Начальные и центральные теоретические моменты. Начальные и центральные моменты

Кроме характеристик положения – средних, типичных значений случайной величины, - употребляется еще ряд характеристик, каждая из которых описывает то или иное свойство распределения. В качестве таких характеристик чаще всего применяются так называемые моменты.

Понятие момента широко применяется в механике для описания распределения масс (статические моменты, моменты инерции и т.д.). Совершенно теми же приемами пользуются в теории вероятностей для описания основных свойств распределения случайной величины. Чаще всего применяются на практике моменты двух видов: начальные и центральные.

Начальным моментом s-го порядка прерывной случайной величины называется сумма вида:

. (5.7.1)

Очевидно, это определение совпадает с определением начального момента порядка s в механике, если на оси абсцисс в точках сосредоточены массы .

Для непрерывной случайной величины Х начальным моментом s-го порядка называется интеграл

. (5.7.2)

Нетрудно убедиться, что введенная в предыдущем n° основная характеристика положения – математическое ожидание – представляет собой не что иное, как первый начальный момент случайной величины .

Пользуясь знаком математического ожидания, можно объединить две формулы (5.7.1) и (5.7.2) в одну. Действительно, формулы (5.7.1) и (5.7.2) по структуре полностью аналогичны формулам (5.6.1) и (5.6.2), с той разницей, что в них вместо и стоят, соответственно, и . Поэтому можно написать общее определение начального момента -го порядка, справедливое как для прерывных, так и для непрерывных величин:

, (5.7.3)

т.е. начальным моментом -го порядка случайной величины называется математическое ожидание -й степени этой случайной величины.

Перед тем, как дать определение центрального момента, введем новое понятие «центрированной случайной величины».

Пусть имеется случайная величина с математическим ожиданием . Центрированной случайной величиной, соответствующей величине , называется отклонение случайной величины от её математического ожидания:

Условимся в дальнейшем везде обозначать центрированную случайную величину, соответствующую данной случайной величине, той же буквой со значком наверху.

Нетрудно убедиться, что математическое ожидание центрированной случайной величины равно нулю. Действительно, для прерывной величины

аналогично и для непрерывной величины.

Центрирование случайной величины, очевидно, равносильно переносу начала координат в среднюю, «центральную» точку, абсцисса которой равна математическому ожиданию.

Моменты центрированной случайной величины носят название центральных моментов. Они аналогичны моментам относительно центра тяжести в механике.

Таким образом, центральным моментом порядка s случайной величины называется математическое ожидание -й степени соответствующей центрированной случайной величины:

, (5.7.6)

а для непрерывной – интегралом

. (5.7.8)

В дальнейшем в тех случаях, когда не возникает сомнений, к какой случайной величине относится данный момент, мы будем для краткости вместо и писать просто и .

Очевидно, для любой случайной величины центральный момент первого порядка равен нулю:

, (5.7.9)

так как математическое ожидание центрированной случайной величины всегда равно нулю.

Выведем соотношения, связывающие центральные и начальные моменты различных порядков. Вывод мы проведем только для прерывных величин; легко убедится, что точно те же соотношения справедливы и для непрерывных величин, если заменить конечные суммы интегралами, а вероятности – элементами вероятности.

Рассмотрим второй центральный момент:

Аналогично для третьего центрального момента получим:

Выражения для и т.д. могут быть получены аналогичным путем.

Таким образом, для центральных моментов любой случайной величины справедливы формулы:

(5.7.10)

Вообще говоря, моменты могут рассматриваться не только относительно начала координат (начальные моменты) или математического ожидания (центральные моменты), но и относительно произвольной точки :

. (5.7.11)

Однако центральные моменты имеют перед всеми другими преимущество: первый центральный момент, как мы видели, всегда равен нулю, а следующий за ним, второй центральный момент при этой системе отсчета имеет минимальное значение. Докажем это. Для прерывной случайной величины при формула (5.7.11) имеет вид:

. (5.7.12)

Преобразуем это выражение:

Очевидно, эта величина достигает своего минимума, когда , т.е. когда момент берется относительно точки .

Из всех моментов в качестве характеристик случайной величины чаще всего применяются первый начальный момент (математическое ожидание) и второй центральный момент .

Второй центральный момент называется дисперсией случайной величины. Ввиду крайней важности этой характеристики среди других моментов введем для нее специальное обозначение :

Согласно определению центрального момента

т.е. дисперсией случайной величины Х называется математическое ожидание квадрата соответствующей центрированной величины.

Заменяя в выражении (5.7.13) величину её выражением, имеем также:

. (5.7.14)

Для непосредственного вычисления дисперсии служат формулы:

, (5.7.15)

(5.7.16)

Соответственно для прерывных и непрерывных величин.

Дисперсия случайной величины есть характеристика рассеивания, разбросанности значений случайной величины около её математического ожидания. Само слово «дисперсия» означает «рассеивание».

Если обратиться к механической интерпретации распределения, то дисперсия представляет собой не что иное, как момент инерции заданного распределения масс относительно центра тяжести (математического ожидания).

Дисперсия случайной величины имеет размерность квадрата случайной величины; для наглядной характеристики рассеивания удобнее пользоваться величиной, размерность которой совпадает с размерностью случайной величины. Для этого из дисперсии извлекают квадратный корень. Полученная величина называется средним квадратическим отклонением (иначе – «стандартом») случайной величины . Среднее квадратическое отклонение будем обозначать :

, (5.7.17)

Для упрощения записей мы часто будем пользоваться сокращенными обозначениями среднего квадратического отклонения и дисперсии: и . В случае, когда не возникает сомнения, к какой случайной величине относятся эти характеристики, мы будем иногда опускать значок х у и и писать просто и . Слова «среднее квадратическое отклонение» иногда будем сокращенно заменять буквами с.к.о.

На практике часто применяется формула, выражающая дисперсию случайной величины через её второй начальный момент (вторая из формул (5.7.10)). В новых обозначениях она будет иметь вид:

Математическое ожидание и дисперсия (или среднее квардратическое отклонение ) – наиболее часто применяемые характеристики случайной величины. Они характеризуют наиболее важные черты распределения: его положение и степень разбросанности. Для более подробного описания распределения применяются моменты высших порядков.

Третий центральный момент служит для характеристики асимметрии (или «скошенности») распределения. Если распределение симметрично относительно математического ожидания (или, в механической интерпретации, масса распределена симметрично относительно центра тяжести), то все моменты нечетного порядка (если они существуют) равны нулю. Действительно, в сумме

при симметричном относительно законе распределения и нечетном каждому положительному слагаемому соответствует равное ему по абсолютной величине отрицательное слагаемое, так что вся сумма равна нулю. То же, очевидно, справедливо и для интеграла

,

который равен нулю, как интеграл в симметричных пределах от нечетной функции.

Естественно поэтому в качестве характеристики асимметрии распределения выбрать какой-либо из нечетных моментов. Простейший из них есть третий центральный момент. Он имеет размерность куба случайной величины: чтобы получить безразмерную характеристику, третий момент делят на куб среднего квадратического отклонения. Полученная величина носит название «коэффициент асимметрии» или просто «асимметрии»; мы обозначим её :

На рис. 5.7.1 показано два асимметричных распределения; одно из них (кривая I) имеет положительную асимметрию (); другое (кривая II) – отрицательную ().

Четвертый центральный момент служит для характеристики так называемой «крутости», т.е. островершинности или плосковершинности распределения. Эти свойства распределения описываются с помощью так называемого эксцесса. Эксцессом случайной величины называется величина

Число 3 вычитается из отношения потому, что для весьма важного и широко распространенного в природе нормального закона распределения (с которым мы подробно познакомимся в дальнейшем) . Таки образом, для нормального распределения эксцесс равен нулю; кривые, более островершинные по сравнении с нормальной, обладают положительным эксцессом; кривые более плосковершинные – отрицательным эксцессом.

На рис. 5.7.2 представлены: нормальное распределение (кривая I), распределение с положительным эксцессом (кривая II) и распределение с отрицательным эксцессом (кривая III).

Кроме рассмотренных выше начальных и центральных моментов, на практике иногда применяются так называемые абсолютные моменты (начальные и центральные), определяемые формулами

Очевидно, абсолютные моменты четных порядков совпадают с обычными моментами.

Из абсолютных моментов наиболее часто применяется первый абсолютный центральный момент

, (5.7.21)

называемый средним арифметическим отклонением. Наряду с дисперсией и средним квадратическим отклонением среднее арифметическое отклонение иногда применяется как характеристика рассеивания.

Математическое ожидание, мода, медиана, начальные и центральные моменты и, в частности, дисперсия, среднее квадратическое отклонение, асимметрия и эксцесс представляют собой наиболее употребительные числовые характеристики случайных величин. Во многих задачах практики полная характеристика случайной величины – закон распределения – или не нужна, или не может быть получена. В этих случаях ограничиваются приблизительным описанием случайной величины с помощь. Числовых характеристик, каждая из которых выражает какое-либо характерное свойство распределения.

Очень часто числовыми характеристиками пользуются для приближенной замены одного распределения другим, причем обычно стремятся произвести эту замену так, чтобы сохранились неизменными несколько важнейших моментов.

Пример 1. Производится один опыт, в результате которого может появиться или не появиться событие , вероятность которого равна . Рассматривается случайная величина – число появлений события (характеристическая случайная величина события ). Определить её характеристики: математическое ожидание, дисперсию, среднее квадратическое отклонение.

Решение. Ряд распределения величины имеет вид:

где - вероятность непоявления события .

По формуле (5.6.1) находим математическое ожидание величины :

Дисперсию величины определяем по формуле (5.7.15):

(Предлагаем читателю получить тот же результат, выразив дисперсию через второй начальный момент).

Пример 2. Производится три независимых выстрела по мишени; вероятность попадания при каждом выстреле равна 0,4. случайная величина – число попаданий. Определить характеристики величины – математическое ожидание, дисперсию, с.к.о., асимметрию.

Решение. Ряд распределения величины имеет вид:

Вычисляем числовые характеристики величины .

Для характеристики различных свойств случайных величин используются начальные и центральные моменты.

Начальным моментом k- го порядка случайной величины Х называется математическое ожидание k-й степени этой величины:

α К = М .

Для дискретной случайной величины

Ц

Х = Х – М[Х]

ентрированной случайной величиной называется отклонение случайной величины от ее математического ожидания:

Условимся отличать центрированную с.в. значком 0 наверху.

Центральным моментом S -го порядка называется математическое ожидание S-й степени центрированной случайной величины

 S = M [(X – m x) S ].

Для дискретной случайной величины

 S = (x i – m x) S p i .

Для непрерывной случайной величины

.

Свойства моментов случайных величин

    начальный момент первого порядка равен математическому ожиданию (по определению):

α 1 = М = m x .

    центральный момент первого порядка всегда равен нулю (докажем на примере дискретной с. в.):

 1 = M [(X – m x) 1 ] =(x i – m x) p i =x i p i –m x p i = m x –m x p i =m x –m x = 0.

    центральный момент второго порядка характеризует разброс случайной величины вокруг ее математического ожидания.

Центральный момент второго порядка называется дисперсией с. в. и обозначается D[X] или D x

Дисперсия имеет размерность квадрата случайной величины.

    Среднее квадратическое отклонение σ х = √D x .

σ х – также как и D x характеризует разброс случайной величины вокруг ее математического ожидания но имеет размерность случайной величины.

    второй начальный момент α 2 характеризует степень разброса случайной величины вокруг ее математического ожидания, а также смещение случайной величины на числовой оси

Связь первого и второго начальных моментов с дисперсией (на примере непрерывной с. в.):

    третий центральный момент характеризует степень разброса случайной величины вокруг математического ожидания, а также степень асимметрии распределения случайной величины.

f(x ср) > f(-x ср)

Для симметричных законов распределения m 3 = 0.

Для характеристики только степени асимметрии используется так называемый коэффициент асимметрии

Для симметричного закона распределения Sk = 0

    четвертый центральный момент характеризует степень разброса случайной величины вокруг математического ожидания, а также степень островершинности закона распределения.

Начальным моментом k -го порядка случайной величины X X k :

В частности,

Центральным моментом k -го порядка случайной величины X называется математическое ожидание величины k :

. (5.11)

В частности,

Воспользовавшись определениями и свойствами математического ожидания и дисперсии, можно получить, что

,

,

Моменты более высоких порядков применяются редко.

Предположим, что распределение случайной величины симметрично относительно математического ожидания. Тогда все центральные нечетного порядка равны нулю. Это можно объяснить тем, что для каждого положительного значения отклонения X–M[X] найдется (в силу симметричности распределения) равное ему по абсолютной величине отрицательное значение, причем их вероятности будут одинаковыми. Если центральный момент равен нечетного порядка не равен нулю, то это говорит об асимметричности распределения и чем больше момент, тем больше асимметрия. Поэтому в качестве характеристики асимметрии распределения разумнее всего взять какой-нибудь нечетный центральный момент. Так как центральный момент 1-го порядка всегда равен нулю, то целесообразно для этой цели использовать центральный момент 3-го порядка. Однако принять этот момент для оценки асимметричности неудобно потому, что его величина зависит от единиц, в которых измеряется случайная величина. Чтобы устранить этот недостаток,  3 делят на  3 и таким образом получают характеристику.

Коэффициентом асимметрии A называется величина

. (5.12)

Рис. 5.1

Если коэффициент асимметрии отрицателен, то это говорит о большом влиянии на величину 3 отрицательных отклонений. В этом случае кривые распределения более пологи слева от M[X]. Если коэффициент A положителен, то кривая более пологи справа.

Как известно, дисперсия (2-й центральный момент) служит для характеристики рассеивания значений случайной величины вокруг математического ожидания. Чем больше дисперсия, тем более полога соответствующая кривая распределения. Однако нормированный момент 2-го порядка  2 / 2 не может служить характеристикой "плосковершинности" или "островершинности" распределения потому, что для любого распределения D[x ]/ 2 =1. В этом случае используют центральный момент 4-го порядка.

Эксцессом E называется величина

. (5.13)

Ч

Рис. 5.2

исло 3 здесь выбрано потому, что для наиболее распространенного нормального закона распределения 4 / 4 =3. Поэтому эксцесс служит для сравнения имеющихся распределе­ний с нормальным, у которого экс­цесс равен нулю. Это означает, что если у распределения эксцесс положителен, то соответствующая кривая распределения более "островершина" по сравнению с кривой нормального распределения; если у распределения эксцесс отрица­телен, то соответствующая кривая более "плосковершина".

Пример 5.6. ДСВ X задана следующим законом распределения:

Найти коэффициент асимметрии и эксцесс.

Рис. 5.4

Решение . Предварительно найдем начальные моменты до 4-го порядка



Теперь вычислим центральные моменты:

Рассмотрим дискретную случайную величину , заданную законом распределения:

Математическое ожидание равно:

Видим, что значительно больше . Это можно объяснить тем, что значение x = –150, намного отличающееся от остальных значений, при возведении в квадрат резко возросло; вероятность же этого значения мала (0,02). Таким образом, переход от M(X) к M(X 2) позволил лучше учесть влияние на математическое ожидание таких значений случайной величины, которые велики по абсолютной величине, но вероятность их появления мала. Разумеется, если бы величина имела несколько больших и маловероятных значений, то переход к величине X 2 , а тем более к величинам , и т.д., позволил бы еще больше «усилить роль» этих больших, но маловероятных возможных значений. Вот почему оказывается целесообразным рассматривать математическое ожидание целой положительной степени случайной величины, причем не только дискретной, но и непрерывной.

Определение 6.10. Начальным моментом го порядка случайной величины называется математическое ожидание величины :

В частности:

Пользуясь этими моментами, формулу для вычисления дисперсии можно записать иначе

Кроме моментов случайной величины целесообразно рассматривать моменты отклонения .

Определение 6.11. Центральным моментом ого порядка случайной величины называется математическое ожидание величины .

(6.23)

В частности,

Легко выводятся соотношения, связывающие начальные и центральные моменты. Так, сравнивая (6.22) и (6.24), получим:

Нетрудно доказать и следующие соотношения:

Аналогично:

Моменты более высоких порядков используются редко. В определении центральных моментов используются отклонения случайной величины от ее математического ожидания (центра). Поэтому моменты называются центральными .

В определении начальных моментов также используются отклонения случайной величины, но не от математического ожидания, а от точки, абсцисса которой равна нулю, являющейся началом координат. Поэтому моменты называются начальными .

В случае непрерывной случайной величины начальный момент го порядка вычисляется по формуле:

(6.27)

Центральный момент го порядка непрерывной случайной величины вычисляется по формуле:

(6.28)

Предположим, что распределение случайной величины симметрично относительно математического ожидания. Тогда все центральные моменты нечетного порядка равны нулю. Это можно объяснить тем, что для каждого положительного значения величины X-M(X) найдется (в силу симметричности распределения относительно M(X) ) равное ему по абсолютной величине отрицательное значение этой величины, причем их вероятности будут одинаковыми.



Если центральный момент нечетного порядка не равны нулю, то это говорит об асимметричности распределения, причем чем больше момент, тем больше асимметрия. Поэтому в качестве характеристики асимметрии распределения разумнее всего взять какой-нибудь нечетный центральный момент. Так как центральный момент первого порядка всегда равен нулю, то целесообразно для этой цели использовать центральный момент третьего порядка.

Определение 6.12. Коэффициентом асимметрии называется величина:

Если коэффициент асимметрии отрицательный, то это говорит о большом влиянии на величину отрицательных отклонений. В этом случае кривая распределения (рис. 6.1а ) более полога слева от . Если коэффициент положительный, а значит, преобладает влияние положительных отклонений, то кривая распределения более пологая справа.

Как известно, второй центральный момент (дисперсии) служит для характеристики рассеивания значений случайной величины вокруг ее математического ожидания. Если этот момент для некоторой случайной величины достаточно большой, т.е. рассеивание велико, то соответствующая кривая распределения более пологая, чем кривая распределения случайной величины, имеющей меньший момент второго порядка. Однако моментне может служить для этой цели в силу того, что для любого распределения .

В этом случае используется центральный момент четвертого порядка.

Определение 6.13. Эксцессом называется величина:

Для наиболее распространенного в природе нормального закона распределения отношение . Поэтому эксцесс, заданный формулой (6.28) служит для сравнения данного распределения с нормальным (рис. 6.1b ).

Особое значение для характеристики распределения случайной величины имеют числовые характеристики, называемые начальными и центральными моментами.

Начальным моментом k -го порядка α k (Х ) случайной величины Х k -ой степени этой величины, т.е.

α k (Х ) = М (Х k ) (6.8)

Формула (6.8) в силу определения математического ожидания для различных случайных величин имеет свой вид, а именно, для дискретной случайной величины с конечным множеством значений

для непрерывной случайной величины

, (6.10)

где f (x ) - плотность распределения случайной величины Х .

Несобственный интеграл в формуле (6.10) превращается в определенный интеграл по конечному промежутку, если значения непрерывной случайной величины имеются только в этом промежутке.

Одна из ранее введенных числовых характеристик – математическое ожидание – является не чем иным, как начальным моментом первого порядка, или, как говорят, первым начальным моментом:

М (Х ) = α 1 (Х ).

В предыдущем пункте было введено понятие центрированной случайной величины Х – М (Х ). Если эту величину рассматривать в качестве основной, то для нее также могут быть найдены начальные моменты. Для самой величины Х эти моменты будут называться центральными.

Центральным моментом k -го порядка μ k (Х ) случайной величины Х называется математическое ожидание k -ой степени центрированной случайной величины, т.е.

μ k (Х ) = М [(Х – М (Х )) k ] (6.11)

Иначе говоря, центральный момент k -го порядка – это математическое ожидание k -ой степени отклонения.

Центральный момент k -го порядка для дискретной случайной величины с конечным множеством значений находится по формуле:

, (6.12)

для непрерывной случайной величины по формуле:

(6.13)

В дальнейшем, когда будет понятно о какой случайной величине идет речь, то ее в обозначениях начальных и центральных моментах писать не будем, т.е. вместо α k (Х ) и μ k (Х ) будем писать просто α k и μ k .

Очевидно, что центральный момент первого порядка равен нулю, так как это ни что иное, как математическое ожидание отклонения, которое равно нулю по ранее доказанному, т.е. .

Нетрудно понять, что центральный момент второго порядка случайной величины Х совпадает с дисперсией этой же случайной величины, т.е.

Кроме этого, существуют следующие формулы, связывающие начальные и центральные моменты:

Итак, моменты первого и второго порядков (математическое ожидание и дисперсия) характеризуют самые важные черты распределения: его положение и степень разброса значений. Для более подробного описания распределения служат моменты более высоких порядков. Покажем это.

Предположим, что распределение случайной величины симметрично относительно своего математического ожидания. Тогда все центральные моменты нечетного порядка, если они существуют, равны нулю. Это объясняется тем, что в силу симметричности распределения для каждого положительного значения величины Х М (Х ) существует равное ему по модулю отрицательное значение, при этом вероятности этих значений равны. Следовательно, сумма в формуле (6.12) состоит из нескольких пар, равных по модулю, но разных по знаку слагаемых, которые при суммировании взаимно уничтожаются. Таким образом, вся сумма, т.е. центральный момент любого нечетного порядка дискретной случайной величины равен нулю. Аналогично, центральный момент любого нечетного порядка непрерывной случайной величины равен нулю, как интеграл в симметричных пределах от нечетной функции.

Естественно предположить, что если центральный момент нечетного порядка отличен от нуля, то и само распределение не будет симметрично относительно своего математического ожидания. При этом, чем больше центральный момент отличается от нуля, тем больше асимметрия в распределении. Возьмем в качестве характеристики асимметрии центральный момент наименьшего нечетного порядка. Так как центральный момент первого порядка равен нулю для случайных величин, имеющих любые распределения, то для этой цели лучше использовать центральный момент третьего порядка. Однако этот момент имеет размерность куба случайной величины. Чтобы избавиться от этого недостатка и перейти к безразмерной случайной величине, делят значение центрального момента на куб среднеквадратического отклонения.

Коэффициентом асимметрии А s или просто асимметрией называется отношение центрального момента третьего порядка к кубу среднеквадратического отклонения, т.е.

Иногда асимметрию называют "скошенностью" и обозначают S k , что происходит от английского слова skew – "косой".

Если коэффициент асимметрии отрицательный, то на его величину достаточно сильно влияние отрицательных слагаемых (отклонений) и распределение будет иметь левую асимметрию , а график (кривая) распределения является более пологим слева от математического ожидания. Если коэффициент положителен, то асимметрия правая , а кривая более полога справа от математического ожидания (рис.6.1).



Как было показано, для характеристики разброса значений случайной величины вокруг своего математического ожидания служит второй центральный момент, т.е. дисперсия. Если этот момент имеет большое числовое значение, то данная случайная величина имеет большой разброс значений и соответствующая кривая распределения имеет более пологий вид, чем кривая, для которой второй центральный момент имеет меньшее значение. Поэтому второй центральный момент характеризует, в какой-то степени, "плосковершинность" или "островершинность" кривой распределения. Однако эта характеристика не очень удобная. Центральный момент второго порядка имеет размерность равную квадрату размерности случайной величины. Если попытаться получить безразмерную величину, поделив значение момента на квадрат среднеквадратического отклонения, то для любой случайной величины получим: . Таким образом, этот коэффициент не может являться какой-либо характеристикой распределения случайной величины. Он одинаков для всех распределений. В этом случае можно использовать центральный момент четвертого порядка.

Эксцессом E k называется величина, определяемая по формуле

(6.15)

Эксцесс, в основном, применяется для непрерывных случайных величин и служит для характеристики, так называемой "крутости" кривой распределения, или иначе, как уже было сказано, для характеристики "плосковершинности" или "островершинности" кривой распределения. В качестве эталонной кривой распределения считается кривая нормального распределения (о нем будет подробно идти речь в следующем главе). Для случайной величины, распределенной по нормальному закону, имеет место равенство . Поэтому эксцесс, заданный формулой (6.15), служит для сравнения данного распределения с нормальным, у которого эксцесс получается равным нулю.

Если для какой-то случайной величины получен положительный эксцесс, то кривая распределения этой величины является более островершинной, чем кривая нормального распределения. Если же эксцесс отрицателен, то кривая является более плосковершинной по сравнению с кривой нормального распределения (рис. 6.2).



Перейдем теперь к конкретным видам законов распределения дискретной и непрерывной случайных величин.