Молния с точки зрения электричества. Почему и откуда берется молния как объяснить ребенку

Многие люди боятся страшного явления природы - грозы. Это обычно происходит, когда солнце закрывается мрачными тучами, гремит жуткий гром и идет сильный дождь.

Конечно, бояться молнии следует, ведь она может даже убить или стать Это известно давно, поэтому и придумали различные средства для защиты от молний и грома (например, металлические шесты).

Что же происходит там наверху и откуда берется гром? И молния как возникает?

Грозовые тучи

Обычно огромные. По высоте они достигают нескольких километров. Визуально не видно, как внутри этих гремучих туч все бурлит и кипит. Это воздуха, включающие в себя капельки воды, с большой скоростью перемещаются снизу вверх и наоборот.

Самая верхняя часть этих туч по температуре достигает -40 градусов, и капли воды, попадающие в эту часть тучи, замерзают.

О происхождении грозовых туч

Прежде чем мы узнаем, откуда берется гром и молния как возникает, вкратце опишем, как формируются грозовые тучи.

Большая часть этих явлений происходит не над водной гладью планеты, а над континентами. Кроме того, грозовые облака интенсивно формируются над континентами тропических широт, где у поверхности земли воздух (в отличие от воздуха над водной поверхностью) сильно прогревается и поднимается быстро вверх.

Обычно на склонах разных возвышенностей образуется подобный прогретого воздуха, который втягивает в себя влажный воздух с обширных площадей земной поверхности и поднимает его вверх.

Таким образом и образуются так называемые кучевые облака, превращающиеся в грозовые облака, описанные чуть выше.

А теперь проясним, что же такое молния, откуда берется она?

Молния и гром

Из тех самых замерзших капель образуются кусочки льда, которые также перемещаются в облаках с огромной скоростью, сталкиваясь, разрушаясь и заряжаясь электричеством. Те льдинки, которые легче и меньше, остаются наверху, а те, что крупнее, - тают, спускаясь вниз, вновь превращаясь в капельки воды.

Таким образом, в грозовой туче возникают два электрических заряда. В верхней части отрицательный, в нижней - положительный. При встрече разных зарядов возникает мощный и происходит молния. Откуда берется она, стало понятно. А дальше что происходит? Вспышка молнии мгновенно разогревает и расширяет вокруг себя воздух. Последний нагревается так сильно, что происходит эффект взрыва. Это и есть гром, пугающий все живое на земле.

Выходит, что все это - проявления Тогда возникает следующий вопрос о том, последнее откуда берётся, причем в таких больших количествах. И куда оно девается?

Ионосфера

Что такое молния, откуда берется она, выяснили. Теперь немного о процессах, сохраняющих заряд Земли.

Ученые выяснили, что заряд Земли в общем невелик и составляет всего лишь 500 000 кулонов (как у 2 автомобильных аккумуляторов). Тогда куда исчезает тот отрицательный заряд, которые переносится молниями ближе к поверхности Земли?

Обычно в ясную погоду Земля потихоньку разряжается (постоянно между ионосферой и поверхностью Земли проходит слабый ток через всю атмосферу). Хоть и воздух считается изолятором, в нем есть небольшая доля ионов, которая позволяет существовать току в объёме всей атмосферы. Благодаря этому, хоть и медленно, но отрицательный заряд переносится с земной поверхности на высоту. Поэтому и объем суммарного заряда Земли всегда сохраняется неизменным.

На сегодня самым распространенным мнением является то, что молния шаровая представляет собой особый вид заряда в форме шара, причем существующий довольно продолжительное время и перемещающийся по непредсказуемой траектории.

Единой теории возникновения этого явления на сегодня нет. Существует много гипотез, но пока ни одна не получила признания в среде ученых.

Обычно, как свидетельствуют очевидцы, возникает в грозу или в шторм. Но имеются и случаи её возникновения и в солнечную погоду. Чаще она порождается обычной молнией, иногда возникает и спускается с облаков, а реже появляется неожиданно в воздухе или даже может выйти из какого-то предмета (столб, дерево).

Некоторые интересные факты

Откуда берется гроза и молния, мы выяснили. Теперь немного о любопытных фактах, касающихся вышеописанных природных явлений.

1. Ежегодно Земля испытывает приблизительно 25 миллионов вспышек молний.

2. Молния имеет среднюю длину приблизительно в 2,5 км. Есть и разряды, простирающиеся в атмосфере на 20 км.

3. Есть поверье, что молния не может дважды ударить в одно место. В действительности это не так. Результаты анализа (по географической карте) мест ударов молний за предшествующие несколько лет показывают, что молния и несколько раз может ударить в одно и то же место.

Вот и выяснили что такое молния, откуда берется она.

Грозы образуются как следствие сложнейших атмосферных явлений планетарного масштаба.

Каждую секунду на планете Земля происходит примерно 50 вспышек молниий.

Цель: развивать кругозор и творческие способности, ознакомить их интересными фактами.

План классного часа

I. Вступительное слово.

II. Как образуется дождь? Обсуждение ситуации.

III. Изложение теоретического материала.

IV. Заключительное слово.

Ход классного часа

I. Вступительное слово

Откуда берется дождь? Благодаря каким процессам вода с поверхности океанов, морей и озер оказывается на небе и проливается дождем? Давайте рассмотрим, как образуется дождь.

II. Как образуется дождь? Обсуждение ситуации.

Образование дождя происходит благодаря процессу круговорота воды в природе. В науке он называется "гидрологическим циклом". В чем его суть? Солнце нагревает поверхность Земли достаточно сильно, чтобы начался процесс испарения воды отовсюду, где она есть, - с луж, рек, озер, морей, океанов и т. д.

III. Изложение теоретического материала.

Благодаря испарению молекулы воды поднимаются высоко в воздух, образуя облака и тучи. Ветер уносит их в небе на много километров в сторону. Молекулы воды объединяются, постепенно образуя все более и более тяжелые структуры. В конце концов формируется капля, которая уже достаточно тяжела. Из-за этого капля летит вниз. Когда этих капель много, возникает дождь. Он может быть легким, немного накрапывающим, а может быть и сильным ливнем.

Очень важная особенность круговорота воды в природе заключается в том, что в результате испарения моря и океаны теряют больше воды, нежели чем получают во время осадков. На суше же все наоборот - количество полученной воды намного больше во время осадков, нежели ее потери во время испарения. Этот природный механизм позволяет поддерживать строго определенный баланс между соотношением количества воды в морях и на суше, что важно для непрерывного процесса круговорота воды и равного количества осадков по всему земному шару.

Вот таким образом и происходит круговорот воды в природе, который необходим для развития жизни на Земле. А дождь - это один из этапов круговорота воды

Радуга как физическое явление

Радуга – одно из тех необычных оптических явлений, которыми природа порой радует человека. С давних пор люди пытались объяснить возникновение радуги. Наука в значительной мере приблизилась к пониманию процесса возникновения явления, когда в середине XVII века чешский ученый Марк Марци обнаружил, что световой луч неоднороден по своей структуре. Несколько позже Исаак Ньютон изучил и объяснил явление дисперсии световых волн. Как теперь известно, световой луч преломляется на границе двух прозрачных сред, имеющих различную плотность.

Инструкция

Как установил Ньютон, белый световой луч получается в результате взаимодействия лучей разного цвета: красного, оранжевого, желтого, зеленого, голубого, синего, фиолетового. Каждый цвет характеризуется определенной длиной волны и частотой колебаний. На границе прозрачных сред скорость и длина световых волн изменяются, частота колебаний остается прежней. Каждый цвет имеет свой собственный коэффициент преломления. Меньше всего от прежнего направления откланяется луч красного цвета, чуть больше оранжевый, затем желтый и т. д. Наибольший коэффициент преломления имеет фиолетовый луч. Если на пути светового луча установить стеклянную призму, то он не только отклонится, но и распадется на несколько лучей разного цвета.

А теперь о радуге. В природе роль стеклянной призмы выполняют дождевые капли, с которыми сталкиваются солнечные лучи при прохождении через атмосферу. Поскольку плотность воды больше плотности воздуха, световой луч на границе двух сред преломляется и разлагается на составляющие. Далее цветовые лучи движутся уже внутри капли до столкновения с ее противоположной стенкой, которая также является границей двух сред, и, к тому же, обладает зеркальными свойствами. Большая часть светового потока после вторичного преломления будет продолжать движение в воздушной среде за каплями дождя. Некоторая же его часть отразится от задней стенки капли и выйдет в воздушную среду после вторичного преломления на передней ее поверхности.

Процесс этот происходит сразу во множестве капель. Чтобы увидеть радугу, наблюдатель должен стоять спиной к Солнцу и лицом к стене дождя. Спектральные лучи выходят из дождевых капель под разными углами. От каждой капли в глаз наблюдателя попадает только один луч. Лучи, выходящие из соседних капель сливаются, образуя цветную дугу. Таким образом, от самых верхних капель в глаз наблюдателя попадают лучи красного цвета, от тех, что ниже – оранжевого и т. д. Сильнее всего откланяются фиолетовые лучи. Фиолетовая полоска будет нижней. Радугу в форме полукруга можно видеть, когда Солнце находится под углом не более чем 42° относительно горизонта. Чем выше поднимается Солнце, тем меньше размеры радуги.

Вообще-то, описанный процесс несколько сложнее. Световой луч внутри капли отражается многократно. При этом может наблюдаться не одна цветовая дуга, а две – радуга первого и второго порядка. Внешняя дуга радуги первого порядка окрашена в красный цвет, внутренняя – в фиолетовый. У радуги второго порядка наоборот. Выглядит она обычно на много бледнее первой, поскольку при многократных отражениях интенсивность светового потока уменьшается.

Молния как физическое явление

Молния – это гигантский электрический искровой разряд между облаками или между облаками и земной поверхностью длиной несколько километров, диаметром десятки сантиметров и длительностью десятые доли секунды. Молния сопровождается громом. Кроме линейной молнии , изредка наблюдается шаровая молния.

Для начала необходимо выяснить особенности «поведения» этого природного явления. Как известно, молния – это электрический разряд, который устремляется с неба на землю. Встречая на своем пути какие - либо препятствия, молния сталкивается с ними. Таким образом, очень часто удар молнии поражает высокие деревья, телеграфные столбы, высотные здания, не защищенные громоотводом. Поэтому, если вы находитесь в пределах города, даже и не пытайтесь спрятаться под кронами деревьев и не прислоняйтесь к стенам высоких зданий. То есть нужно запомнить главное правило: молния ударяет в то, что находится выше всего.

Телевизионные антенны, которые в большом количестве располагаются на крышах жилых домов, отлично «притягивают» молнию. Поэтому, если вы находитесь в доме, не включайте никакие электроприборы, в том числе и телевизор. Свет желательно также отключить, так как электропроводка не меньше подвержена ударам молнии .

Если же молния застала вас в лесу или поле, то необходимо помнить о первом правиле и не прислоняться к деревьям или столбам. Желательно вообще приникнуть к земле и не подниматься до окончания грозы . Конечно, если вы находитесь в поле, где вы являетесь самым высоким предметом, риск наиболее вероятен. Поэтому нелишним будет отыскать овраг или просто низину, которые и будут вашим убежищем.

Так можно сделать вывод, что если, находясь в собственной квартире, вы услышите угрожающие раскаты грома и почувствуете приближение грозы – не испытывайте судьбу, не выходите на улицу и переждите это природное явление дома

ПРИЧИНЫ появления молнии

Грозовые разряды (молнии ) - это наиболее распространенный источник мощных электромагнитных полей естественного происхождения. Молния представляет собой разновидность газового разряда при очень большой длине искры. Общая длина канала молнии достигает нескольких километров, причем значительная часть этого канала находится внутри грозового облака. молнии Причиной возникновения молний является образование большого объемного электрического заряда.

Обычным источником молний являются грозовые кучево-дождевые облака, несущие в себе скопление положительных и отрицательных электрических зарядов в верхней и нижней частях облака и образующие вокруг этого облака электрические поля возрастающей напряженности. Образование таких объемных зарядов различной полярности в облаке (поляризация облака) связано с конденсацией вследствие охлаждения водяных паров восходящих потоков теплого воздуха на положительных и отрицательных ионах (центрах конденсации) и разделением заряженных капелек влаги в облаке под действием интенсивных восходящих тепловых воздушных потоков. Из-за того, что в облаке образуется несколько изолированных друг от друга скоплений зарядов (в нижней части облака скапливаются преимущественно заряды отрицательной полярности).

Гром - звуковое явление в атмосфере, сопровождающее разряд молнии. Гром представляет собой колебания воздуха под влиянием очень быстрого повышения давления на пути молнии, вследствие нагревания приблизительно до 30 000 °C. Раскаты грома возникают из-за того, что молния имеет значительную длину, и звук от разных её участков доходит до уха наблюдателя не одновременно. Возникновению раскатов способствуют также отражение звука от облаков и рефракция звуковых волн, распространяющихся по различным путям. Кроме этого, сам разряд происходит не мгновенно, а продолжается некоторое время.

Громкость раскатов грома может достигать 120 децибел.

Расстояние до грозы

Измеряя время, прошедшее между вспышкой молнии и ударом грома, можно приблизительно определить расстояние, на котором находится гроза. Скорость света на несколько порядков выше скорости звука; ею можно пренебречь и учитывать лишь скорость звука, которая составляет 300-360 метров в секунду при температуре воздуха от −50 °C до + 50 °C. Умножив время между вспышкой молнии и ударом грома в секундах на эту величину, можно судить о близости грозы. Три секунды времени между вспышкой и звуком соответствуют примерно одному километру расстояния. Сопоставляя несколько подобных измерений, можно судить о том, приближается ли гроза к наблюдателю (интервал между молнией и громом сокращается) или удаляется (интервал увеличивается). Следует учитывать, что молния имеет значительную протяжённость (до нескольких километров), и, отмечая первые услышанные звуки грома, мы определяем расстояние до ближайшей точки молнии. Как правило, гром слышен на расстоянии до 15-20 километров, таким образом, если наблюдатель видит молнию, но не слышит грома, то гроза находится на расстоянии более 20 километров.

IV. Заключительное слово.

Ребята, надеюсь что теперь будете знать о дожде, радуге, молнии и громе не только как о природных явлениях, но и физических. А о других физических явлениях: полярное сияние, эхо, волны на море, вулканы и гейзеры, землетрясения, мы поговорим в последующих классных часах.

МОЛНИЯ (явление) МОЛНИЯ (явление)

МО́ЛНИЯ, гигантский электрический искровой разряд в атмосфере, сопровождающийся обычно яркой вспышкой света и громом (см. ГРОМ) . Чаще всего наблюдаются линейные молнии - разряды между грозовыми облаками (см. ОБЛАКА) (внутриоблачные) или между облаками и земной поверхностью (наземные).Процесс развития наземной молнии состоит из несколько стадий. На первой стадии в зоне, где электрическое поле достигает критического значения, начинается ударная ионизация, создаваемая вначале свободными электронами, всегда имеющимися в небольшом количестве в воздухе, которые под действием электрического поля приобретают значительные скорости по направлению к земле и, сталкиваясь с атомами воздуха, ионизуют их. Таким образом, возникают электронные лавины, переходящие в нити электрических разрядов - стримеры, представляющие собой хорошо проводящие каналы, которые, сливаясь, дают начало яркому термоионизованному каналу с высокой проводимостью - ступенчатому лидеру молнии. Движение лидера к земной поверхности происходит ступенями в несколько десятков метров со скоростью около 5·10 7 м/с, после чего его движение приостанавливается на несколько десятков мкс, а свечение сильно ослабевает; затем в последующей стадии лидер снова продвигается на несколько десятков метров. Яркое свечение охватывает при этом все пройденные ступени; затем следуют снова остановка и ослабление свечения. Эти процессы повторяются при движении лидера до поверхности земли со средней скоростью 2·10 5 м/с. По мере продвижения лидера к земле напряженность поля на его конце усиливается и под его действием из выступающих на поверхности Земли предметов выбрасывается ответный стример, соединяющийся с лидером. Эта особенность молний используется для создания молниеотвода (см. МОЛНИЕОТВОД) . В заключительной стадии по ионизованному лидером каналу следует обратный, или главный, разряд молнии, характеризующийся токами от десятков до сотен тысяч А, яркостью, заметно превышающей яркость лидера, и большой скоростью продвижения, вначале доходящей до 10 8 м/с, а в конце уменьшающейся до 10 7 м/с. Температура канала при главном разряде может превышать 25 000 °С. Длина канала наземной молнии 1-10 км, диаметр - несколько см. После прохождения импульса тока ионизация канала и его свечение ослабевают. В финальной стадии ток молнии может длиться сотые и даже десятые доли секунд, достигая сотен и тысяч А. Такие молнии называют затяжными, они наиболее часто вызывают пожары.
Главный разряд разряжает нередко только часть облака. Заряды, расположенные на больших высотах, могут дать начало новому (стреловидному) лидеру, движущемуся непрерывно со средней скоростью 10 6 м/с. Яркость его свечения близка к яркости ступенчатого лидера. Когда стреловидный лидер доходит до поверхности земли, следует второй главный удар, подобный первому. Обычно молния включает несколько повторных разрядов, но их число может доходить и до нескольких десятков. Длительность многократной молнии может превышать 1 секунду. Смещение канала многократной молнии ветром создает «ленточную» молнию - светящуюся полосу.
Внутриоблачные молнии включают в себя обычно только лидерные стадии; их длина от 1 до 150 км. Доля внутриоблачных молний растет по мере смещения к экватору, меняясь от 50% в умеренных широтах до 90% в экваториальной полосе. Прохождение молний сопровождается изменениями электрических и магнитных полей и радиоизлучением - атмосфериками (см. АТМОСФЕРИКИ) . Вероятность поражения молнией наземного объекта растет по мере увеличения его высоты и с увеличением электропроводности почвы на поверхности или на некоторой глубине (на этих факторах основано действие молниеотвода). Если в облаке существует электрическое поле, достаточное для поддержания разряда, но недостаточное для его возникновения, роль инициатора молнии может выполнить длинный металлический трос или самолет - особенно, если он сильно электрически заряжен. Таким образом иногда «провоцируются» молнии в слоисто-дождевых и мощных кучевых облаках.
Особый вид молний - шаровая молния (см. ШАРОВАЯ МОЛНИЯ) , светящийся сфероид, обладающий большой удельной энергией, образующийся нередко вслед за ударом линейной молнии.


Энциклопедический словарь . 2009 .

Смотреть что такое "МОЛНИЯ (явление)" в других словарях:

    Молния: Молния атмосферное явление. Шаровая молния атмосферное явление. Застёжка молния вид застёжек, предназначенных для соединения или разъединения двух частей материала (обычно ткани). Молния торговая сеть, популярная… … Википедия

    Природный разряд больших скоплений электрического заряда в нижних слоях атмосферы. Одним из первых это установил американский государственный деятель и ученый Б.Франклин. В 1752 он провел опыт с бумажным змеем, к шнуру которого был прикреплен… … Географическая энциклопедия

    Стихийное явление в виде электрических разрядов между облаками и землей. М. является одним из факторов риска в страховании. Словарь бизнес терминов. Академик.ру. 2001 … Словарь бизнес-терминов

    Природный разряд больших скоплений электрического заряда в нижних слоях атмосферы. Одним из первых это установил американский государственный деятель и ученый Б. Франклин. В 1752 он провел опыт с бумажным змеем, к шнуру которого был прикреплен… … Энциклопедия Кольера

    У этого термина существуют и другие значения, см. Молния (значения). Молнии Молния гигантский электрический искровой разряд в атмосфере, обычно может происходить … Википедия

    Так называется электрический разряд между двумя облаками, или между частями одного и того же облака, или между облаком и землею. Различают три рода М.: линейную, расплывчатую, или плоскую, и шаровую. 1) Линейная М. имеет вид ослепительно яркой… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    молния - ▲ стихийное явление электрические разряды в газах, (быть) в, атмосфера молния гигантский искровой атмосферный разряд (между облаками или между облаками и земной поверхностью), проявляющийся в виде яркой вспышки света и сопровождающийся громом.… … Идеографический словарь русского языка

    Хорошо известное каждому физическое явление, особенно на Востоке, и нередко упоминаемое в св. Писании то как символ суда и гнева Божия на нечестивых (Пс.10:6), то как образ необыкновенного озаряющего света (Мат.28:3), то как подобие… … Библия. Ветхий и Новый заветы. Синодальный перевод. Библейская энциклопедия арх. Никифора.

    молния - МОЛНИЯ, и, ж Оптическое явление, представляющее собой яркую вспышку на небе, вызванную мощным искровым разрядом атмосферного электричества между облаками или между облаками и землей. Ночью, во время грозы молния ударила в одинокую старую сосну,… … Толковый словарь русских существительных

    Естественно научное и метафорическое понятие, нередко используемое в рамках описаний механизмов миросозидания и промысла Логоса, а также ассоциируемое со светом и просвещением. В большинстве религий и мифов божество спрятано от людских взоров, а… … История Философии: Энциклопедия

Среди множества атмосферных явлений молния, несомненно, занимает особое место. Она чрезвычайно красива и зрелищна, а невероятная мощь ее ударов и сегодня приводит в ужас многих людей.

И это несмотря на то, что все они учились в школе и представляют, что такое электричество.

Древние представления о молнии

В древности молния вызывала у людей не менее сильные чувства. Ею восхищались и ее боялись, считая ее оружием богов. Не зря наиболее грозные и воинственные божества практически у всех народов были вооружены именно молниями: Зевс — у древних греков, Юпитер – у римлян, Перун – у славян.

В древнеиндийском пантеоне богов молнией были вооружены Шива-Разрушитель и Индра-Воин, у которого для метания молний даже имелось специальное оружие – ваджра.

В то же время молния нередко считалась символом пробуждения жизненных сил и энергии. Так, по верованиям древних китайцев, погодой управляла специальная небесная управа из четырех богов.

Молнией заведовала богиня Дянь-му, которая сближала и разводила небесные зеркала, начиная вспышкой молнии неуклонное движение жизни на полях и в сердцах людей. В христианстве молния символизирует Божественное откровение и Божественный суд.

Как образуется молния?

Сегодня всем известно, что молния – это мощный электрический разряд, возникающий между тучами. Но как именно он образуется, представляют далеко не все.


Грозовая туча – это облако водяного пара, имеющее размеры подчас в десятки километров. Его верхняя часть может находиться на высоте 6-7 км, в то время как нижняя – всего в полукилометре от земли.

На высоте 4 км всегда царит отрицательная температура, поэтому капельки пара там превращаются в льдинки. Хаотично перемещаясь, они постоянно трутся друг о друга, благодаря чему большинство из них приобретают электрический заряд: мелкие – положительный, крупные – отрицательный.

Под действием тяготения крупные льдинки опускаются в нижние слои тучи, скапливаясь там, а мелкие остаются наверху. Постепенно суммарная величина зарядов становится достаточно большой для того, чтобы возникшее между ними поле приобрело гигантскую напряженность.

Когда разнозаряженные части тучи сближаются, отдельные ионы и электроны, сорванные с места взаимным притяжением, устремляются навстречу друг другу, увлекая за собой соседей. Возникает плазменный канал разряда, распространяющийся по участкам тучи со скоростью в сотые доли секунды.


Иногда нижний край тучи нависает над землей достаточно низко, чтобы электрический пробой случился между тучей и поверхностью земли. Особенно «везет» в этом отношении отдельно стоящим пригоркам или деревьям, столбам и вышкам линий электропередач, которые становятся катализаторами разряда. Вот почему опасно в грозу оставаться под одиноким деревом на пригорке или электрическим столбом.

Температура внутри канала молнии достигает десяти тысяч градусов, а электрическое напряжение – нескольких сотен миллионов вольт. В то же время емкость облачного «конденсатора» совсем невелика – всего около 0,15 микрофарад. Раскаленная плазма выжигает воздух вокруг канала, который затем схлопывается, вызвав ударную волну, которую мы воспринимаем как гром.

Зарница

Молнии возникают не только в обычных облаках, состоящих из водяного пара. Для их образования необходимо, чтобы в воздухе находилась мелкодисперсная взвесь любого вещества, частицы которого будут тереться друг о друга и приобретать электрический заряд.

Так, в засушливое лето иногда можно увидеть «сухую грозу» — молнии, образованные в огромных тучах поднятой ветром пыли. Эти молнии называют зарницами.

Шаровая молния

Иногда во время грозы происходит образование шаровой молнии – шарообразного сгустка энергии небольшого размера. Это одно из наиболее малоизученных атмосферных явлений, повторить которое в лабораторных условиях, в отличие от обычной молнии, до сих пор не удалось.


Шарообразная молния может причинить вред человеку, которого она коснется, но немало и случаев, когда контакт с нею не приносил никаких неприятных ощущений.

Lightning 1882
(c) Photographer: William N. Jennings, c. 1882

Электрическая природа молнии была раскрыта в исследованиях американского физика Б. Франклина , по идее которого был проведён опыт по извлечению электричества из грозового облака. Широко известен опыт Франклина по выяснению электрической природы молнии. В 1750 году им опубликована работа, в которой описан эксперимент с использованием воздушного змея, запущенного в грозу. Опыт Франклина был описан в работе Джозефа Пристли .

Физические свойства молнии

Средняя длина молнии 2,5 км, некоторые разряды простираются в атмосфере на расстояние до 20 км.

Формирование молнии

Наиболее часто молния возникает в кучево-дождевых облаках , тогда они называются грозовыми; иногда молния образуется в слоисто-дождевых облаках, а также при вулканических извержениях, торнадо и пылевых бурях.

Обычно наблюдаются линейные молнии, которые относятся к так называемым безэлектродным разрядам, так как они начинаются (и заканчиваются) в скоплениях заряженных частиц. Это определяет их некоторые до сих пор не объяснённые свойства, отличающие молнии от разрядов между электродами. Так, молнии не бывают короче нескольких сотен метров; они возникают в электрических полях значительно более слабых, чем поля при межэлектродных разрядах; сбор зарядов, переносимых молнией, происходит за тысячные доли секунды с миллиардов мелких, хорошо изолированных друг от друга частиц, расположенных в объёме нескольких км³. Наиболее изучен процесс развития молнии в грозовых облаках, при этом молнии могут проходить в самих облаках - внутриоблачные молнии , а могут ударять в землю - наземные молнии . Для возникновения молнии необходимо, чтобы в относительно малом (но не меньше некоторого критического) объёме облака образовалось электрическое поле (см. атмосферное электричество) с напряжённостью, достаточной для начала электрического разряда (~ 1 МВ/м), а в значительной части облака существовало бы поле со средней напряжённостью, достаточной для поддержания начавшегося разряда (~ 0,1-0,2 МВ/м). В молнии электрическая энергия облака превращается в тепловую, световую и звуковую.

Наземные молнии

Процесс развития наземной молнии состоит из нескольких стадий. На первой стадии, в зоне, где электрическое поле достигает критического значения, начинается ударная ионизация , создаваемая вначале свободными зарядами, всегда имеющимися в небольшом количестве в воздухе, которые под действием электрического поля приобретают значительные скорости по направлению к земле и, сталкиваясь с молекулами, составляющими воздух, ионизуют их.

По более современным представлениям, ионизация атмосферы для прохождения разряда происходит под влиянием высокоэнергетического космического излучения - частиц с энергиями 10 12 -10 15 эВ , формирующих широкий атмосферный ливень (ШАЛ) с понижением пробивного напряжения воздуха на порядок от такового при нормальных условиях.

По одной из гипотез, частицы запускают процесс, получивший название пробоя на убегающих электронах . Таким образом возникают электронные лавины, переходящие в нити электрических разрядов - стримеры , представляющие собой хорошо проводящие каналы, которые, сливаясь, дают начало яркому термоионизованному каналу с высокой проводимостью - ступенчатому лидеру молнии .

Движение лидера к земной поверхности происходит ступенями в несколько десятков метров со скоростью ~ 50 000 километров в секунду, после чего его движение приостанавливается на несколько десятков микросекунд, а свечение сильно ослабевает; затем в последующей стадии лидер снова продвигается на несколько десятков метров. Яркое свечение охватывает при этом все пройденные ступени; затем следуют снова остановка и ослабление свечения. Эти процессы повторяются при движении лидера до поверхности земли со средней скоростью 200 000 метров в секунду.

По мере продвижения лидера к земле напряжённость поля на его конце усиливается и под его действием из выступающих на поверхности Земли предметов выбрасывается ответный стример , соединяющийся с лидером. Эта особенность молнии используется для создания молниеотвода .

В заключительной стадии по ионизованному лидером каналу следует обратный (снизу вверх), или главный, разряд молнии , характеризующийся токами от десятков до сотен тысяч ампер, яркостью, заметно превышающей яркость лидера , и большой скоростью продвижения, вначале доходящей до ~ 100 000 километров в секунду, а в конце уменьшающейся до ~ 10 000 километров в секунду. Температура канала при главном разряде может превышать 2000-3000 °C. Длина канала молнии может быть от 1 до 10 км, диаметр - несколько сантиметров. После прохождения импульса тока ионизация канала и его свечение ослабевают. В финальной стадии ток молнии может длиться сотые и даже десятые доли секунды, достигая сотен и тысяч ампер. Такие молнии называют затяжными, они наиболее часто вызывают пожары. Но земля не является заряженой, поэтому принято считать что разряд молнии происходит от облака по направлению к земле(сверху вниз).

Главный разряд разряжает нередко только часть облака. Заряды, расположенные на больших высотах, могут дать начало новому (стреловидному) лидеру, движущемуся непрерывно со скоростью в тысячи километров в секунду. Яркость его свечения близка к яркости ступенчатого лидера. Когда стреловидный лидер доходит до поверхности земли, следует второй главный удар, подобный первому. Обычно молния включает несколько повторных разрядов, но их число может доходить и до нескольких десятков. Длительность многократной молнии может превышать 1 сек. Смещение канала многократной молнии ветром создаёт так называемую ленточную молнию - светящуюся полосу.

Внутриоблачные молнии

Внутриоблачные молнии над Тулузой, Франция. 2006 год

Внутриоблачные молнии включают в себя обычно только лидерные стадии; их длина колеблется от 1 до 150 км. Доля внутриоблачных молний растет по мере смещения к экватору , меняясь от 0,5 в умеренных широтах до 0,9 в экваториальной полосе. Прохождение молнии сопровождается изменениями электрических и магнитных полей и радиоизлучением , так называемыми атмосфериками .

Полёт из Калькутты в Мумбаи.

Вероятность поражения молнией наземного объекта растет по мере увеличения его высоты и с увеличением электропроводности почвы на поверхности или на некоторой глубине (на этих факторах основано действие громоотвода). Если в облаке существует электрическое поле, достаточное для поддержания разряда, но недостаточное для его возникновения, роль инициатора молнии может выполнить длинный металлический трос или самолёт - особенно, если он сильно электрически заряжен. Таким образом иногда «провоцируются» молнии в слоисто-дождевых и мощных кучевых облаках .

Молнии в верхней атмосфере

В 1989 году был обнаружен особый вид молний - эльфы, молнии в верхней атмосфере . В 1995 году был открыт другой вид молний в верхней атмосфере - джеты .

Эльфы

Джеты

Джеты представляют собой трубки-конусы синего цвета. Высота джетов может достигать 40-70 км (нижняя граница ионосферы), живут джеты относительно дольше эльфов .

Спрайты

Спрайты трудно различимы, но они появляются почти в любую грозу на высоте от 55 до 130 километров (высота образования «обычных» молний - не более 16 километров). Это некое подобие молнии, бьющей из облака вверх. Впервые это явление было зафиксировано в 1989 году случайно. Сейчас о физической природе спрайтов известно крайне мало .

Взаимодействие молнии с поверхностью земли и расположенными на ней объектами

Глобальная частота ударов молний (шкала показывает число ударов в год на квадратный километр)

Согласно ранним оценкам, частота ударов молний на Земле составляет 100 раз в секунду. По современным данным, полученным с помощью спутников, которые могут обнаруживать молнии в местах, где не ведётся наземное наблюдение, эта частота составляет в среднем 44 ± 5 раз в секунду, что соответствует примерно 1,4 миллиарда молний в год. 75 % этих молний ударяет между облаками или внутри облаков, а 25 % - в землю.

Самые мощные молнии вызывают рождение фульгуритов .

Ударная волна от молнии

Разряд молнии является электрическим взрывом и в некоторых аспектах похож на детонацию . Он вызывает появление ударной волны, опасной в непосредственной близости. Ударная волна от достаточно мощного грозового разряда на расстояниях до нескольких метров может наносить разрушения, ломать деревья, травмировать и контузить людей даже без непосредственного поражения электрическим током. Например, при скорости нарастания тока 30 тысяч ампер за 0,1 миллисекунду и диаметре канала 10 см могут наблюдаться следующие давления ударной волны :

  • на расстоянии от центра 5 см (граница светящегося канала молнии) - 0,93 МПа,
  • на расстоянии 0,5 м - 0,025 МПа (разрушение непрочных строительных конструкций и травмы человека),
  • на расстоянии 5 м - 0,002 МПа (выбивание стёкол и временное оглушение человека).

На бо́льших расстояниях ударная волна вырождается в звуковую волну - гром .

Люди и молния

Молнии - серьёзная угроза для жизни людей. Поражение человека или животного молнией часто происходит на открытых пространствах, так как электрический ток идёт по кратчайшему пути «грозовое облако-земля». Часто молния попадает в деревья и трансформаторные установки на железной дороге, вызывая их возгорание. Поражение обычной линейной молнией внутри здания невозможно, однако бытует мнение, что так называемая шаровая молния может проникать через щели и открытые окна. Обычный грозовой разряд опасен для телевизионных и радиоантенн, расположенных на крышах высотных зданий, а также для сетевого оборудования.

В организме пострадавших отмечаются такие же патологические изменения, как при поражении электротоком. Жертва теряет сознание , падает, могут отмечаться судороги , часто останавливается дыхание и сердцебиение . На теле обычно можно обнаружить «метки тока», места входа и выхода электричества. В случае смертельного исхода причиной прекращения основных жизненных функций является внезапная остановка дыхания и сердцебиения, от прямого действия молнии на дыхательный и сосудодвигательный центры продолговатого мозга. На коже часто остаются так называемые знаки молнии, древовидные светло-розовые или красные полосы, исчезающие при надавливании пальцами (сохраняются в течение 1 - 2 суток после смерти). Они - результат расширения капилляров в зоне контакта молнии с телом.

Молния проходит в стволе дерева по пути наименьшего электрического сопротивления , с выделением большого количества тепла, превращая воду в пар, который раскалывает ствол дерева или чаще отрывает от него участки коры, показывая путь молнии. В следующие сезоны деревья обычно восстанавливают повреждённые ткани и могут закрывать рану целиком, оставив только вертикальный шрам. Если ущерб является слишком серьёзным, ветер и вредители в конечном итоге убивают дерево. Деревья являются естественными громоотводами , и, как известно, обеспечивают защиту от удара молнии для близлежащих зданий. Посаженные возле здания, высокие деревья улавливают молнии, а высокая биомасса корневой системы помогает заземлять разряд молнии.

По этой причине нельзя прятаться от дождя под деревьями во время грозы, особенно под высокими или одиночными на открытой местности.

Из деревьев, поражённых молнией, делают музыкальные инструменты, приписывая им уникальные свойства.

Молния и электроустановки

Разряды молний представляют большую опасность для электрического и электронного оборудования. При прямом попадании молнии в провода в линии возникает перенапряжение , вызывающее разрушение изоляции электрооборудования, а большие токи обуславливают термические повреждения проводников. Для защиты от грозовых перенапряжений электрические подстанции и распределительные сети оборудуются различными видами защитного оборудования таким как разрядниками , нелинейными ограничителями перенапряжения, длинноискровыми разрядниками. Для защиты от прямого попадания молнии используются молниеотводы и грозозащитные тросы. Для электронных устройств представляет опасность также и электромагнитный импульс , создаваемый молнией.

Молния и авиация

Атмосферное электричество вообще и молнии в частности представляют значительную угрозу для авиации. Попадание молнии в летательный аппарат вызывает растекание тока большой величины по его конструкционным элементам, что может вызвать их разрушение, пожар в топливных баках, отказы оборудования, гибель людей. Для снижения риска металлические элементы наружной обшивки летательных аппаратов тщательно электрически соединяются друг с другом, а неметаллические элементы металлизируются. Таким образом, обеспечивается низкое электрическое сопротивление корпуса. Для стекания тока молнии и другого атмосферного электричества с корпуса, летательные аппараты оборудуются разрядниками.

Ввиду того, что электрическая емкость самолёта, находящегося в воздухе невелика, разряд «облако-самолёт» обладает существенно меньшей энергией по сравнению с разрядом «облако-земля». Наиболее опасна молния для низколетящего самолёта или вертолёта, так как в этом случае летательный аппарат может сыграть роль проводника тока молнии из облака в землю. Известно, что самолёты на больших высотах сравнительно часто поражаются молнией и тем не менее, случаи катастроф по этой причине единичны. В то же время известно очень много случаев поражения самолётов молнией на взлете и посадке, а также на стоянке, которые закончились катастрофами или уничтожением летательного аппарата.

Молния и надводные корабли

Молния также представляет очень большую угрозу для надводных кораблей в виду того, что последние приподняты над поверхностью моря и имеют много острых элементов (мачты, антенны), являющихся концентраторами напряженности электрического поля. Во времена деревянных парусников, обладающих высоким удельным сопротивлением корпуса, удар молнии практически всегда заканчивался для корабля трагически: корабль сгорал или разрушался, от поражения электрическим током гибли люди. Клёпаные стальные суда также были уязвимы для молнии. Высокое удельное сопротивление заклёпочных швов вызывало значительное локальное тепловыделение, что приводило к возникновению электрической дуги, пожарам, разрушению заклёпок и появлению водотечности корпуса.

Сварной корпус современных судов обладает низким удельным сопротивлением и обеспечивает безопасное растекание тока молнии. Выступающие элементы надстройки современных судов надежно электрически соединяются с корпусом и также обеспечивают безопасное растекание тока молнии.

Деятельность человека, вызывающая молнию

При наземном ядерном взрыве за доли секунды до прихода границы огненной полусферы в нескольких сотнях метров (~400-700 м при сравнении со взрывом 10,4 Мт) от центра дошедшее гамма-излучение продуцирует электромагнитный импульс с напряжённостью на уровне ~100-1000 кВ/м, вызвающий разряды молний, бьющих от земли вверх перед приходом границы огненной полусферы.


См. также

Примечания

  1. Ермаков В.И., Стожков Ю.И. Физика грозовых облаков // Физический институт им. П.Н. Лебедева, РАН, М.2004 г. :37
  2. В возникновении молний обвинили космические лучи Lenta.Ru , 09.02.2009
  3. Красные Эльфы и Синие Джеты
  4. ELVES, a primer: Ionospheric Heating By the Electromagnetic Pulses from Lightning
  5. Fractal Models of Blue Jets, Blue Starters Show Similarity, Differences to Red Sprites
  6. V.P. Pasko, M.A. Stanley, J.D. Matthews, U.S. Inan, and T.G. Wood (March 14, 2002) "Electrical discharge from a thundercloud top to the lower ionosphere, " Nature , vol. 416, pages 152-154.
  7. Появление НЛО объяснили спрайтами . lenta.ru (24.02.2009). Архивировано из первоисточника 23 августа 2011. Проверено 16 января 2010.
  8. John E. Oliver Encyclopedia of World Climatology . - National Oceanic and Atmospheric Administration, 2005. - ISBN 978-1-4020-3264-6
  9. . National Oceanic and Atmospheric Administration. Архивировано
  10. . NASA Science. Science News. (December 5, 2001). Архивировано из первоисточника 23 августа 2011. Проверено 15 апреля 2011.
  11. К. БОГДАНОВ «МОЛНИЯ: БОЛЬШЕ ВОПРОСОВ, ЧЕМ ОТВЕТОВ». «Наука и жизнь» № 2, 2007
  12. Живлюк Ю.Н., Мандельштам С.Л. О температуре молнии и силе грома // ЖЭТФ. 1961. Т. 40, вып. 2. С. 483-487.
  13. Н. А. Кун «Легенды и мифы Древней Греции» ООО «Издательство АСТ» 2005-538,с. ISBN 5-17-005305-3 Стр.35-36.
  14. Editors: Mariko Namba Walter,Eva Jane Neumann Fridman Shamanism: an encyclopedia of world beliefs, practices, and culture. - ABC-CLIO, 2004. - Т. 2. - С. 442. -