Недостаток минеральных веществ. Внешний вид растений

В естественных условиях каждое растение участвует в круговороте веществ в природе. Дождевые черви, грибы, бактерии и живущие в почве насекомые разлагают отмершие организмы на составные элементы. При этом получаются важные минеральные вещества, необходимые для питания растений. Они усваиваются растением с помощью корней и используются как строительный материал для новых клеток.

Когда растение умирает, его перерабатывают живущие в почве насекомые и микроорганизмы; минеральные соединения, из которых состояли его ткани, разлагаются на составные элементы и становятся доступны для других живых организмов.

Комнатные растения выключены из этого круговорота веществ, и поэтому им приходится довольствоваться только теми минеральными веществами, которые предоставляем им мы.

Поскольку объем почвы в горшке не особенно велик, довольно часто растения страдают от недостатка или избытка питательных веществ.

Важнейшие питательные вещества

Обычно питательные вещества в зависимости от потребностей растения разделяют на микро - и макроэлементы.

Больше всего растению необходимы макроэлементы: азот , фосфор и калий, а также сера, магний и кальций. К микроэлементам относятся бор, железо, медь, марганец, молибден и цинк. Каждый элементов минерального питания выполняет в растении как минимум одну, а иногда и несколько важных функций. Микроэлементы необходимы растению в небольшом количестве, но их недостаток отрицательно сказывается на его жизнеспособности.

Ниже приводится перечень основных питательных веществ и рассказывается о функциях, которые выполняют они в организме растения.

Азот (N) Он считается наиболее важным для растения, потому что является главной составной частью растительных белковых соединений. Азот необходим для роста листьев и побегов, а также для образования зеленых клеток листа (хлорофилла).

Фосфор (Р) Фосфор влияет на рост корней, почек и бутонов . Кроме того он необходим для созревания и окрашивания цветов, плодов и семян.

Калий (К) Этот элемент необходим прежде всего для поддержания водного баланса растения, потому что калий, способствует удерживанию воды в клетках. Кроме того калий повышает сопротивляемость растений вредителям и способность переносить неблагоприятные условия.

Сера (S) Так же, как и азот, она является строительным материалом для образования белковых растительных соединений и хлорофилла. Последнее относится и еще к одному элементу - Магний (Mg).

Кальций (Са) увеличивает прочность растительных тканей и также, как и калий, способствует повышению выносливости растения.

Сигналы, говорящие о недостатке или избытке минеральных веществ

Обычно растение получает достаточное количество питательных веществ, если мы не забываем регулярно подкармливать его в период роста, а многолетние растения время от времени пересаживаем в новую землю.

Однако иногда цветоводы замечают нарушения роста или окраски у своих питомцев и не могут найти этому причину. Хотя никаких вредителей они не могут обнаружить, но на всякий случай, возможно, применяют какое-нибудь специальное защитное средство.

Эта хризантема страдает от недостатка магния.

Однако все это не устраняет настоящей причины, которая кроется в нарушении питания растения. Особенно часто у комнатных растений можно наблюдать следующие симптомы, свидетельствующие о недостатке или избытке минеральных веществ.

О недостатке азота можно узнать по замедлению роста: декоративнолистные растения образуют совсем мало новых побегов. Листья бледнеют, становятся светлозеленого цвета, возможны также красноватые оттенки. В первую очередь это проявляется у более старых листьев, которые на следующей стадии преждевременно опадают.

Избыток азота проявляется в темно-зеленой окраске листьев и пористой мягкой ткани растения. Сопротивляемость болезням и вредителям понижается. Если цветы не образуются или бледно окрашены, значит речь идет о недостатке фосфора . При этом часто нижние, более старые листья становятся грязно-зелеными, кроме того, в их окраске могут присутствовать также другие цвета, от синего до красного и фиолетового. Молодые листья остаются маленькими, и кончики их загибаются вверх.

Растение, страдающее от недостатка калия , становится вялым, особенно в теплые и солнечные дни. Оно остается маленьким и приземистым, часто листья бледнеют по краям и опадают. При недостатке калия падает сопротивляемость растения различным болезням и вредителям.

Типичным признаком, говорящим о недостатке железа , является так называемый хлороз листьев: прожилки их становятся темно-зелеными, а поверхность листа между ними бледнеет и приобретает желтоватый оттенок. Особенно часто растения страдают от недостатка железа, когда световой день уменьшается или когда понижается уровень кислотности почвы.

Уровень кислотности почвы

В связи с подкормкой растений стоит сказать также несколько слов об уровне кислотности почвы. Под уровнем кислотности понимают соотношение кислот и щелочей. Для большей наглядности введем шкалу от 1 до 14. При уровне кислотности 7 почва считается нейтральной. Если рН меньше 7, то почва кислая, если больше - то щелочная.

От уровня кислотности почвы зависит способность растений усваивать питательные вещества. Лучше всего они усваиваются, если почва слабокислая или нейтральная (рН от 5,5 до 7). Если величина рН отклоняется в ту или иную сторону, то у растения могут проявляться признаки недостатка питательных веществ, хотя в почве они будут содержаться в необходимом количестве.

Чем больше извести содержится в воде для полива, тем быстрее понижается уровень кислотности почвы (возрастает значение рН). У растения начинают желтеть листья (недостаток азота) или развивается хлороз листьев (недостаток железа).

Особенно часто эти признаки проявляются у растений, которые предпочитают кислую почву. К ним относятся камелия (Camellia japonica), катлея (Cattleya labiata) и азалия (Rhododendron simsii). Эти растения лучше всего чувствуют себя, если рН= При их выращивании можно использовать специальные аммоние содержащие минеральные добавки, которые повышают кислотность почвы или поддерживают ее на нужном уровне. Мы имеем в виду окисляющие добавки.

Кроме того, напомним также, что вода для полива обязательно должна быть мягкой, чтобы предотвратить накопление щелочей в почве.

Если Вы подозреваете, что причиной нарушения роста Ваших растений является неправильный уровень кислотности почвы, проверьте значение рН с помощью специального рН-тестера, который можно приобрести в цветочном или садовом магазине.

Потребность комнатных растений в минеральных веществах

Потребность растений в питательных веществах зависит от целого ряда факторов. Особенно высока она в период роста, то есть с марта по сентябрь.

Большинство растений в этот период необходимо подкармливать не реже одного раза в неделю. Иначе обстоит дело зимой, когда для каждого растения устанавливают свой режим подкормки. Растения, зимующие в затененном или прохладном помещении, подкармливают раз в три-четыре недели. Растения, у которых зимой наступает период покоя, вообще перестают подкармливать. Потребность в различных минеральных веществах сильно варьируется в зависимости от фазы развития растения.

Для молодого растения необходимы удобрения с большим содержанием азота, который способствует росту стеблей и листьев. Позднее, в период цветения, следует вносить фосфоросодержащие минеральные добавки.

Калий же в достаточно большом количестве необходим растению всегда, независимо от фазы развития.

Правильная подкормка растений

В период роста подкормку следует начинать спустя две-четыре недели после покупки. Если Вы сами посадили растение, начинайте подкармливать его только после того, как покажутся ростки. При этом у Вас есть выбор между минеральными и органическими удобрениями. При использовании минеральных удобрений питательные вещества доступны растениям сразу. Что касается органических удобрений, то содержащиеся в них питательные вещества усваиваются растением медленнее.

Самые обычные органические удобрения - компост и навоз. Однако они годятся скорее для сада или клумбы, чем для комнатных растений. В самодельно изготовленном компосте нельзя определить содержание минеральных веществ, а это легко может привести к повреждению чувствительных комнатных растений вследствие неправильной подкормки. Другие органические удобрения, такие как роговую стружку, костную и кровяную муку, гуано, лучше всего добавлять в почву при пересадке.

В специализированных магазинах можно приобрести органические удобрения, в которых также содержатся микроорганизмы, благотворно воздействующие на состав почвы и препятствующие чрезмерному испарению воды и образованию корки на поверхности почвы.

Проще всего для подкормки комнатных растений использовать минеральные удобрения, т. к. в этом случае растение может получить все важные питательные вещества в нужной пропорции.

Жидкие минеральные удобрения

Это самый распространенный способ подкормки растений. При этом используют концентрированный питательный раствор, содержащий все необходимые микро - и макроэлементы. Существуют специальные смеси с повышенным содержанием азота - для декоративнолистных растений. В противоположность им для декоративноцветущих растений используют смеси с повышенным содержанием фосфора.

Способ применения этого вида удобрений довольно прост. Концентрация удобрений не должна быть выше той, которая рекомендована на упаковке, даже если ваши растения обнаруживают симптомы, свидетельствующие о недостатке питательных веществ. Слишком высокая концентрация удобрений может повредить нежные корни.

Растворимые минеральные удобрения в виде соли

Таблетки и палочки

Этот способ подкормки более легок, но менее точен по сравнению с теми, что были описаны выше. В зависимости от размеров горшка и растения, в почву вводится определенное количество питательных палочек или таблеток.

Растение усваивает содержащиеся в них минеральные вещества постепенно, и опасность перенасыщения уменьшается.

Специальные удобрения

Некоторые виды растений, такие как кактусы, бромелиевые или орхидеи, предъявляют свои особенные требования к подкормке. Для таких растений в продаже имеются специальные питательные смеси.

Помощь в экстренном случае: подкормка растений через поверхность листьев

Растения, особенно остро страдающие от недостатка минеральных веществ, можно подкармливать через поверхность листьев. Этот способ используют, например, при недостатке в почве железа, когда появляется хлороз листьев. Очень часто он наблюдается у бугенвиллий, гортензий, брунфельсий и цитрусовых. Если причиной этого служит возросшее значение рН, то внесение жидких удобрений в почву не поможет делу, поскольку растение не сможет их усвоить.

В этом случае советуем приобрести в специализированном магазине хелат железа (т. е. внутрикомплексное соединение железа). Растворите его в воде, а затем опрысните растение этим раствором - лучше всего на какой-нибудь моющейся поверхности, иначе могут остаться некрасивые пятна. Этот способ подкормки рекомендуется, в первую очередь, для названных выше растений. Ни в коем случае не стоит применять его для растений, которые не любят, когда на их листья попадает вода.

Недавно укоренившиеся черенки очень полезно подкармливать через поверхность листьев питательными смесями с высоким содержанием азота. Однако подкормка растений через листья является только дополнительной мерой.

Что делать при избытке минеральных веществ?

С небольшим избытком удобрений растение вполне может справиться самостоятельно; просто прекратите подкормку на некоторое время. Почва при этом должна быть постоянно влажной , чтобы минеральные соли не повредили корни.

Если же содержание минеральных веществ в почве намного выше нормы, то у вас есть две возможности: пересадить растение или промыть почву. Поставьте горшок на четверть часа под струю воды в раковине. Вода должна быть не слишком холодной и хорошо проходить через дренажное отверстие. Вы можете также погрузить горшок в ведро с водой примерно до уровня почвы и подождать, пока вся почва пропитается водой. Затем выньте горшок и дайте стечь воде.

Повторите эту процедуру несколько раз.

Сигналы опасности

Недостаток минеральных веществ

Избыток минеральных веществ

Замедленный рост, низкая сопротивляемость болезням и вредителям

Поникающие листья

Цветки не образуются, либо они маленькие и бледно окрашенные

Лето: приостановка роста
Зима: слабые вытянутые стебли

Бледные листья. Могут появиться желтые пятна

Сухие коричневые пятна; сухие края листьев

Слабые стебли; преждевременное опадение нижних листьев

Белая корочка на поверхности почвы и наружной стороне керамического горшка в районах с мягкой водой

Правила подкормки

Если растение в почве или специальной почвенной смеси, сильно подкармливать не рекомендуется. В некоторые моменты растению просто не нужна подкормка, в другие - количество питательных веществ определяется величиной растения и размером горшка. Чаще всего подкармливают одновременно с поливом в период роста или цветения. В период покоя растение не подкармливают или уменьшают дозу удобрения.


Микроэлементы и макроэлементы и их роль в жизни растений

К макроэлементам относят те, которые содержатся в растениях в значительных (от сотых долей до целых процентов) количествах - это углерод, кислород, водород, азот, фосфор, калий, кальций, сера, магний и железо. К микроэлементам относят те, которые содержатся в растениях в очень незначительных (от стотысячных до тысячных долей процента) количествах, но которые, несмотря на столь малое количество, оказывают сильное воздействие на жизненные процессы растений - это бор, медь, цинк, молибден, марганец, кобальт и др.
Для начала нужно посмотреть на картинку справа.
Иногда видишь что растение болеет, а чем помочь не ясно.
Вот именно поэтому я и собрала картинки наглядно показывающие как выглядят растения если им чего-то не хватает.
Ну и умные слова найдете под катом о том как выглядят растения, потому что иной раз и картинки недостаточно:)

1. Недостаток азота
при азотном голодании рост различных культур замедляется. Если на Вашем участке случилась такая ситуация, на это Вам могут указать следующие растения: огурцы, картофель, черная смородина, белокочанная и цветная капуста, кукуруза, слива, яблоня. Плоды осыпаются, мельчают, мякоть становится плотная.

Первым признаком недостатка азота будет замедленный рост всех надземных частей растения. А затем поменяется и окраска листьев. Сначала они меняют окраску на бледно-зеленую, после чего непременно пожелтеют. Некоторые растения приобретают красноватый или оранжевый оттенок листьев. Изменение окраски листьев начинается с нижних ярусов. Постепенно заболевание переходит на верхние листья, а нижние высыхают и отмирают.
Кроме этих симптомов при азотном голодании происходят следующие процессы:

Стебли растений становятся одревесневшими

Листья располагаются под острым углом к стеблю

Количество цветков уменьшается и они опадают

Плоды имеют небольшой размер и несоответствующую окраску

Весь срок вегетации происходит быстрее положенного.

2. Недостаток калия
При скудном питании калием в растении происходит его перераспределение: из старых органов он переходит в более молодые, способствуя их развитию. Признаки недостатка обычно заметны бывают в середине вегетации, в период сильного роста растений. При недостатке калия окраска листьев голубовато-зеленая, тусклая, часто с бронзовым оттенком. Наблюдается пожелтение, а в дальнейшем побурение и отмирание кончиков и краев листьев (краевой "ожог" листьев). Развивается бурая пятнистость особенно ближе к краям. Края листьев закручиваются, наблюдается морщинистость.

Жилки кажутся погруженными в ткань листа. Стебель тонкий, рыхлый, полегающий. Недостаток калия вызывает обычно задержку роста, а также развития бутонов или зачаточных соцветий. Листья вянут и поникают, по краям светло-зеленые пятна, затем коричневые.

При избытке калия листья приобретают более темный оттенок, а новые листья мельчают. Избыток калия приводит к затрудненному усвоению таких элементов как кальций, магний, цинк, бор и др.

3. Недостаток магния
Магний входит в состав хлорофилла, что определяет его важное значение в жизни растений: он участвует в углеводном обмене, действии ферментов и в образовании плодов. При недостатке магния наблюдается характерная форма хлороза - у краев листа и между жилками зеленая окраска изменяется на желтую, красную, фиолетовую. Между жилками в дальнейшем появляются пятна различного цвета вследствие отмирания тканей. При этом крупные жилки и прилегающие к ним участки листа остаются зелеными. Кончики листьев и края загибаются, в результате чего листья куполообразно выгибаются, края листьев морщинятся и постепенно отмирают. Признаки недостатка появляются и распространяются от нижних листьев к верхним. У плодовых растений наблюдается ранний листопад, начинающийся с нижних побегов даже летом, и сильное опадение плодов.
У садовой клубники или земляники недостаток магния также можно определить по изменению окраски листьев. Ткань листа между жилками может пожелтеть, покраснеть или стать пурпурной, фиолетовой, при этом прожилки листьев еще долго продолжают оставаться зелеными. При очень сильном магниевом голодании листья ягодников преждевременно засыхают.
При избытке магния, у растения начинают отмирать корни, растение перестает усваивать кальций, и наступают такие симптомы, которые характерны при недостатке кальция.

4. Недостаток меди
Недостаток или избыток меди чаще ощутим на торфя­ных, реже на кислых песчаных почвах. В жаркое время года медное голодание усиливается.
Медь играет специфическую роль в жизни растений: регулирует фотосинтез и концентрацию образующихся в растении ингибиторов роста, водный обмен и перераспределение углеводов, входит в состав ферментов, повышает устойчивость к полеганию. Недостаток меди вызывает у растений задержку роста и цветения, хлороз листьев, потерю упругости клеток (тургора) и увядание растений. Известкование почв увеличивает поглощение меди почвенными частицами и снижает ее доступность для растений. Избыток меди также чрезвычайно вреден для растения. Проявляется он в том, что растение тормозится в развитии, на листьях появляются бурые пятна и они отмирают. Начинается процесс с нижних более старых листьев.
Листья выглядят вялыми, закручиваются внутрь в трубочку, белеют на кончиках. Молодые листья мельчают, приобретают сине-зеленый оттенок. Побеги становятся слабыми, цветы сбрасываются.

5. Недостаток молибдена
При слабом недостатке появляется желтая или бледно-коричневая окраска, или некротические пятна. При сильном недостатке хлорозная ткань отмирает. У крестоцветных окраска зеленая или зелено-синяя, листовая пластинка искривляется и редуцируется. Точка роста и сердечко отмирают. Цветение и образование семян замедляются. Уменьшаются величина, количество и изменяется цвет клубеньковых бактерий.
Молибден необходим растениям в еще меньших количествах, чем бор, марганец, цинк и медь. Он преимущественно накапливается в молодых растущих органах, входит в состав ферментов, регулирующих азотный обмен в растениях, участвует в синтезе нуклеиновых кислот (РНК и ДНК) и витаминов и регулирует фотосинтез и дыхание. При недостатке молибдена в растениях нарушаются многие процессы жизнедеятельности, в тканях растений накапливаются нитраты, что особенно опасно при избыточном применении азотных удобрений (включая навоз): чем выше дозы применяемых азотных удобрений, тем больше потребность растений в молибдене. Внешние признаки дефицита молибдена для растений сходны с азотным голоданием: тормозится рост растений, листья приобретают бледно-зеленую окраску, деформируются и преждевременно отмирают. Листья светлеют, желтеют, края закручиваются вверх. Появляются желтые крапинки между жилками листа, сами жилки не затрагиваются

Вновь развивающиеся листья вначале зеленые, но по мере роста становятся крапчатыми. Участки хлоротичной ткани впоследствии вздуваются, края листьев закручиваются внутрь; вдоль краев и на верхушках листьев развивается некроз. Большие дозы молибдена весьма токсичны для растений, поэтому содержание даже 1 мг молибдена в 1 кг сухой массы продукции вредно для человека и животных.

6. Недостаток серы
Сера входит в состав белков, витаминов, необходима для нормального роста и развития растения. При недостатке серы образуются мелкие, со светлой желтоватой окраской листья на вытянутых стеблях, ухудшаются рост и развитие растений. У плодовых культур листья и черешки становятся деревянистыми. В отличие от азотного голодания при серном голодании желтеют верхние листья растения и не опадают, хотя имеют бледную окраску. Недостаток серы проявляется в замедлении роста стеблей в толщину. При избытке серы листья постепенно желтеют с краев и скукоживаются, подворачиваясь внутрь. Затем буреют и отмирают. Иногда листья принимают не желтый, а сиреневато-бурый оттенок.

7. Недостаток цинка
Цинк необходим всем растениям, особенно плодовым. Как и другие микроэлементы, цинк играет важную роль в белковом, углеводном и фосфорном обмене, в биосинтезе витаминов и ростовых веществ (ауксинов). При дефиците цинка в растениях задерживается образование сахарозы, крахмала и ауксинов, нарушается образование белков, вследствие чего в них накапливаются небелковые соединения азота и нарушается фотосинтез. Это ведет к подавлению процесса деления клеток и влечет за собой морфологические изменения листьев (деформацию и уменьшение листовой пластинки) и стеблей (задержку роста междоузлий), т.е. к торможению роста растений. Симптомы недостатка цинка развиваются на всем растении или локализованы на более старых нижних листьях.
Вначале на листьях нижних и средних ярусов, а потом и на всех листьях растения, появляются разбросанные пятна серобурого и бронзового цвета. Ткань таких участков как бы проваливается и затем отмирает. Молодые листья ненормально мелки и покрыты желтыми крапинками или же равномерно хлоротичны, принимают слегка вертикальное положение, края листьев могут закручиваться кверху. У плодовых деревьев на концах ветвей образуются укороченные побеги с мелкими листьями, расположенными в виде розетки (так называемая "розеточность"), а при сильном дефиците появляется "суховершинность".

8. Еще поясняющие фотки добавлю.

Главными элементами питания растений являются углерод, кислород, водород, азот, фосфор, калий, сера, кальций, железо. Однако в растениях могут быть обнаружены и другие химические элементы, встречающиеся в почве по месту их произрастания, - марганец, бор, медь, цинк, молибден, кобальт и т. д.

Питательные вещества в растения поступают через корневую систему из почвы и через листья. Воздух содержит такие важные элементы питания и жизнедеятельности растений, как кислород, углерод и азот.

В процессе одной реакции поглощается 477 кал/моль. Формулой (СН 20) обозначена элементарная единица молекулы углевода, которая служит исходным материалом для сложных углеводов, белков, жиров и других соединений. У высших растений имеются разные биохимические пути фиксации и преобразования двуокиси углерода. У большинства растений фиксация СО 2 идет только по циклу С 3 (пентозофосфатный восстановительный цикл), их называют С 3 -растения, у других - по циклу С 3 и циклу С 4 (циклу дикарбоновых кислот) - С 4 -растения. К последним относятся кукуруза, просо, сорго, сахарный тростник и др. Существует еще и третий путь фиксации СО 2 .

С4-растения иначе, чем С 3 -растения, реагируют на освещенность, тепло- и влагообеспеченность. При повышении степени освещенности и температуры у них возрастает интенсивность фотосинтеза в расчете на единицу поверхности листа. Кроме того, они более эффективно используют воду. Как правило, транспирационный коэффициент у них менее 400, тогда как у С 3 -растений он от 400 до 1000. Максимальная интенсивность фотосинтеза у растений с С 3 -пентозофосфатным циклом фиксации диоксида углерода обычно наблюдается при умеренной освещенности за С 3 — и С 4 -растений в зависимости от освещенности и температуры и яркий свет снижают интенсивность фотосинтеза.

Углерод в виде углекислоты воздуха составляет основу . Незначительное содержание СО 2 в атмосферном воздухе (всего 0,03%) является одной из причин развития растениями огромной листовой поверхности для его улавливания. Нижним пределом содержания СО 2 в воздухе для растений является концентрация 0,008% (~0,01%). Высокие концентрации СО 2 положительно влияют на фотосинтез только при достаточно хорошем освещении и обеспеченности растений другими факторами жизни. Повышение концентрации двуокиси углерода в приземном слое воздуха до 1% благоприятно для многих культур и способствует усилению процесса фотосинтеза. Этому способствует внесение в почву органических удобрений, растительных остатков, которые при разложении выделяют углекислоту. В условиях защищенного грунта, в теплицах, во многих случаях искусственно поддерживают повышенную концентрацию СО 2 (порядка 1-2%), что способствует увеличению урожайности возделываемых культур.

В почве двуокись углерода находится в различных формах и соединениях: в поглощенном и растворенном состояниях, в составе карбонатов и бикарбонатов и т. д., а также в составе почвенного воздуха как результат жизнедеятельности микроорганизмов, растений и других живых организмов. Его содержание в почвенном воздухе может достигать 10% и более.

Кислород в жизни растений и в почве имеет важное значение. Он потребляется растениями при дыхании, используется микроорганизмами почвы и активно участвует в различных химических реакциях окисления-восстановления. Содержание кислорода в почвенном воздухе по сравнению с атмосферным, где оно составляет 20,81%, может снижаться до 2-3%. Большой недостаток кислорода в почвенном воздухе влечет за собой угнетение или гибель растений. Одним из агротехнических приемов по его увеличению является улучшение аэрации почвы, усиление газообмена в почве путем ее обработки.

Азот является одним из важнейших элементов питания растений. Он входит в состав молекул белков, протеина, аминокислот и многих других органических азотсодержащих соединений. В атмосферном воздухе содержится 78,23% азота, однако он недоступен растениям. Фиксация атмосферного азота в различные азотсодержащие органические вещества осуществляется благодаря деятельности двух групп бактерий: свободноживущих, обитающих в ризосфере, и симбиотических, развивающихся на корнях некоторых растений, преимущественно бобовых. При минерализации этих веществ образуются растворимые формы нитратов, нитритов и аммиака, которые усваиваются корнями растений. Около 20% потребности растений в азоте покрывается именно за счет его перевода из воздуха в доступные формы. Остальное количество растения получают из природных запасов почвы и за счет внесения удобрений. Преобладающая часть этих запасов и часть азота, вносимая с удобрениями, находятся в форме трудно — или недоступных соединений. Регулировать содержание доступных форм азота в почве можно, создавая благоприятные почвенные условия для развития свободноживущих (азотобактера и др.) и симбиотических (клубеньковых) бактерий - хорошую аэрацию, слабокислую и нейтральную реакции почвенного раствора, оптимальные температурные условия, а также внесением в почву азотобактерина. Для тех бобовых культур, которые возделываются на данном поле впервые, в почву вносят препараты, содержащие чистую культуру клубеньковых бактерий соответствующей расы (нитрагин).

Регулирование процесса превращения азота из одних форм в другие заключается не только в ускорении разложения органического вещества почвы, растительных остатков, навоза и удобрений. Нередко в определенный отрезок времени возникает необходимость перевода азотных соединений из подвижных растворимых форм в недоступные формы органического вещества. Такая необходимость возникает на легких песчаных и супесчаных почвах, где процесс нитрификации происходит интенсивно не только летом, но и осенью, после уборки сельскохозяйственных культур. Образовавшиеся в это время нитраты остаются неиспользованными и могут с нисходящим потоком воды вымываться из корнеобитаемого слоя почвы. Чтобы использовать этот азот, после уборки одной культуры высевают другую либо для получения продукции, либо для запашки (зеленое удобрение). В этом случае аммиачный и нитратный азот используется растениями для образования органического вещества и частично (при уборке второго урожая) или полностью (при запашке) остается в почве и может быть использован растениями в следующем году.

Фосфор, калий, магний и другие элементы минерального питания растений имеют строго определенное значение в реакциях, протекающих в растениях. Фосфор входит в состав нуклеопротеидов, аденозинфосфатов и других фосфатов, обладающих пирофосфатными связями с большим запасом свободной энергии гидролиза. Он оказывает большое влияние на скорость роста и развитие растений. Калий увеличивает водоудерживающую способность и проницаемость протоплазмы, положительно влияет на синтез хлорофилла, белков, крахмала, жиров, усиливает обмен веществ в растениях. Магний входит в состав хлорофилла, служит катализатором при образовании дифосфорных эфиров, Сахаров и других соединений. Такие важнейшие аминокислоты, как цистин, цистеин, метионин, содержат серу, которая участвует в различных окислительно-восстановительных реакциях. Кальций играет важную роль в передвижении углеводов, оказывает влияние на превращение азотистых веществ, ускоряет распад запасных белков семян при прорастании.

Потребность растений в элементах минерального питания к формам их доступности в почве различна и зависит от вида, сорта растений и является предметом изучения агрохимии. Так, оптимальное отношение основных элементов питания азота, калия и фосфора для зерновых равно 1:1:0,5, а для сахарной свеклы - 1: 1,7:4,3.

Все приемы регулирования питательного режима сельскохозяйственных культур в земледелии можно разделить на 4 группы: пополнение в почве питательных элементов; создание условий для перевода элементов питания из труднодоступных и недоступных форм в усвояемые растениями; создание условий для лучшего усвоения растениями этих элементов; мероприятия по предотвращению потерь питательных веществ из почвы.

Пополнение почвы питательными веществами осуществляется главным образом путем внесения удобрений. Виды удобрений, сроки, способы и дозы их внесения под различные культуры, а также взаимодействие их с почвой также изучаются агрохимией, а реализация всех этих разработок осуществляется в земледелии при возделывании культур.

Путем чередования на полях возделываемых культур, характеризующихся различной корневой системой, растения могут усваивать питательные элементы из разных горизонтов, слоев и перераспределять их по этим слоям. Так, при возделывании растений с глубокой корневой системой используются питательные вещества из глубоких слоев почвы, а в верхних слоях питательные вещества остаются и могут быть использованы при последующем возделывании других культур.

Некоторые растения, например донник, горох, люпин, гречиха и др., обладают способностью использовать труднодоступные для других растений соединения фосфора. При разложении растительных остатков этих культур фосфор переходит в доступные формы и может быть использован растениями других видов. Создание условий для превращения питательных веществ из одних форм в другие осуществляется путем обработки почвы, при этом создаются лучшие условия для ее аэрации, что способствует усилению микробиологической деятельности, минерализации органических веществ. Поскольку гумус, растительные остатки и органические удобрения содержат азот, фосфор, калий и другие макро- и микроэлементы, то эти вещества переходят из органической формы в органо-минеральные и минеральные растворимые соединения и, таким образом, могут быть использованы растениями. Многие виды микроорганизмов способствуют использованию труднорастворимых соединений фосфора, растворяя их в различных кислотах, образующихся при разложении органического вещества. Большое значение имеет проведение мероприятий по созданию оптимальных для растений физических свойств почв, реакции почвенного раствора, улучшению водного режима почв.

Имеющиеся в почве питательные вещества могут различными путями теряться и, следовательно, не использоваться растениями. Такие потери связаны с проявлением эрозионных процессов, с вымыванием поверхностными и внутрипочвенными стоками растворимых форм питательных элементов, выносом с полей при уборке урожая (с почвой, приставшей к корнеплодам и клубнеплодам). В результате минерализации органического вещества и процессов денитрификации азот переходит в газообразное состояние и, таким образом, теряется. Особенно велики такие потери азота на полях, не покрытых в вегетационный период растительностью. Следовательно, все приемы по сохранению влаги в почве, по борьбе с эрозией почв выполняют и задачу по снижению потерь питательных элементов. Процесс денитрификации интенсивнее протекает на почвах с избыточным увлажнением и плохой аэрацией при нейтральной реакции почвенного раствора. Поэтому повышение аэрации и усиление окислительных процессов в почве, полное использование нитратного и аммиачного азота культурными растениями в течение вегетационного периода уменьшают потери азота.

Расчеты показывают, что с полей ежегодно вывозится более 10,8 млн мелкозема с картофелем и клубнеплодами, и они, видимо, занижены (Белоцерковский, 1987). В 1985 г. в Московской обл. вместе со свеклой было вынесено 8,8% почвы от всей массы (при урожайности свеклы 422 ц/га это составляло 3,7 т/га).

Функции каждого макро- и микроэлемента в растениях строго специфичны, ни один элемент не может быть заменен другим. Недостаток любого макро- и микроэлемента приводит к нарушению обмена веществ и физиологических процессов у растений, ухудшению их роста и развития, снижению урожая и его качества. При остром дефиците питательных элементов у растений появляются характерные признаки голодания.

Азот входит в состав аминокислот, амидов, белков, ферментов, нуклеиновых кислот, хлорофилла, алкалоидов, фосфатидов, большинства витаминов и других органических азотистых соединений, которые играют важную роль в процессах обмена веществ в растении.

В естественных условиях питание растений азотом происходит путем потребления ими нитрат-иона и катиона аммония , находящихся в почвенном растворе и в обменно-поглощенном почвенными коллоидами состояния. Поступившие в растения минеральные формы азота проходят сложный цикл превращений, в конечном итоге включаясь в состав органических соединений – аминокислот, амидов и, наконец, белка.

Нитратный азот способен накапливаться в растениях, не причиняя им вреда, в значительных количествах. Однако содержание нитратов в кормах, овощах и других растительных продуктах выше определенного предела вредно действует на организм животных и человека, потребляющих такие продукты.

При достаточном количестве углеводов аммиачный азот, поступивший в растения из почвы и образовавшийся при восстановлении нитратов, присоединяется к органическим кетокислотам – продуктам неполного окисления углеводов (щавелево-уксусной, кетоглутаровой или фумаровой), образуя первичные аминокислоты (аспарагиновую и глутаминовую). Этот процесс называется прямым аминированием и является основным способом образования аминокислот.

Все другие аминокислоты, входящие в состав белка (более 20), синтезируются переаминированием аспарагиновой и глутаминовой кислот . В процессе переаминирования под действием ферментов происходит перенос аминогрупп указанных и других аминокислот на другие кетокислоты. Переами-нирование имеет большое значение для синтеза белков , а также для дезаминирования аминокислот – отщепления аминогруппы от аминокислоты, в результате чего образуется ам­миак и кетокислота. Последняя используется растениями для переработки в углеводы, жиры и другие вещества, а аммиак вновь участвует в синтезе аминокислот.

Большую роль в азотном обмене играют амиды аспарагин и глутамин , которые образуются присоединением к аспарагиновой и глутаминовой кислотам еще по одной молекуле аммиака. В результате образования амидов происходит обеззараживание аммиака, накапливающегося при обильном аммиачном питании и недостатке в растениях углеводов.

В процессе роста и развития растений постоянно синтезируется огромное количество разнообразных белков. Для синтеза белков , как и других сложных органических соединений, требуется большое количество энергии. Основные источники энергии в растениях – фотосинтез и дыхание (окислительное фосфорилирование), поэтому существует тесная связь между синтезом белка и интенсивностью дыхания и фотосинтеза.

Наряду с синтезом в растениях происходит распад белков на аминокислоты с отщеплением аммиака под действием протеалитических ферментов. В молодых растущих органах и растениях синтез белков превышает распад, по мере старения процессы расщепления активизируются и начинают преобладать над синтезом.

Таким образом, сложный цикл синтеза органических азотистых веществ в растениях начинается с аммиака, а распад их завершается его образованием. Д. Н. Прянишников говорил, что «... аммиак есть альфа и омега в обмене азотистых веществ в растениях».

Условия азотного питания сильно влияют на рост и развитие растений. При недостатке азота рост их резко ухудшается. Особенно сильно сказывается недостаток азота на развитии листьев: они мелкие, светло-зеленой окраски, преждевременно желтеют, а при остром и длительном азотном голодании отмирают, стебли становятся тонкими и слабо ветвятся. Ухудшаются также формирование и развитие репродуктивных органов и налив зерна.

При нормальном азотном питании усиливается синтез органических азотистых веществ. Растения образуют мощные листья и стебли с интенсивно-зеленой окраской, хорошо растут и кустятся, улучшается формирование и развитие репродуктивных органов. В результате резко повышается урожай и содержание белка. Однако одностороннее избыточное азотное питание, особенно во второй половине вегетации, задерживает созревание растений; они образуют большую вегетативную массу, но мало зерна или клубней и корнеплодов. Избыточное азотное питание ухудшает и качество продукции. В корнеплодах сахарной свеклы снижается концентрация сахара и возрастает содержание «вредного» в процессе сахароварения небелкового азота, у картофеля снижается содержание крахмала, в овощах и кормах накапливаются опасные для человека и животных количества нитратов.

Фосфор является одним из важнейших элементов питания растений. Растения потребляют его главным образом в виде анионов Н 2 РО 4 (или ) из солей ортофосфорной кислоты (Н 3 РО 4), а также из солей полифосфорных кислот после их гидролиза.

Поступивший в растения фосфор включается в состав различных органических соединений. Фосфор входит в состав нуклеиновых кислот и нуклеопротеидов , которые участвуют в построении цитоплазмы и ядра клеток. Он содержится в фитине (запасном веществе семени), который используется как источник фосфора во время прорастания, а также в фосфатидах, сахарофосфатах, витаминах и многих ферментах .

В тканях растений присутствуют в небольших количествах также неорганические фосфаты , которые играют важную роль в создании буферной системы клеточного сока и служат резервом фосфора для образования различных фосфорорганических соединений.

В растительной клетке фосфор играет исключительно важную роль в энергетическом обмене, участвует во многих процессах обмена веществ, деления и размножения. Особенно велика роль этого элемента в углеводном обмене, в процессах фотосинтеза, дыхания и брожения.

Самые разнообразные превращения углеводов в растении начинаются с присоединения фосфорной кислоты к молекулам углеводов или с ее отщепления , то есть с их фосфорилирования или дефосфорилирования . При этом особенно важная роль принадлежит аденозинтрифосфорной кислоте (АТФ) и другим богатым энергией фосфорным соединениям.

Большая роль фосфора в углеводном обмене обусловливает положительное влияние фосфорных удобрений на накопление сахара в сахарной свекле и других корнеплодах, крахмала в клубнях картофеля и т.д. Фосфор играет также важную роль в обмене азотистых веществ в растении. Восстановление нитратного азота до аммиака, образование аминокислот, их дезаминирование и переаминирование происходят при участии фосфора. Этим и определяется тесная связь между азотным и фосфорным питанием растений. При недостатке фосфора нарушается синтез белка и уменьшается содержание его в растениях.

Фосфора больше всего содержится в репродуктивных и молодых растущих органах и частях растений, где идет интенсивный синтез органического вещества. Из более старых листьев он может передвигаться к зонам роста и использоваться повторно, поэтому внешние признаки его недостатка проявляются у растений, прежде всего на старых листьях. В этом случае они приобретают характерный красно-фиолетовый или голубоватый оттенок, иногда темно-зеленую окраску (например, у картофеля).

Растения наиболее чувствительны к недостатку фосфора в самом раннем возрасте, когда у них слабо развита корневая система с низкой усвояющей способностью. Отрицательные последствия от недостатка фосфора в этот период не могут быть исправлены в последующем даже обильным фосфорным питанием. Поэтому обеспечение растений фосфором в легкодоступной форме в начале вегетации, а также на всем ее протяжении имеет исключительно важное значение для роста, развития и формирования урожая. Это достигается сочетанием различных приемов внесения удобрений – основного, припосевного и подкормки.

Калий также один из основных элементов минерального питания. Физиологические функции калия в растительном организме разнообразны. Он оказывает положительное влияние на физическое состояние коллоидов цитоплазмы, повышает их оводненность, набухаемость и вязкость, что создает нормальные условия обмена веществ в клетчатке, повышает устойчивость растений к засухе.

Калий положительно влияет на интенсивность фотосинтеза, окислительных процессов и образование органических кислот в растении, на процессы углеводного и азотного обмена. Повышая активность ферментов, участвующих в углеводном обмене, калий способствует накоплению крахмала в клубнях картофеля, сахара – в сахарной свекле и других растениях; повышает устойчивость растений к заболеваниям, например, зерновых хлебов – к мучнистой росе и ржавчине, овощей, картофеля и корнеплодов – к возбудителям гнилей; у льна повышается выход и качество волокна, у зерновых – посевные качества семян.

Калия значительно больше в молодых частях и органах растения, чем в старых, а также чем в семенах, корнях и клубнях. При недостатке калия в питательной среде происходит отток его из более старых органов и тканей в молодые растущие органы, где он подвергается повторному использованию (реутилизации). При этом края и кончики листьев (прежде всего нижних) буреют, приобретают как бы обожженный вид, на пластинке появляются мелкие ржавые пятна. При недостатке калия клетки растут неравномерно, что вызывает гофрированность, куполообразное закручивание листьев. У картофеля на листьях образуется также характерный бронзовый налет.

Особенно часто недостаток калия проявляется при возделывании картофеля, корнеплодов, капусты, силосных культур и многолетних трав, что связано с большим потреблением ими калия. Зерновые злаки менее чувствительны к недостатку калия. Однако при остром дефиците калия они плохо кустятся, междоузлия стеблей укорачиваются, а листья, особенно нижние, увядают даже при достаточном количестве влаги в почве.

Кальций необходим для нормального роста надземных органов и корней растений. Потребность в нем проявляется еще в фазе прорастания. При недостатке кальция и резком преобладании в почвенном растворе одновалентных катионов (Н + , Na + , K +) или катионов Mg 2+ нарушается физиологическая уравновешенность раствора. Рост и развитие корней приостанавливаются, они становятся утолщенными, не образуют корневых волосков, клеточные стенки их ослизняются, темнеют и теряют способность поглощать питательные элементы. Дефицит этого элемента задерживает рост листьев, на них появляются светло-желтые пятна, затем листья желтеют и преждевременно отмирают. Кальций, в отличие от азота, фосфора и калия, не может повторно использоваться, поэтому признаки кальциевого голодания появляются прежде всего на молодых листьях.

Кальций усиливает обмен веществ в растениях, передвижение углеводов, превращение азотистых веществ, ускоряет распад запасных белков семян при прорастании, играет важную роль в построении нормальных клеточных оболочек и установлении кислотно-щелочного равновесия в растениях.

Кальций поступает в растения в течение всего периода активного роста. При наличии в растворе нитратного азота поступление его в растения усиливается, а в присутствии аммиачного азота вследствие антагонизма между катионами Са 2+ и – снижается.

Растения очень отличаются по уровню потребления кальция. При урожайности 20 – 30 ц/га зерновых, 200 – 300 ц/га корнеклубнеплодов и 500 – 700 ц/га капусты с 1 га посевов рожь, пшеница, ячмень и овес выносят от 20 до 40 кг СаО, горох, вика, фасоль, гречиха, лен – 40 – 60, картофель, люпин, кукуруза, сахарная свекла – 60 – 120, клевер, люцерна – 120 – 250, капуста – 300 – 500 кг.

Различные части и органы растения содержат разное количество кальция: в листьях и стеблях его значительно больше, чем в семенах. Поэтому большая часть кальция, вынесенного из почвы через корма и подстилку, попадает в навоз, т.е. возвращается на поля.

Гораздо больше кальция теряется из почвы из-за выщелачивания. Потери его за сезон из пахотного и подпахотного горизонтов почвы в пересчете на СаО могут достигать 400 – 500 кг/га. Однако ввиду того, что в республике для известкования применяются довольно высокие дозы известковых удобрений и значительное количество кальция поступает с органическими и фосфорными удобрениями, в среднем по республике на 1 га содержится до 600 кг кальция.

Магний входит в состав молекулы хлорофилла и принимает непосредственное участие в фотосинтезе. Он содержится также в пектиновых веществах и фитине, который накапливается преимущественно в семенах. При недостатке магния уменьшается содержание хлорофилла в зеленых частях растений, листья, прежде всего нижние, становятся пятнистыми – «мраморными», бледнеют между жилками, а вдоль жилок сохраняется зеленая окраска (частичный хлороз). Затем листья постепенно желтеют, скручиваются с краев и преждевременно опадают. Развитие растений замедляется, ухудшается их рост.

Магний, как и фосфор, содержится главным образом в растущих частях и семенах. В отличие от кальция он более подвижен и может перераспределяться растением: из старых листьев – в молодые, а после цветения – из листьев в семена. Недостаток магния больше сказывается на репродуктив­ных органах растений (семенах, корнях, клубнях), чем на вегетативных (соломе, ботве). Этот элемент играет важную роль в различных жизненных процессах: участвует в передвижении фосфора в растениях и углеводном обмене, влияет на активность окислительно-восстановительных процессов.

Потребность растений в магнии различна: с 1 га посевами разных культур выносится от 10 до 80 кг MgO. Наибольшее его количество используют картофель, сахарная и кормовая свекла, зернобобовые культуры, бобовые травы. Чувствительны к недостатку магния конопля, просо, гречиха, кукуруза.

В почвах магния содержится меньше, чем кальция. Особенно бедны им сильнооподзоленные кислые почвы легкого гранулометрического состава, поэтому использование на них известковых удобрений, содержащих магний, значительно повышает урожай.

Сера имеет важное значение в жизни растений. Основное количество ее находится в растительных белках (сера входит в состав аминокислот цистеина, цистина и метионина) и других органических соединений – ферментах, витаминах, горчичных и чесночных маслах. Сера принимает участие в азотном и углеводном обмене растений, в процессе дыхания и синтезе жиров. Больше серы содержат растения из семейства бобовых и капустных (крестоцветных), а также картофель. При недостатке серы образуются мелкие, со светлой желтоватой окраской листья на вытянутых стеблях, ухудшаются рост и развитие растений.

Железо входит в состав окислительно-восстановительных ферментов растений и участвует в синтезе хлорофилла, процессах дыхания и обмена веществ. При недостатке железа вследствие нарушения образования хлорофилла у сельскохозяйственных культур, особенно у плодовых деревьев, развивается хлороз. Листья теряют зеленую окраску, затем бледнеют и преждевременно опадают.

Бор играет большую роль в жизни растений, он необходим для синтеза углеводов, увеличивает образование сахара в сахарной свекле, крахмала в картофеле, волокна в прядильных культурах, усиливает процессы цветения и оплодотворения.

Более требовательны к бору и чувствительны к его недостатку корнеплоды, бобовые культуры, лен, картофель и овощные . У сахарной, кормовой и столовой свеклы дефицит бора вызывает поражение гнилью сердечка и появление дуплистости корнеплодов. Лен при недостатке бора поражается бактериозом (кальциевым хлорозом), что резко снижает выход и качество волокна. При борном голодании бобовых культур нарушается развитие клубеньков на корнях и снижается симбиотическая фиксация азота, замедляется рост и формирование репродуктивных органов. Картофель при недостатке бора поражается паршой, у плодовых деревьев появляется суховершинность, развиваются наружная пятнистость и опробковение тканей плодов. Недостаток бора чаще всего проявляется на известкованных дерново-подзолистых почвах.

Молибден входит в состав фермента нитратредуктазы, с которой связано восстановление в растениях нитратов. Особенно требовательны к наличию молибдена в почве бобовые и овощные культуры, корнеплоды, рапс. Внешние признаки недостатка молибдена сходны с признаками азотного голодания: резко тормозится рост растений, они приобретают бледно-зеленую окраску (листовые пластинки деформируются и листья преждевременно отмирают).

Дефицит молибдена ограничивает развитие клубеньков на корнях бобовых культур, резко снижает урожай и содержание белка в растениях. Недостаток молибдена при больших дозах азота может приводить к накоплению в растениях, особенно в овощных и кормовых, повышенных количеств нитратов, токсичных для человека и животных. Молибден входит также в состав хлоропластов, участвует в биосинтезе нуклеиновых кислот, фотосинтезе, дыхании, образовании пигментов, витаминов и т.д. Растениям не хватает молибдена обычно на кислых почвах, особенно легкого гранулометрического состава.

Марганец входит в состав окислительно-восстановительных ферментов, участвующих в процессах дыхания, фотосинтеза, углеводного и азотного обмена растений. Он играет важную роль в усвоении растениями нитратного и аммонийного азота. Наиболее требовательны к его наличию в доступной форме в почве свекла и другие корнеплоды, картофель, злаковые, черешня, яблоня и малина.

Характерный симптом марганцевого голодания – точечный хлороз листьев. На листовых пластинках между жилками появляются мелкие желтые хлоротичные пятна, затем пораженные участки отмирают. Недостаток марганца чаще всего наблюдается на нейтральных и щелочных, а также на легких почвах.

Медь также входит в состав целого ряда окислительно-восстановительных ферментов и принимает участие в процессах фотосинтеза, углеводного и белкового обмена. Недостаток меди на осушенных торфяных почвах вызывает «болезнь обработки», или «белую чуму», у зерновых культур, что приводит к побелению и засыханию листьев. Пораженные растения совсем или частично не образуют колосьев или метелок, а образовавшиеся соцветия бесплодны либо слабо озернены, что резко снижает урожай зерна, а при остром медном голодании плодоношение полностью отсутствует.

Цинк оказывает многостороннее действие на обмен энергии и веществ в растениях, так как входит в состав ферментов и принимает участие в синтезе ростовых веществ – ауксинов. При недостатке цинка тормозится рост растений, нарушается фотосинтез, синтез углеводов и белков, обмен фенольных соединений. Признаки цинкового голодания: задержка роста междоузлий, хлороз и мелколистность, розеточность.

От недостатка цинка чаще всего страдают плодовые культуры и лен на близких к нейтральным и нейтральных почвах с высоким содержанием фосфора. При сильном поражении ветви плодовых отмирают, что приводит к появлению «суховершинности». При недостатке цинка на известкованных почвах лен может поражаться бактериозом, что резко снижает урожай и качество льнопродукции.

Кобальт – элемент, необходимый для растительных и животных организмов. Он входит в состав витамина В 12 . Кобальт усиливает деятельность клубеньковых бактерий, входит в состав многих ферментов. При недостатке кобальта нарушается обмен веществ у человека: снижается образование гемоглобина, белков, нуклеиновых кислот. При содержании в кормах кобальта менее 0,07 мг/кг сухого вещества животные заболевают акобальтозом.

Наиболее бедны кобальтом дерново-подзолистые почвы легкого гранулометрического состава. После известкования потребность в кобальте возрастает. Низким считается содержание в 1 кг почвы 1,0 мг кобальта, средним – от 1,1 до 2,5, высоким – от 2,6 до 3,0 мг, избыточным – более 3,0 мг.

Относительное содержание азота и зольных элементов в растениях и их органах может колебаться в широких пределах – в зависимости от биологических особенностей культуры и сорта, возраста и условий питания. Содержание азота и фосфора значительно выше в хозяйственно ценной части урожая – зерне, корне- и клубнеплодах, чем в ботве и соломе, калия же больше в соломе и ботве (табл. 2.3).

Культура N P 2 O 5 K 2 O MgO CaO
Пшеница:
зерно 2,50 0,85 0,50 0,15 0,07
солома 0,50 0,20 0,90 0,10 0,18
Горох (семена) 4,50 1,00 1,25 0,13 0,09
Картофель (клубни) 0,32 0,14 0,60 0,06 0,08
Лен:
семена 4,00 1,35 1,00 0,47 0,27
солома 0,62 0,42 0,37 0,20 0,69
Сахарная свекла (корни) 0,24 0,08 0,25 0,05 0,06
Капуста (кочаны) 0,33 0,10 0,35 0,08 0,07
Томаты (плоды) 0,26 0,07 0,32 0,06 0,04
Травы (сено луговое) 0,70 0,70 1,80 0,41 0,95

* Для пшеницы, гороха и трав – % от сухого вещества, для других культур – % от сырой массы.

Капуста, картофель, сахарная свекла для создания высокого урожая потребляют гораздо больше питательных элементов, чем зерновые культуры.

Вынос элементов питания растениями из почвы возрастает с увеличением урожая. Однако прямой пропорциональной зависимости между этими показателями часто не наблюдается. При большем уровне урожайности затраты питательных элементов на формирование единицы продукции обычно снижаются.

В урожае зерновых культур соотношение N, Р 2 О 5 и К 2 О колеблется в сравнительно небольших пределах и составляет 2,5 – 3:1:1,8 – 2,6. В среднем, следовательно, этими культурами азота потребляется в 2,8 раза, а калия в 2,2 раза больше, чем фосфора. Для сахарной свеклы, кормовых корнеплодов, картофеля и капусты характерно гораздо большее потребление калия, чем азота, и соотношение N, Р 2 О 5 и К 2 О может составлять 2,5 – 3,5:1:3,5 – 5.

Наиболее продуктивное использование растениями питательных элементов из почвы и удобрений обеспечивается при благоприятных почвенно-климатических условиях, высоком уровне агротехники. Одновременно достигается минимальное потребление элементов питания на единицу урожая основной сельскохозяйственной продукции. Средние размеры потребления азота, фосфора и калия на формирование товарной продукции основных сельскохозяйственных культур приведены в табл. 2.4.

2.4. Средний вынос азота, фосфора и калия с 10 ц основной и соответствующим количеством побочной продукции, кг

Культуры Вид продукции N P 2 O 5 K 2 O
Озимая пшеница Зерно
Озимая рожь »
Озимая тритикале » 11,5
Ячмень »
Овес »
Гречиха »
Люпин »
Горох »
Лен-долгунец Волокно
Сахарная свекла Корни 1,6 6,5
Кормовая свекла » 3,5 1,1 7,9
Картофель Клубни 5,4 1,6
Кукуруза на силос Зеленая масса 3,3 1,2 4,2
Однолетние бобово-злаковые травы Сено 17,4 5,4 25,9
Многолетние бобово-злаковые травы » 17,3 5,4 25,7
Многолетние злаковые травы » 14,9 4,5 24,1
Многолетние бобовые травы » 21,4 5,1 22,2
Крестоцветные (в среднем) Зеленая масса 4,5 1,4 5,4
Озимый рапс Семена
Яровой рапс »
Просо Зерно

Располагая такими данными применительно к конкретным условиям выращивания, можно рассчитать необходимое количество питательных элементов для получения планируемого урожая или вынос их с урожаем. Последний зависит от биологических особенностей сельскохозяйственных культур, условий их питания, химического состава и структуры урожая.

ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ

2. Какие основные функции выполняет вода в растительных организмах?

3. Охарактеризуйте содержание в растениях и состав растительных белков. Что такое «сырой белок»?

4. Перечислите основные углеводы и укажите их содержание в растениях.

5. Укажите химический состав растительных масел и их содержание в основных масличных культурах.

6. Каков элементарный химический состав сухого вещества растений?

7. Какие элементы называются органогенными и почему? Что такое макро- и микро- и ультрамикроэлементы?

8. Назовите основные органические соединения, в состав которых входит азот, и укажите признаки его недостатка у растений.

9. Какую роль в физиологии растений играют фосфор, калий, кальций, магний, сера? Назовите характерные признаки их недостатка у растений.

10. Перечислите основные функции микроэлементов в растениях и характерные признаки голодания растений при недостатке отдельных микроэлементов.

11. На основании данных о потреблении азота, фосфора и калия на единицу урожая рассчитайте величину выноса с 1 га этих элементов с урожаем зерновых культур при урожайности 20, 30, 40 и 50 ц/га и с урожаем картофеля при урожайности 100, 200, 300 ц/га.

Питание растений

Питание растений – это поглощение и усвоение ими питательных элементов из окружающей среды. Различают воздушное и корневое питание растений.

Воздушное питание – это усвоение зеленым растением углекислого газа из воздуха в процессе фотосинтеза с образованием при участии воды и минеральных соединений органических веществ. Фотосинтез протекает на свету с помощью хлорофилла, содержащегося в листьях. При световой фазе фотосинтеза происходит разложение воды с выделением кислорода, богатого энергией соединения (АТФ) и восстановленных продуктов. Из этих соединений в следующей темновой фазе фотосинтеза образуются углеводы и другие органические соединения из СО 2 .

При образовании в качестве продукта фотосинтеза простых углеводов (гексоз) суммарное уравнение процесса выглядит так: 6СО 2 + 6Н 2 О + 2874 кДж → С 6 Н 12 О 6 + 6О 2 . Путем дальнейших превращений из простых углеводов в растениях образуются более сложные углеводы, а также другие безазотистые органические соединения.

Аминокислоты, белки и другие органические азотсодержащие вещества в растениях синтезируются из минеральных соединений азота, фосфора и серы и промежуточных продуктов обмена (синтеза и разложения) углеводов.

Интенсивность фотосинтеза и накопление сухого вещества зависят от освещения, содержания углекислого газа в воздухе, обеспеченности растений водой и элементами минерального питания.

Корневое питание – это усвоение корнями воды и минеральных элементов – азота и зольных элементов в виде ионов (катионов и анионов), а также незначительных количеств некоторых органических соединений. Так, азот может поглощаться в виде анионов и катионов , фосфор и сера – в виде анионов фосфорной и серной кислот Н 2 РО 4 и , калий, кальций, магний – в виде катионов К + , Са 2+ , Mg 2+ , а микроэлементы – в виде соответствующих катионов или анионов.

Растения усваивают ионы не только из почвенного раствора, но и ионы, поглощенные коллоидами. Более того, растения активно (благодаря растворяющей способности корневых выделений, включающих угольную кислоту, органические кислоты и аминокислоты) воздействуют на твердую фазу почвы, переводя необходимые питательные элементы в доступную форму.

Между воздушным и корневым питанием существует тесная связь: некоторые питательные элементы могут поступать в растение как из почвы, так и из воздуха. Так, небольшое количество углекислого газа поступает в корни из почвы, а серы, азота, бора и других элементов – из водных растворов, при некорневых подкормках – через листья. Для бобовых основным источником азота является воздух.

Корневая система растений и ее поглотительная способность. Корень, прежде всего, является органом, закрепляющим растение в почве. Через него поступают в растение вода и растворенные в ней питательные элементы. В корнях также происходит синтез органических веществ, в частности аминокислот. Корневые системы растений развиты неодинаково и поэтому обладают различной поглотительной способностью. Например, корневая система льна по сравнению с озимой рожью менее развита и у льна слабее способность усваивать питательные элементы из почвы.

Поглощать питательные элементы способна не вся корневая система. По мере старения (опробковения) корней они утрачивают эту способность. Основную массу питательных элементов поглощают молодые растущие участки корня и корневые волоски. Чем больше растущая поверхность корней, тем интенсивнее в растение поступают питательные элементы. Максимального развития корневая система обычно достигает в фазу цветения растений.

95 % сухой массы растительных тканей составляют четыре элемента - С, О, Н, N , называемые органогенами .

5 % прихо­дится на зольные вещества - минеральные элементы, содержание которых обычно определяют в тканях после сжигания органического вещества растений.

Со­держание золы зависит от вида и органа растений, условий вы­ращивания. В семенах содержание золы составляет в среднем 3 % , в корнях и стеблях – 4…5 , в листьях – 5…15 % . Меньше всего золы в мертвых клетках древесины (около 1 %). Как пра­вило, чем богаче почва и чем суше климат, тем больше в расте­ниях содержание зольных элементов.

Растения способны поглощать из окружающей среды практи­чески все элементы периодической системы Д. И. Менделеева. Причем многие элементы накаплива­ются в растениях в значительных количествах и включаются в природный круговорот веществ. Однако для нормальной жизнедеятельности самого растительного организма требуется лишь небольшая группа эле­ментов, называемых питательными .

Питательными веществами называются вещества, необходимые для жизни организма.

Элемент считается необходимым , если его отсутствие не позволяет растению завершить свой жиз­ненный цикл ; недостаток элемента вызывает специфические на­рушения жизнедеятельности растения, предотвращаемые или устраняемые внесением этого элемента; элемент непосредствен­но участвует в процессах превращения веществ и энергии , а не действует на растение косвенно.

Необходимость элементов можно установить только при вы­ращивании растений на искусственных питательных средах - в водных и песчаных культурах. Для этого используют дистиллиро­ванную воду или химически чистый кварцевый песок, химически чистые соли, химически стойкие сосуды и посуду для приготов­ления и хранения растворов.

Точнейшими вегетационными опытами установлено, что к необходимым для высших растений элементам относятся 19 элементов: С (45 %), Н (6,5 %) и О 2 (42 %) (усвояемых в процессе воздушного питания) + 7 (N, P, K, S, Ca, Mg, Fe) + Mn, Cu, Zn, Mo, B, Cl, Na, Si, Co.

Все элементы, в зависимости от их содержания в растениях делят на 3 группы: макроэлементы, микроэлементы и ультромикроэлементы.

Макроэлементы содержатся в количестве от целых до десятых и сотых долей процента: N , Р, S , К, Са, Mg ; микроэлементы - от тысячных до 100-тысячных долей процента: Fe , М n , С u , Zn , В, Мо .

Со необходим бобо­вым для симбиотической фиксации N, Na по­глощается в относительно высоких количествах свеклой и необ­ходим растениям, приспособленным к засоленным почвам), Si в больших количествах встречается в соломе злаков и необходим для риса ,Cl накапливают мхи, хвощи, папоротники.

    1. Макроэлементы, их усвояемые соединения, роль и функциональные нарушения при недостатке в растении

Значение элемента определяется ролью, которую он выполняет самостоятельно или в составе других органических соединений. Не всегда высокое содержание свидетельствует о необходимости того или иного элемента.

Азот (около 1,5 % СМ) вхо­дит в состав белков, нуклеиновых кислот, липоидных компонен­тов мембран, фотосинтетических пигментов, витаминов и др угих жизненно важных соединений.

Основными усвояемыми формами N являются ионы нитрата (NO 3- ) и аммония (NH 4+ ) . Высшие растения способны также усваивать нитриты и водорастворимые N-содержащие органические со­единения (аминокислоты, амиды, полипептиды и др .). В ес­тественных условиях эти соединения редко бывают источником питания, поскольку их содержание в почве, как правило, очень мало.

Недостаток N тормозит рост растений. Одновременно снижается ветвле­ние корней , но соотношение массы корней и надземной системы может увеличиваться . Это приводит к уменьшению площади фотосинтетического аппарата и сокращению периода вегетатив­ного роста (раннее созревание) , что снижает фотосинтетический потенциал и продук­тивность посева .

Недостаток N а вызывает также серьезные нарушения энер­гетического обмена (хуже используют световую энер­гию, так как снижается интенсивность фотосинтеза, раньше на­ступает световое насыщение, а компенсационная точка находит­ся при более высокой интенсивности света, интенсивность дыхания может возрастать , но уменьшаются сопряженность окисления с фосфорилированием ), возрастают энергетические затраты на поддержание структуры цитоплазмы ).

N-ое голодание влияет на водный режим (снижает водоудерживающую способ­ность растительных тканей, так как уменьшает количество кол­лоидносвязанной воды, снижается возможность вне­устьичного регулирования транспирации и возрастает водоотдача ). Поэтому низкий уровень N-ого питания не только снижает урожай, но и уменьшает эффективность использования воды посевом.

Внешние признаки голодания : Бледно-зеленая, желтая окраска листьев, оранжевые, красные тона, высыхание, некрозы, низкорослость и слабое кущение, появляются признаки ксероморфизма (мелколистность) .

Фосфор (0,2-1,2 % СМ). P поглощается и функциони­рует в растении только в окисленной форме - в виде остатков ортофосфорной кислоты (PO 4 3-).

P - обязательный компонент таких важней­ших соединений, как НК, фосфопротеидов, фосфолипидов, P- ных эфиров сахаров, нуклеотидов, прини­мающих участие в энергетическом обмене (АТФ, НАД, ФАД и др.), витаминов.

P- ный обмен сводится к фосфорилированию и трансфосфорилированию. Фосфорилирование - это присоединение остатка P- ной кислоты к какому-либо органическому соединению с образова­нием эфирной связи, например фосфорилирование глюкозы, фруктозо-6-фосфата в гликолизе. Трансфосфорилирование - это процесс, при котором остаток P- ной кислоты переносится от одного органического вещества на другое. Значение образующихся при этом P- органических соедине­ний огромно.

Недостаток P вызывает серьез­ные нарушения синтетических процессов , функционирования мембран , энергетического обмена.

Внешние признаки голодания : сине-зеленая окраска с пурпурным или бронзовым оттенком (задержка синтеза белков и накопление сахаров), мелкие узкие листья, корневая система буреет , слабо развивается, корневые волоски отмирают . Приостанавливается рост растений , задерживается со­зревание плодов.

Сера (0,2-1,0 % СМ). Поступает в растение в окислен­ной форме, в виде аниона SO 4 2- . В органические соединения S входит только в восстанов­ленной форме - в составе сульфгидрильных групп (-SH) и ди­сульфидных связей (-S-S-). Восстановление сульфата происходит преимущественно в листьях . Восстановленная S может вновь переходить в окисленную функционально неактивную форму. В молодых листьях S в основном находится в составе органических соединений, а в старых накапливается в вакуолях в виде сульфата.

S является компонентом важнейших биологических соединений - коэнзима А и витаминов (тиамина, ли­поевой кислоты, биотина), играющих важную роль в дыхании и липидном обмене .

Кофермент А (S образует макроэргическую связь) поставляет ацетильный остаток (СН 3 СО- S - KoA ) в цикл Кребса или для биосинтеза жирных кис­лот, сукцинильный остаток для биосинтеза порфиринов. Липоевая кислота и тиамин входят в состав липотиаминди­фосфата (ЛТДФ), участвующего в окислительном декарбоксили­ровании ПВК и -кетоглютаровой.

Многие виды растений в малых количествах содержат летучие соединения S (сульфоксиды входят в состав фи­тонцидов лука и чеснока). Представители семейства Крестоцвет­ные синтезируют серосодержащие горчичные масла .

S принимает активное участие в многочисленных реакциях обмена веществ. Почти все белки содержат серосодержащие аминокислоты - метионин, цистеин, цистин . Функции S в белках:

    участие HS-групп и -S-S-связей в стаби­лизации трехмерной структуры белков и

    образование связей с коферментами и простетическими группами.

    Сочетание метиль­ной и HS-группы обусловливает широкое участие метионина в образовании АЦ ферментов.

    С этой аминокислоты начинается синтез всех полипептидных цепей.

Другая важнейшая функция S в растительном организме, основанная на обратимом переходе 2(-SH) = -HS-SH- ­состоит в поддержании определенного уровня окислительно­восстановительного потенциала в клетке. К серосодержащим окислительно-восстановительным системам клетки относятся система цистеин = цистин и система глу­татиона (является трипептидом - состоит из глутаминовой, цистина или цистеина и глицина). Его окислительно-восстановительные превращения связаны с переходом -S-S-групп цистина в HS-группы цис­теина.

Недостаток S тормозит белковый синтез, снижает фотосинтез и скорость роста растений , особенно надземной части.

Внешние признаки голодания : побеление, пожелтение листьев (молодых).

Калий (около 1 % СМ). В растительных тканях его гораздо боль­ше, чем других катионов. Содержание K в растениях в 100­-1000 раз превосходит его уровень во внешней среде . K поступает и в растение в виде катиона К + .

K не входит ни в одно органическое соединение . В клетках он присутствует в основном в ионной форме и легко подвижен . В наибольшем количестве K сосредоточен в молодых растущих тканях , характеризую­щихся высоким уровнем обмена веществ.

Функции :

    участие в регуляции вязкости цитоплазмы , в повышении гидратации ее коллоидов и водоудерживающей спо­собности ,

    служит основным противоионом для нейтрали­зации отрицательных зарядов неорганических и органических анионов,

    создает ионную асиммет­рию и разность электрических потенциалов на мембране, т. е. обеспечивает генерацию биотоков в растении

    является активатором многих ферментов , он необходим для включения фосфата в органические соединения, синтеза белков, полисахаридов и рибофлавина - компонента флавиновых дегидрогеназ. K особенно необходим для молодых , активно растущих органов и тканей.

    принимает активное участие в осморегуляции, (открывании и закрывании устьиц) .

    активирует транспорт углеводов в растении. Установлено, что высокий уровень сахара в зре­лых ягодах винограда коррелирует с накоплением значительных количеств K и органических кислот в соке незрелых ягод и с последующим выходом K при созревании. Под влиянием K увеличивается накопление крахмала в клубнях картофеля , сахарозы в сахарной свекле , моносахаридов в плодах и овощах , целлюлозы, гемицеллюлоз и пектиновых веществ в клеточных стенках растений.

    В результате повышается устойчивость злаков к полеганию, к грибным и бактериальным заболеваниям .

При дефиците K снижается функционирование камбия , нарушаются процессы деления и растяжения клеток , развитие сосудистых тканей , уменьшается толщина клеточной стенки, эпидермиса . В результате укорачива­ния междоузлий могут образоваться розеточные формы расте­ний . Снижается продуктивность фотосинтеза (за счет уменьшения оттока ассимилятов из листьев).

Кальций (0,2 % СМ). Поступает в растение в виде иона Са 2+ . На­капливается в старых органах и тканях. При снижении физиоло­гической активности клеток Ca из цитоплазмы перемеща­ется в вакуоль и откладывается в виде нерастворимых соедине­ний щавелевой, лимонной и др. кислот. Это значительно снижает подвижность Ca в растении.

Большое количество Ca связано с пектиновыми веществами клеточной стенки и срединной пластинки.

Роль ионов Са :

    стабилизация структуры мембран , регуляция ионных потоков и участие в биоэлектри­ческих явлениях . Са много содержится в митохондриях, хлоропластах и ядрах , а также в комплексах с био­полимерами пограничных мембран клетки.

    участие в катионообменных процессах в корне (наряду с протоном водорода принимает активное участие в пер­вичных механизмах поступления ионов в клетки корня).

    способст­вует устранению токсичности избыточных концентраций ионов NH 4+ , Al , Mn , Fe , повышает устойчивость к засолению, (ограничивает поступление других ионов),

    снижает кислотность почвы .

    участие в процессах движения цитоплазмы (структур­ная перестройка актомиозиноподобных белков), обратимых изменениях ее вязкости ,

    определяет пространственную организацию цитоплазматических ферментных систем (например, ферментов гликолиза),

    активировании ряда ферментов (дегидрогеназ, амилаз, фосфотаз, киназ, липаз) - определяет четвертичную структуру белка, участвует в создании мостиков в фермент-субстратных комплексах, влияет на состояние аллостерических центров).

    определяет структуру цитоскелета - регулируют процессы сборки-разборки микротрубочек , секреции компонентов клеточной стенки с участием везикул Гольджи.

    Комплекс белка с Ca активирует многие ферментные системы : протеинкиназы, транспортную Са-АТФ-азу, АТФ-азу актомиозина .

Регуляторное действие Са на многие стороны метаболизма связано с функционированием специфи­ческого белка - кальмодулина . Это кислый (ИЭТ 3,0-4,3) термостабильный низкомолекулярный белок. С участием кальмодулина регулирует­ся концентрация внутриклеточного Ca . Комплекс Са-каль­модулин контролирует сборку микротрубочек веретена , образова­ние цитоскелета клетки и формирование клеточной стенки.

При недостатке Ca (на кислых, засоленных почвах и торфяниках) в первую очередь страдают меристе­матические ткани и корневая система. У делящихся клеток не образуются клеточные стенки , в результате возникают много­ядерные клетки . Прекращается образование боковых корней и корневых волосков . Недостаток Ca вызывает также набуха­ние пектиновых веществ , что приводит к ослизнению клеточных стенок и загниванию растительных тканей.

Внешние признаки голодания : корни, листья, участки стебля загнивают и отмирают, кончики и края листьев вначале белеют, затем чернеют, искривляются и скручиваются.

Магний (около 0,2 % СМ). Особенно много Mg в молодых растущих частях растения, а также в генеративных органах и запасающих тканях.

Поступает в растение в виде иона Mg 2+ и, в отличие от Ca, обладает сравнительно высокой подвижностью . Легкая подвижность Mg 2+ объясняется тем, что почти 70 % этого катиона в растениях связано с анионами орга­нических и неорганических кислот .

Роль Mg :

    входит в состав хлорофилла (около 10-12 % Mg ),

    является активатором ряда ферментных систем (РДФ-карбоксилазы, фосфокиназ, АТФ-аз, енолаз, ферментов цикла Кребса, пентозофосфатного пути, спиртового и молочнокислого брожения), ДНК- и РНК-полимеразы.

    активирует процессы транспорта элек­тронов при фотофосфорилировании.

    необходим для фор­мирования рибосом и полисом, для активации аминокислот и синтеза белков.

    участ­вует в образовании определенной пространственной структуры НК.

    усиливает синтез эфирных масел, каучуков.

    предот­вращает окисление аскорбиновой кислотой (образуя комплексное соединение с ней).

Недостаток Mg приводит к наруше­нию P- ного , белкового и углеводного обменов. При магни­евом голодании нарушается формирование пластид : граны сли­паются , разрываются ламеллы стремы .

Внешние признаки голодания : листья по краям имеют желтый, оранжевый, красный цвет (мраморная окраска). Впоследствии развиваются хлороз и некроз лис­тьев. Характерным является полосатость листьев у злаков (хлороз между жилками, которые остаются зелеными).

Железо (0,08 %) . Посту­пает в растение в виде Fe 3+ .

Железо входит в состав ЭТЦ фотосинтетического и окислительного фосфорилирования (цитохромов, ферредокси­на), является компонентом ряда оксидаз (цитохромоксидазы, ка­талазы, пероксидазы). Кроме того, железо является составной частью ферментов, катализирующих синтез предшественников хлорофилла (амино­левулиновой кислоты и протопорфиринов).

Растения могут включать Fe в запасные вещества . Например, в пластидах содержится ­белок ферритин, имеющий железо(до 23 % СМ) в негеминной форме.

Роль Fe связана с его способностью к обратимым окислительно-восста­новительным превращениям (Fe 3+ - Fe 2+) и участию в транспорте электронов.

Поэтому недостаток Fe вызывает глубокий хлороз в развивающихся листьях (могут быть совершенно белыми), и тормозит важней­шие процессы энергообмена - фотосинтез и дыхание .

Кремний () содержится в основном в клеточных стенках.

Его недостаток может задержать рост злаков (кукуруза, овес, ячмень) и двудольных (огурцы, томаты, табак). Недостаток в репродуктивный период вызывает уменьшение количества семян. При недостатке Si нарушается ультраструктура клеточных органелл.

Алюминий () особенно важен для гидрофитов, его накапливают папаратники и чай.

Недостаток вызывает хлороз.

Избыток токсичен (связывает P и приводит к P- ному голоданию).