      • PP — полипропилен
      • PVDF- поливинилденефлуорид
      • PE – полиэтилен
      • PVC – поливинилхлорид
      • PFA – перфторалкоксил
      • PTFE – политетрафторэтилен
      • ETFE – этилентетрафторэтилен (Tefzel)
      • FEP – фторэтиленпропилен

      Материалы уплотнительных колец

      В качестве уплотнительных колец в центробежных насосах чаще всего используют следующие эластомеры:

      • EPDM — Этилен-пропиленовые каучук
      • NBR — Бутадиен-нитрильный каучук
      • FPM/FKM/Viton — Фторкаучук
      • FFKM — Каучук перфторированный

      Преимущества и недостатки центробежных насосов

      Преимущества:

      • Простая конструкция
      • Немного движущихся частей, большой срок службы
      • Высокий КПД
      • Высокие показатели производительности
      • Постоянная подача, без пульсаций
      • Регулировка производительности с помощью дроссельного клапана на линии нагнетания или частотного преобразователя

      Недостатки

      • Невозможность «самовсасывания»
      • Большой риск кавитации
      • Производительность сильно зависит от напора
      • Наиболее эффективны только в одной заданной рабочей точке. При регулировании подачи с помощью частотного преобразователя эффективность понижается
      • Не может работать с мультифазными жидкостями с содержанием воздуха или газа
      • При перекачки абразивных жидкостей возможный быстрый износ основных элементов из-за высокой скорости вращения рабочего колеса (около 1500 об/мин).
      • Не может работать с высоковязкими жидкостями (макс. 150 сСт)

      Области применения

      Центробежные насосы применяются практически во всех отраслях промышленности.

      Основные из них:

      Водоснабжение и водоотведение

      Водоочистные сооружения

      Энергетика

      Нефтяная и газовая промышленность

      Химическая промышленность

      Целлюлозно-бумажная промышленность

      Горнодобывающая промышленность

      Фармацевтическая

Основные производители

Крупных игроков на рынке центробежных насосов можно также разбить по отраслям в которых они наиболее сильны:

Водоснабжение, водоотведение, водоочистка

  • Grundfos: grundfos.com
  • Wilo:wilo.ru
  • Группа компаний Xylem. Насосы Lowara, Goulds, Flygt, Vogel и.т.д: http://xylem.ru
  • KSB: https://www.ksb.com/ksb-ru/
  • Pentair: www.pentair.com
  • Ebara: http://www.ebaraeurope.ru/
  • Caprari: www.caprari.it

Нефтехимическая отрасль

  • Flowserve www.flowserve.com
  • ITT www.itt.com/
  • Sulzer www.sulzer.com
  • Hermetic Pumpen www.hermetic-pumpen.com
  • Kirloskar pumps www.kirloskarpumps.com/
  • Ruhrpumpen www.ruhrpumpen.com

Химическая промышленность

  • Munsch munsch.de/
  • Pompe Travaini www.pompetravaini.it/
  • Someflu pump www.someflu.com/
  • Rutschi Gruppe www.grupperutschi.com

Горнодобывающая отрасль

  • Warman . Группа компания Weir mineral https://www.global.weir/brands/
  • Krebs . Группа компаний flsSmidt http://www.flsmidth.com/en-US/Krebs
  • Habermann pumpen www.aurumpumpen.de/ru/