Схема индукционной печи на транзисторах. Печь индукционная своими руками: схема, сборка

Домашняя индукционная печь справляется с плавкой относительно небольших порций металла. Однако такой горн не нуждается ни в дымоходе, ни в мехах, подкачивающих воздух в зону плавки. А всю конструкцию подобной печи можно разместить на письменном столе. Поэтому разогрев с помощью электрической индукции является оптимальным способом плавки металлов в домашних условиях. И в этой статье мы рассмотрим конструкции и схемы сборки подобных печей.

Как устроена индукционная печь – генератор, индуктор и тигель

В заводских цехах можно встретить канальные индукционные печи для плавки цветных и черных металлов. У этих установок очень высокая мощность, задаваемая внутренним магнитопроводом, который повышает плотность электромагнитного поля и температуру в тигле печи.

Однако канальные конструкции расходуют большие порции энергии и занимают много места, поэтому в домашних условиях и небольших мастерских применяется установка без магнитопровода – тигельная печь для плавки цветного/черного металла. Такую конструкцию можно собрать даже своими руками, ведь тигельная установка состоит из трех основных узлов:

  • Генератора, выдающего переменный ток с высокими частотами, которые необходимы для повышения плотности электромагнитного поля в тигле. Причем, если диаметр тигля можно будет сопоставить с длинной волны частоты переменного тока, то такая конструкция позволит трансформировать в тепловую энергию до 75 процентов электричества, потребляемого установкой.
  • Индуктора – медной спирали, созданной на основе точного просчета не только диаметра и количества витков, но и геометрии проволоки, используемой в этом процессе. Контур индуктора должен быть настроен на усиление мощности в результате возникновения резонанса с генератором, а точнее с частотой питающего тока.
  • Тигля – тугоплавкого контейнера, в котором и происходит вся плавильная работа, инициируемая за счет возникновения в структуре металла вихревых токов. При этом диаметр тигля и прочие габариты этого контейнера определяются строго по характеристикам генератора и индуктора.

Такую печь может собрать любой радиолюбитель. Для этого ему нужно найти правильную схему и запастить материалами и деталями. Перечень всего этого вы сможете найти ниже по тексту.

Из чего собирают печи – подбираем материалы и детали

В основе конструкции самодельной тигельной печи лежит простейший лабораторный инвертор Кухтецкого. Схема этой установки на транзисторах имеет следующий вид:

На основе этого рисунка-схемы вы сможете собрать индукционную печь, используя следующие компоненты:

  • два транзистора – желательно полевого типа и марки IRFZ44V;
  • медный провод диаметром 2 миллиметра;
  • два диода марки UF4001, еще лучше - UF4007;
  • два дроссельных кольца – их можно извлечь из старого блока питания от десктопа;
  • три конденсатора емкостью по 1 мкФ каждый;
  • четыре конденсатора емкостью по 220нФ каждый;
  • один конденсатор с емкостью 470 нФ;
  • один конденсатор с емкостью 330 нФ;
  • один резистор на 1 ватт (или 2 резистора по 0,5 ватта каждый), рассчитанный на сопротивление 470 Ом;
  • медный провод диаметром 1,2 миллиметра.

Кроме того, вам понадобится пара радиаторов – их можно снять со старых материнских плат или кулеров для процессоров, и аккумуляторная батарея емкостью не менее 7200 мАч от старого источника бесперебойного питания на 12 В. Ну а емкость-тигель в данном случае фактически не нужна – в печи будет плавиться прутковый металл, который можно удерживать за холодный торец.

Пошаговая инструкция для сборки – несложные операции

Распечатайте и повесьте над рабочим столом чертеж лабораторного инвертора Кухтецкого. После этого разложите все радиодетали по сортам и маркам и разогрейте паяльник. Закрепите два транзистора на радиаторах. А если вы будете работать с печью дольше 10-15 минут подряд, закрепите на радиаторах кулеры от компьютера, подключив их к рабочему блоку питания. Схема распиновки транзисторов из серии IRFZ44V выглядит следующим образом:

Возьмите медную проволоку на 1,2 миллиметра и намотайте на ее на ферритовые кольца, сделав по 9-10 витков. В итоге у вас получатся дроссели. Расстояние между витками определяется диаметром кольца, исходя из равномерности шага. В принципе все можно сделать "на глаз", варьируя число витков в пределах от 7 до 15 оборотов. Соберите батарею из конденсаторов, соединяя все детали параллельно. В итоге у вас должна получиться батарея на 4,7 мкФ.

Теперь сделайте индуктор из медной 2-миллиметровой проволоки. Диаметр витков в этом случае может равняться диаметру фарфорового тигля или 8-10 сантиметрам. Число витков не должно превышать 7-8 штук. Если в процессе испытаний мощность печи покажется вам недостаточной – переделайте конструкцию индуктора, меняя диаметр и число витков. Поэтому на первых парах контакты индуктора лучше сделать не паянными, а разъемными. Далее соберите все элементы на плате из текстолита, опираясь на чертеж лабораторного инвертора Кухтецкого. И подключите к контактам питания аккумулятор на 7200 мАч. Вот и все.

Индукционная печь может использоваться для плавления небольшого количества металла, разделения и очистки драгоценных металлов, для нагрева металлических изделий с целью их закалки или отпуска.

Кроме того, такие печи предлагается использовать для обогрева жилища. Индукционные печи имеются в продаже, но интересней и дешевле изготовить такую печь своими руками.

Принцип действия индукционной печи основан на разогреве материала с помощью вихревых токов.

Для получения таких токов используется так называемый индуктор, который представляет собой катушку индуктивности, содержащую всего несколько витков толстого провода.

Индуктор питается сети переменного тока 50 Гц (иногда через понижающий трансформатор) или от генератора высокой частоты.

Протекающий по индуктору переменный ток генерирует переменное магнитное поле, которое пронизывает пространство. Если в этом пространстве окажется какой-либо материал, то в нем будут наводиться токи, которые начнут нагревать этот материал. Если этот материал – вода, то у нее будет повышаться температура, а если это металл, то через некоторое время он начнет плавиться.

Индукционные печи бывают двух типов:

  • печи с магнитопроводом;
  • печи без магнитопровода.

Принципиальная разница между двумя этими типами печей состоит в том, что в первом случае индуктор расположен внутри плавящегося металла, а во втором – снаружи. Наличие магнитопровода увеличивает плотность магнитного поля, пронизывающего помещенный в тигель металл, что облегчает его нагревание.

Примером индукционной печи с магнитопроводом является канальная индукционная печь. Схема такой печи включает замкнутый магнитопровод из трансформаторной стали, на котором располагаются первичная обмотка – индуктор и кольцеобразный тигель, в котором располагается материал для плавления. Тигель изготавливается из жаропрочного диэлектрика. Питание такой установки осуществляется от сети переменного тока с частотой 50 Гц или генератора с повышенной частотой 400 Гц.

Такие печи используются для плавления дюраля, цветных металлов или получения высококачественного чугуна.

Большее распространение имеют тигельные печи, не имеющие магнитопровода. Отсутствие в печи магнитопровода приводит к тому, что магнитное поле, создаваемое токами промышленной частоты, сильно рассеивается в окружающем пространстве. И для того, чтобы увеличить плотность магнитного поля в диэлектрическом тигеле с материалом для плавления, необходимо использовать более высокие частоты. При этом считается, что если контур индуктора настроен в резонанс с частотой питающего напряжения, а диаметр тигеля соизмерим с длиной волны резонанса, то в районе тигеля может сконцентрироваться до 75% энергии электромагнитного поля.

Схема изготовления индукционной печи

Как показали исследования, для обеспечения эффективного плавления металлов в тигельной печи желательно, чтобы частота питающего индуктор напряжения превышала резонансную частоту в 2-3 раза. То есть, такая печь работает на второй или третьей частотной гармонике. Кроме того, при работе на таких повышенных частотах происходит лучшее перемешивание сплава, что улучшает его качество. Режим с применением еще больших частот (пятой или шестой гармоники) может использоваться для поверхностной цементации или закалки металла, что связано с появлением скин-эффекта, то есть, вытеснением электромагнитного поля высокой частоты к поверхности заготовки.

Выводы по разделу:

  1. Существуют два варианта индукционной печи – с магнитопроводом и без магнитпровда.
  2. Канальная печь, относящаяся к первому варианту печей, более сложна по конструкции, но может питаться непосредственно от сети 50 Гц или сети повышенной частоты 400 Гц.
  3. Тигельная печь, относящаяся к печам второго типа, более проста по конструкции, но требует для питания индуктора генератора высокой частоты.

Если печь – это отопительный прибор для практических нужд, то камин нужен для декора и уюта. , а также пример порядовки камина с аркой.

О том, как правильно опдойти к выбору электрического котла отопления, читайте .

А здесь вы узнаете, как работает автоматика для газовых котлов отопления. Котлы по способу инсталляции и разновидности энергозависимых систем.

Конструкции и параметры индукционных печей

Канальная

Одним из вариантов изготовления индукционной печи своими руками является канальная.

Для ее изготовления можно использовать обычный сварочный трансформатор, работающий на частоте 50 Гц.

В этом случае вторичную обмотку трансформатора надо заменить кольцевым тигелем.

В такой печи можно плавить до 300-400 г цветных металлов, а потреблять она будет 2-3 кВт мощности. Такая печь будет иметь большой кпд и позволит выплавлять металл высокого качества.

Основной трудностью изготовления канальной индукционной печи своими руками является приобретение подходящего тигеля.

Для изготовления тигеля должен использоваться материал с высокими диэлектрическими свойствами и высокой прочности. Такой как электрофарфор. Но такой материал не просто найти, а еще трудней обработать в домашних условиях.

Тигельная

Важнейшими элементами тигельной печи индукционного типа являются:

  • индуктор;
  • генератор напряжения питания.

В качестве индуктора для тигельных печей мощностью до 3 кВт можно использовать медную трубку или провод диаметром 10 мм или медную шину сечением 10 мм². Диаметр индуктора может составлять около 100 мм. Число витков от 8 до 10.

При этом существует много модификаций индуктора. Например, его можно выполнить в виде восьмерки, трилистника или иной формы.

В процессе работы индуктор обычно сильно нагревается. В промышленных образцах для индуктора используется водяное охлаждение витков.

В домашних условиях использование такого метода затруднительно, однако индуктор может нормально работать в течение 20-30 минут, что вполне достаточно для домашних работ.

Однако такой режим работы индуктора вызывает появление на его поверхности окалины, что резко уменьшает кпд печи. Поэтому время от времени индуктор приходится заменять на новый. Некоторые специалисты для защиты от перегрева предлагают покрывать индуктор жаропрочным материалом.

Генератор переменного тока высокой частоты – другой важнейший элемент тигельной печи индукционного типа. Можно рассмотреть несколько типов таких генераторов:

  • генератор на транзисторе;
  • генератор на тиристоре;
  • генератор на МОП- транзисторах.

Простейшим генератором переменного тока для питания индуктора является генератор с самовозбуждением, схема которого имеет один транзистор типа КТ825, два резистора и катушку обратной связи. Такой генератор может вырабатывать мощность до 300 Вт, а регулировка мощности генератора осуществляется путем изменения постоянного напряжения источника питания. Источник питания должен обеспечивать ток до 25 А.

Предлагаемый для тигельной печи генератор на тиристоре включает в схему тиристор типа Т122-10-12, динистор КН102Е, ряд диодов и импульсный трансформатор. Тиристор работает в импульсном режиме.

Индукционная печь самостоятельного изготовления

Такие сверхвысокочастотные излучения могут негативно повлиять на здоровье человека. В соответствии с российскими нормами безопасности с высокочастотными колебаниями разрешается работать при плотности потока электромагнитной энергии не более 1-30 мВт/м². Для данного генератора, как показали расчеты, это излучение на расстоянии в 2,5 м от источника достигает 1,5 Вт/м². Такая величина является неприемлемой.

Схема генератора на МОП-транзисторах включает четыре МОП-транзистора типа IRF520 и IRFP450 и представляет собой двухтактный генератор с независимым возбуждением и индуктором, включенным в мостовую схему. В качестве задающего генератора используется микросхема типа IR2153. Для охлаждения транзисторов требуется радиатор не менее 400 см² и воздушный обдув.
Этот генератор может обеспечивать мощность питания до 1 кВт и менять частоту колебаний в пределах от 10 кГц до 10 МГц. Благодаря этому печь, использующая генератор такого типа, может работать как в режиме плавления, так и поверхностного нагрева.

Печь длительного горения может работать на одной закладке от 10 до 20 часов. При изготовлении нужно учитывать особенности конструкции, чтобы она выдавала максимум тепла при минимальных затратах энергии. О том, как правильно собрать печь, читайте на нашем сайте.

Возможно, вам будет интересно узнать о газовых обогревателях для гаража. Каким он должен быть, чтобы обеспечивалось тепло и безопасность, читайте в материале.

Использование для обогрева

Для обогрева жилища печи такого типа, как правило, используются вместе с водогрейным котлом.

Одним из вариантов самодельного водогрейного котла индукционного типа является конструкция, нагревающая трубу с протечной водой с помощью индуктора, получающего питание от сети с помощью ВЧ сварочного инвертора.

Однако, как показывает анализ таких систем, из-за больших потерь энергии электромагнитного поля в диэлектрической трубе кпд подобных систем крайне низок. Кроме того, для обогрева жилища требуется очень большое количество электроэнергии, что делает такой обогрев экономически невыгодным.

Из данного раздела можно сделать выводы:

  1. Наиболее приемлемым вариантом изготовленной своими руками индукционной печи является тигельный вариант с генератором питания на МОП-транзисторах.
  2. Использование изготовленной своими руками индукционной печи для обогрева дома невыгодно экономически. В этом случае лучше приобрести заводскую систему.

Особенности эксплуатации

Важным вопросом использования печи индукционного типа является безопасность.

Как уже говорилось выше, в печах тигельного типа используются источники питания высокой частоты.

Поэтому при эксплуатации индукционной печи индуктор необходимо располагать вертикально, перед включением печи на индуктор надо надевать заземленный экран. При включенной печи необходимо наблюдать за происходящими в тигле процессами на расстоянии, а после выполнения работ немедленно выключать ее.

При эксплуатации изготовленной своими руками индукционной печи необходимо:

  1. Принимать меры для защиты пользователя печью от возможного высокочастотного излучения.
  2. Учитывать возможность ожога индуктором.

При работе с печью необходимо учитывать и термическую опасность. Касание горячим индуктором кожи может вызвать сильный ожог.

Для плавки металла в малых масштабах бывает необходимо какое то приспособление. Особенно это остро ощущается в мастерской или при малом производстве. Максимально эффективным на сегодняшний момент является печь для плавки металла с электрическим нагревателем, а именно индукционная. Ввиду особенности ее строения, она может эффективно использоваться в кузнечном деле и стать не заменимым инструментом в кузнице.

Устройство индукционной печи

Печь состоит из 3 элементов:

  1. 1. Электронно-электрическая часть.
  2. 2. Индуктор и тигель.
  3. 3. система охаждения индуктора.

Для того чтобы собрать действующую печь для плавки металла достаточно собрать рабочую электрическую схему и систему охлаждения индуктора. Самый простой вариант плавки металла приведен в видео ниже. Плавка производится во встречном электромагнитном поле индуктора, которое взаимодействует с наводимыми электро-вихревыми токами в металле, что удерживает кусочек алюминия в пространстве индуктора.

Для того чтобы эффективно плавить металл, необходимы токи большой величины и высокой частоты порядка 400-600 Гц. Напряжение из обычной домашней розетки 220В обладает достаточными данными для плавления металлов. Необходимо только 50 Гц превратить в 400-600 Гц.
Для этого подойдет любая схема для создания катушки Тесла.

Жестянки и прочий лом – на вторсырье! Как сделать печь для плавки алюминия своими руками

Мне наиболее приглянулись 2 следующих схем на лампе ГУ 80, ГУ 81(М). И запитывание лампы трансформатором МОТ от микроволновки.

Данные схемы предназначены для катушки тесла, но индукционная печь из них получается отменная, достаточно заместо вторичной катушки L2 поместить во внутреннее пространство первичной обмотки L1 кусочек железа.

Первичная катушка L1 или индуктор состоит из свернутой в 5-6 витков медной трубки, на торцах которой нарезается резьба, для подсоединения системы охлаждения. Для левитационной плавки последний виток следует сделать в обратном направлении.
Конденсатор С2 на первой схеме и идентичный ему на второй задаёт частоту генератора. При значении в 1000 пикоФарад частота составляет около 400 кГц. Этот конденсатор обязательно должен быть высокочастотным керамическим и расчитанным под высокое напряжение порядка 10 кВ (КВИ-2, КВИ-3, К15У-1), другие типы не подходят! Лучше ставить К15У. Можно подсоединять конденсаторы параллельно. Также стоит учитывать мощность на которую расчитаны конденсаторы (это у них на писано на корпусе), берите с запасом. другие два конденсатора КВИ-3 и КВИ-2 греются при длительной работе. Все остальные конденсаторы берутся тоже из серии КВИ-2, КВИ-3, К15У-1, изменяются в характеристиках конденсаторов только емкость.
Вот в итоге схематично, что должно получиться. В рамки обвел 3 блока.

Система охлаждения выполнена из насоса с подачей 60л/мин, радиатор от любой вазовской машины, и вентилятор охлождения я поставил напротив радиатора обычный домашний.

Будь первым, оставь комментарий

Мастера своего дела: производим плавильную печь

Плавильная печь - это большое или портативное сооружение, в котором можно расплавить некоторое количество цветного металла. Широко известна индукционная плавильная печь. В производственных условиях для плавки металла в больших количествах устанавливаются в специальных помещениях индукционные плавильные печи значительных размеров. Они плавят металл, из которого отливают множество деталей для мотоциклов, автомашин, тракторов. Чтобы расплавить до 5 кг алюминия. можно построить собственные индукционные плавильные печи, установки на твердом топливе, газовые. Все они работают прекрасно. Как и из чего можно сделать домашнюю плавилку?

Строим самостоятельно печь для плавки

Установка для плавки металла (рис. 1) собирается из кирпича. Он должен быть огнеупорным. В качестве связующего состава используется шамотная глина. Для топки устройства углем нужен принудительный наддув. Для него в нижней половине агрегата необходимо оставлять специальный канал для доступа воздуха. Под этим каналом размещается колосник. Это специальная чугунная решетка, на которой выкладывается уголь или кокс. Колосник можно использовать от старой печки или приобрести на рынке, в магазине стройхозтоваров. Для прочности некоторые обваривают готовое сооружение металлическим поясом. Кирпич можно класть на ребро.

Печь для плавки не может обойтись без тигля. Вместо него можно использовать чугунный казанок. Его можно поискать в хозяйстве. Хорошо, если он окажется эмалированным. Тигель устанавливается ближе к горящему коксу. Осталось в качестве принудительного поддува поставить вентилятор, зажечь кокс и начать плавку. Печь своими руками готова. Ее можно использовать для плавки чугуна, меди, бронзы, алюминия.

Сооружение настольной печи

Из простых материалов можно соорудить газовые или электрические устройства, которые вполне вмещаются на столе или на верстаке. Для работы потребуются:

Асбест в последние годы запрещен к домашнему использованию, поэтому его можно заменить плиткой из кафеля или цемента. Размеры зависят от желания хозяина. Большую роль здесь играет мощность электрической сети и выходное напряжение трансформатора. На электроды достаточно подавать напряжение в 25 В. Для промышленного трансформатора, применяющегося на сварных работах, это напряжение обычно равно 50-60 В. В этом случае расстояние между электродами нужно увеличить. Многое делается опытным путем. В результате плавка 60-80 г металла является хорошим результатом.

Электроды лучше сделать из щеток от довольно мощного электрического мотора. У них очень удобный токоподводящий провод. Можно их выточить самостоятельно. Больших проблем с поиском материала быть не должно. В самодельном изделии нужно высверлить сбоку отверстия диаметром 5-6 мм, в них вставить медный многожильный провод, имеющий толщину около 5 мм, забить аккуратно гвоздь для закрепления провода. Останется сделать насечку напильником, она поможет улучшить контакт с графитом в виде порошка. Внутри печь выкладывается слюдой. Это отличный теплоизолятор. Снаружи стенки печи укрепляются плиткой.

Для питания печи можно взять трансформатор, который понижает сетевое напряжение до 52 В. Сетевую обмотку мотают 620 витками провода Ø1 мм. Понижающая обмотка намотана проводом 4,2х2,8 мм, имеющим стекловолоконную изоляцию. Количество витков #8212; 70. Печь к трансформатору подключена проводами сечением 7-8 мм² в хорошей изоляции. Готовую установку нужно включить на некоторое время, чтобы выгорели все органические включения. Печь своими руками собрана.

  • с помощью совочка или лопатки насыпают графит и делают в нем лунку;
  • в лунку закладывают заготовку материала;
  • драгоценные металлы нужно поместить в ампулу из стекла;
  • олово и алюминий закладывают в отдельную чашечку из железа;
  • для сплавов сначала плавят тугоплавкий, затем легкоплавкий металл.

Нельзя в таких печах плавить магний, цинк, кадмий, контакты из серебра.

Кадмий при плавке выгорает с образованием ядовитого дыма желтого цвета.

При работе с установкой нужно соблюдать технику безопасности:

  1. Нельзя допускать коротких замыканий в проводах.
  2. Выключатель сети должен находиться рядом с оператором.
  3. Нельзя оставлять устройство без присмотра во время работы.
  4. Рядом обязательно находится емкость, в которую налита вода, в которой остужаются заготовки.
  5. Для плавки чугуна и других металлов необходимо использовать защитные очки и рукавицы.

При желании можно сделать установки газовые. Они хорошо подойдут для плавки небольших партий цветного металла. Индукционные печи для плавки способны плавить любые металлы. Их можно применять как обычные установки для работы с цветными и драгоценными металлами, как плавильно раздаточные печи на производстве. Они подходят для различных нужд: для нагрева металлов, для изготовления сплавов нескольких металлов, для плавки чугуна.

Расплавить небольшой кусок железа можно в самостоятельно собранной индукционной печи. Это самое эффективное устройство, которое работает от домашней розетки 220В. Печь пригодится в гараже или мастерской, где она может размещаться просто на рабочем столе. Нет смысла покупать ее, так как индукционная печь своими руками собирается за пару часов, если человек умеет читать электрические схемы. Без схемы обходиться нежелательно, ведь она дает полное представление об устройстве и позволяет избежать ошибок при подключении.

Схема индукционной печи

Параметры индукционной печи

Комментариев пока нет!

Как правильно собрать индукционную печь?

В помощь ремонтнику

Вашему обзору предлагаем для самостоятельного ремонта электрические схемы электроплит!

Представлены плиты российского и импортные производства, которые не меняются годами.
Для увеличения просмотра нажмите на рисунок.

Основные элементы и узлы плиты: ТЭН Е1 (в первой конфорке), Е2 (во второй конфорке), Е3-Е5 (в жарочном шкафу), коммутационный узел, состоящий из переключателей S1-S4, тепловое реле F типа Т-300, индикаторы HL1 и HL (газоразрядные для индикации работы ТЭНа), HL3 (накального типа для подсветки жарочного шкафа). Мощность каждого ТЭН составляет порядка 1кВт

Для регулировки мощности и степени нагрева ТЭН жарочного шкафа используется 4-х позиционный переключатель S1. При установке его ручки в первое положение замкнутся контакты Р1-2 и Р2-3. При этом к сети с помощью штепсельной вилки будут подключены: ТЭН Е3 последовательно с параллельно соединёнными ТЭН Е2 и Е3.Ток будет проходить по пути: нижний контакт вилки ХР, F, Р1-2, Е4 и Е5, Е3, Р2-3, верхний контакт штепсельной вилки ХР. Поскольку ТЭН Е3 подключен к ТЭН Е4 и Е5 последовательно, то 38 сопротивление цепи будет максимальным, а мощность и степень нагрева минимальными. Кроме того, будет светиться неоновый индикатор НL1 за счёт прохождения тока по цепи: нижний контакт вилки ХР, F, Р1-2, Е4 и Е5, R1, HL1, верхний контакт ХР.

Подключение узлов Мечта 8:

Во втором положении включаются контакты Р1-1, Р2-3. В этом случае ток пойдёт по цепи: нижний контакт вилки ХР, F, Р1-1,Е3, Р2-3, верхний контакт ХР. В этой ситуации будет работать только один ТЭН Е3 и мощность будет больше за счёт уменьшения общего сопротивления при неизменном сетевом напряжении 220В.

В третьем положении переключателя S1 замкнутся контакты Р1-1, Р2-2, что приведёт к подключению к сети только параллельно соединённых ТЭН Е4 и Е5. Выключатель S4 используется для включения лампы HL3 подсветки жарочного шкафа.

5.Электра 1002

Н1, Н2 — конфорки трубчатые, Н3 — конфорка чугунная 200мм, Н4 — конфорка чугунная 145мм, Р1, Р2-бесступенчатые регуляторы мощности, П3, П4-семипозиционные переключатели мощности, ПШ — трехступенчатый переключатель жарочного шкафа, П5-блокирующий переключатель, Л1….Л4 — сигнальные лампы включения конфорок, Л5- сигнальная лампа включения нагревателей жарочного шкафа или гриля, Л6- сигнальная лампа достижения заданной температуры в жарочном шкафу, Н5,Н6 — нагреватели жарочного шкафа, Н7- гриль, Т -терморегулятор, В- выключатель клавишный, Л7 – лампа освещения жарочного шкафа, М- моторедуктор.

6.ПЕРЕКЛЮЧАТЕЛИ КОНФОРОК Горение, Нansa, Электра, Лысьва:

  • Нюансы ремонта электрических панелей Бош Самсунг Электролюкс
  • Замена конфорки плиты своими руками
  • Оглавление:

    1. Принцип работы
    2. Параметры индукционной печи
    3. Особенности эксплуатации индуктора

    Расплавить небольшой кусок железа можно в самостоятельно собранной индукционной печи.

    Как сделать тигель или плавильную печь своими руками

    Это самое эффективное устройство, которое работает от домашней розетки 220В. Печь пригодится в гараже или мастерской, где она может размещаться просто на рабочем столе. Нет смысла покупать ее, так как индукционная печь своими руками собирается за пару часов, если человек умеет читать электрические схемы. Без схемы обходиться нежелательно, ведь она дает полное представление об устройстве и позволяет избежать ошибок при подключении.

    Принцип работы индукционной печи

    Самодельная индукционная печь для плавки небольшого количества металла не требует больших габаритов и такого сложного устройства, как промышленные агрегаты. Ее работа основана на выработке тока переменным магнитным полем. Металл расплавляется в специальной заготовке, называемой тигелем и помещаемой в индуктор. Он представляет собой спираль с небольшим количеством витков из проводника, например, медной трубки. Если устройство используется в течение короткого времени, проводник не будет перегреваться. В таких случаях достаточно использовать медную проволоку.

    Специальный генератор запускает в эту спираль (индуктор) мощные токи, а вокруг нее создается электромагнитное поле. Это поле в тигле и в помещенном в него металле создает вихревые токи. Именно они разогревают тигель и расплавляют металл за счет того, что он поглощает их. Следует отметить, что процессы происходят очень быстро, если использовать тигель из неметалла, например, шамота, графита, кварцита. Самодельная печь для плавки предусматривает выемную конструкцию тигеля, то есть, в него помещают металл, а после нагрева или плавки его вытаскивают из индуктора.

    Схема индукционной печи

    Генератор высокой частоты собирают из 4-х электронных ламп (тетродов), которые соединяются между собой параллельно. Скорость нагрева индуктора регулируется конденсатором переменной емкости. Его ручка выводится наружу и позволяет регулировать емкость конденсатора. Максимальное значение обеспечит нагрев куска металла в катушке всего за несколько секунд до красного состояния.

    Параметры индукционной печи

    Эффективная работа данного устройства зависит от следующих параметров:

    • мощность и частота генератора,
    • количество потерь в вихревых токах,
    • скорость потерь тепла и количество этих потерь в окружающий воздух.

    Как подобрать составляющие детали схемы, чтобы получить для плавки в мастерской достаточные условия? Частота генератора задана заранее: она должна составить 27,12 МГц, если устройство собирают своими руками для использования в домашней мастерской. Катушку делают из тонкой медной трубки или провода, ПЭВ 0,8. Достаточно сделать не более 10 витков.

    Электронные лампы следует использовать большой мощности, например, марки 6п3с. Также схема предусматривает установку дополнительной неоновой лампы. Она будет служить индикатором готовности устройства. Схема также предусматривает применение керамических конденсаторов (от 1500В) и дросселей. Подключение к домашней розетке осуществляется через выпрямитель.

    Внешне самодельная индукционная печь выглядит так: к небольшой подставке на ножках прикрепляется генератор со всеми деталями схемы. К нему подключается индуктор (спираль). Следует отметить, что данный вариант сборки самодельного устройства для плавки применим для работы с небольшим объемом металла. Индуктор в виде спирали изготавливается проще всего, поэтому для самодельного устройства он используется именно в таком виде.

    Особенности эксплуатации индуктора

    Однако существует много разных модификаций индуктора. Например, он может изготавливаться в форме восьмерки, трилистника или иметь любую другую форму. Она должна быть удобной для размещения материала для термообработки. Например, плоскую поверхность легче всего нагреть виткам, расположенными в виде змейки.

    Кроме этого ему свойственно прожигаться, и чтобы продлить время службы индуктора, его можно изолировать жаропрочным материалом. Используют, например, заливку огнеупорной смесью. Следует отметить, что данное устройство не ограничивается лишь медным материалом провода. Также можно применить стальной провод или из михрома. При работе с индукционной печью следует учесть ее термическую опасность. При случайном касании кожа получает сильный ожог.

    Мастер Куделя © 2013 Копирование материалов сайта разрешено только с указанием автора и прямой ссылки на сайт-источник

    Самодельная плавильная тигельная электрическая печь.

    EN

    Итак, печь для плавки металла. Тут я сильно не изобретал ничего, а простопостарался изготовить девайс, по возможности из готовых комплектующих и по возможности не дав слабину в процессе изготовления.
    У печи верхнюю часть назовём плавилкой, нижнюю- блок управления.
    Пусть вас не пугает белый ящик справа- это, в общем, обычный трансформатор.
    Основные параметры печи:
    — мощность печи- 1000 вт
    — объём тигля- 62 см3
    — максимальная температура- 1200 грС

    Плавилка

    Так как моей задачей было не тратить время на эксперименты с корундо- фосфатными связками, а сэкономить время, применив готовые комплектующие, я использовал готовый нагреватель фирмы ЯСАМ, а также работающий с ним в паре керамический муфель.

    Нагреватель: фехраль, диаметр проволоки 1,5 мм, к выводам приварены стержни диаметром 3 мм. Сопротивление 5 ом. Наличие муфеля обязательно, поскольку внутри нагревателя провода голые. Размер нагревателя Ф60/50х124 мм. Размеры муфеля Ф54,5/34х130 мм. В днище муфеля делаем отверстие для стержня лифта.
    Корпус плавилки сделан из стандартной нерж. трубы 220/200, проточенной до приемлемой толщины стенки. Высота тоже взята не просто так. Так как футеровкой у нас будет шамотный кирпич, высота взята с учётом трёх толщин кирпича. Самое время выложить сборочный чертёж. Чтобы не загромождать страницу, не буду здесь публиковать, а дам ссылки: Часть1, Часть2.
    На первом чертеже не показана шайба из шамотного легковеса, на которой стоит тигель, высота шайбы зависит от используемого тигля. По центру шайбы отверстие для стержня. Стержень заострён и в нижнем положении не достаёт до тигля.
    Как я уже писал, футеровка печи сделана из шамотного легковесного кирпича ШЛ 0,4 или ШЛ 0,6 типоразмера №5. Его размеры 230х115х65 мм. Кирпич легко обрабатывается пилами и наждачкой. Пилы, правда, на долго не хватит 🙂 Обработка шамотного кирпича. Справа- исходный кирпич 🙂
    Прямолинейные разрезы- ножовка по дереву, для криволинейных разрезов- самодельная пила из ножовочного полотна с крупными зубами, с уменьшенной (сточенной) шириной полотна.

    При изготовлении футеровки следует соблюдать простые правила:
    — не использовать никакого мертеля для скрепления частей. Всё всухую. Всё равно порвёт
    — части футеровки не должны никуда упираться. Должна быть слабина, зазоры
    — крупные части футеровки, если будете делать из другого материала, лучше делить на не крупные части. Всё равно расколет. Поэтому, лучше это сделаете вы.

    Для термопары в третьем слое делаем отверстие, а во втором и первом слое делаем зазор между нагревателем и футеровкой. Зазор такой, что термопара впритирку просовывается, как можно ближе к нагревателю. Можно воспользоваться покупной термопарой там же в ЯСАМе, но я пользуюсь самодельными. Не то, чтобы денег жалко (хотя они там достаточно дорогие), просто я принципиально оставляю голый спай для лучшего теплового контакта. Хотя есть риск спалить входные цепи регулятора.

    Блок управления

    В блоке управления нижняя и верхняя крышки снабжены решётками для охлаждения выводов нагревателя. Всё таки диаметр выводов 3 мм. К тому же излучение тепла через днище плавилки тоже присутствует. Регулятор охлаждать не надо- 10 ватт всего. Заодно охладим и холодные концы термопары. Блок управления с регулятором температуры Термодат-10К2. Вверху справа- тумблер включения. Вверху слева- рычаг лифта тигля со стержнем лифта(нерж. электрод Ф3мм).

    Почему я выбрал в качестве регулятора именно Термодат. Имел дело с Овен, но после одной зимы в неотапливаемом помещении, у него слетела прошивка. Термодат выдержал уже несколько зим и сохранил не только прошивку, но и настройки.

    Тигельная печь: варианты конструкции, изготовление своими руками

    К тому же корпус металлический, неубиваемый. (Надо бы хоть пузырь с пермяков взять, за рекламу 🙂
    К тому же у них же можно взять и силовой элемент- Блок Управления Симистором БУС1-В01. Этот блок заточен на работу именно с Термодатами.
    Инструкция на Термодат-10К2- вот.

    Схема электрическая печи. Жирной линией показаны сильноточные цепи. В них используется провод не менее 6 мм2.

    Про трансформатор расскажу потом. Сейчас про блок управления. Включается тумблером Т1, защищён предохранителем на 0,25 А. К тому же для питания регулятора предусмотрен сетевой фильтр, который находится в корпусе трансформатора. В качестве силового элемента применяется симистор ТС142-80 (1420 вольт, 80 ампер, выписывал в ЧИП и ДИП). Симистор посадил на радиатор, но как показала практика, он почти не греется. Не забудьте изолировать симистор от корпуса. Или слюдой, или керамикой. Или сам симистор, или в сборе с радиатором.


    На фото за Термодатом расположен блок питания вентилятора. Я потом его добавил для вентилятора, который разместил на нижней решётке. Блок питания простейший- транс, мост и конденсатор, 12 вольт выдаёт. Вентилятор от компа.
    Вывод нагревателя. Через решётку вывод в керамической трубочке. Для соединения с клеммой применил просверленный поперёк болт.
    Ввод термопары в блок управления. Если у вас нет такой керамической трубочки, отслюнявте нужную сумму в ЯСАМ.

    Обратите внимание- монтаж сделан обычным монтажным проводом, сильноточные цепи- многожильным не менее 6 мм2, термопарные концы- непосредственно в клеммник. БУС в заводском виде не влезает, пришлось снять крышку- (а кому сейчас легко? ;). Остальное видно на фото.

    Трансформатор.

    Несмотря на такой грозный вид, это устройство представляет собой обычный трансформатор на 1 кВт. Просто он до этого поменял несколько профессий (графитовая плавилка, сварочник и т. д.) и обзавёлся корпусом, автоматом для включения, индикатором потребляемого из сети тока и другими замечательными вещами.


    Конечно, вам не обязательно всё это городить, достаточно простого киловаттного транса под столом. Основой всего служит трансформатор из ш- образного железа. Я, в зависимости от потребности, перематываю его не разбирая и не меняя первички.
    Для чего вообще нужен трансформатор. Дело в том, что для того, чтобы нагреватель проработал какое-то приемлемое количество времени, диаметр провода должен быть как можно толще. Проанализировав эту таблицу, можно сделать неутешительный вывод- провод должен быть как можно толще. А это уже не 220 вольт.

    Поэтому вы не встретите в серьёзных девайсах нагревателей, рассчитанных на 220 вольт. На прямую если подцепить этот нагреватель к сети, то потребляемая мощность получится в районе 9 кВт. Вы посадите сеть во всём доме, да и для нагревателя такой удар будет фатальным. Поэтому и применяют схемы, ограничивающие напряжение. Для меня наиболее удобным является использовать трансформатор.
    Итак, первичка: — 1,1 Вольт на виток
    — Ток холостого хода 450 мА
    Вторичка: -для нагрузки 5 ом и мощности 1000 Вт, напряжение составит 70 Вольт
    — ток вторички 14 А, провод 6 мм2, длина провода 28 м.
    Конечно, и этот нагреватель не вечен. Но я могу заменить его, найдя подходящий провод и быстро перемотав вторичку.
    Если вы прочитали инструкцию на Термодат, то там есть возможность ограничения максимальной мощности. Но это нам не подойдёт, потому что речь идёт о средней мощности на нагреватель. В режиме распределённых импульсов, как у нас, импульсы будут на все 9 кВт и мы рискуем получить свистопляску со светомузыкой. И на соседей тоже, потому что автоматы в подъезде тоже рассчитаны на среднюю мощность.

    Для тех, кто не любит долго читать инструкции, я выкладываю шпаргалку с коэффициентами и настройками под конкретную печь. После настройки Термодата, включаем транс и вперёд.
    Индикатор потребляемого из сети тока из-за инерционности стрелки показывает тоже среднюю мощность. Пока нагреватель холодный, ток будет ближе к 5 ампер, по мере прогревания несколько ниже (из-за увеличения сопротивления нагревателя). По мере приближения к уставке, упадёт почти до нуля (работа ПИД регулятора).

    Загружаем полный тигель бронзовым ломом, закрываем крышку. Крышка изнутри футерована шамотным легковесом на мертеле для каминов и печей. Для особо любопытных (я и сам такой), в крышке сделано окошко, затянутое слюдой.

    Температура за 1000, а поверхность плавилки ещё не нагрелась. Это говорит о качестве футеровки. Через 30- 40 минут содержимое тигля расплавилось.
    После окончания плавки нажимаем рычаг лифта, после чего уже можем подхватить тигель захватом. На фото видна выемка в верхней части тигля как раз для надёжного захвата.

    P.S. Насчёт тиглей. ЯСАМ комплектует свои печи графитовыми тиглями, работающими с этими нагревателями. Если вы работаете с золотом и серебром, есть смысл их покупать. Но я против этих буржуазных излишеств. Дело в том, что нержавеющая труба Ф32/28 чудесным образом совпадает с диаметром графитового тигля. Вывод сделаете сами 😉

    Изолируем выводы нагревателя от корпуса керамическими трубочками. Керамические трубочки- от предохранителей, можно от резисторов.

    Верхний ряд кирпичей заподлицо с краем корпуса. Не забываем отверстие для стержня лифта.

    Третий слой футеровки. В этом слое делаем отверстия для выводов нагревателя и для термопары (на фото).

    Второй слой футеровки. Пропил для верхнего вывода нагревателя.

    В индукционных печах металл нагревается токами, возбуждаемыми в непеременным полем индуктора. По существу индукционные печи также являются печами сопротивления, но отличаются от них способом передачи энергии нагреваемому металлу. В отличие от печей сопротивления электрическая энергия в индукционных печах превращается сначала в электромагнитную, затем снова в электрическую и, наконец, в тепловую.

    При индукционном нагреве тепло выделяется непосредственно в нагреваемом металле, поэтому использование тепла оказывается наиболее полным. С этой точки зрения эти печи - наиболее совершенный тип электрических печей.

    Индукционные печи бывают двух типов: с сердечником и без сердечника тигельные. В печах с сердечником металл находится в кольцевом желобе вокруг индуктора, внутри которого проходит сердечник. В тигельных печах внутри индуктора располагается тигель с металлом. Применить замкнутый сердечник в этом случае невозможно.

    В силу ряда электродинамических эффектов, возникающих в кольце металла вокруг индуктора, удельная мощность канальных печей ограничивается определенными пределами. Поэтому эти печи используют преимущественно для плавления легкоплавких цветных металлов и лишь в отдельных случаях применяют для расплавления и перегрева чугуна в литейных цехах.

    Удельная мощность индукционных тигельных печей может быть достаточно высока, а силы, возникающие в результате взаимодействия магнитных печей металла и индуктора, оказывают в этих печах положительное воздействие на процесс, способствуя перемешиванию металла.

    Как собрать индукционную печь – схемы и инструкции

    Бессердечниковые индукционные печи применяют для выплавки специальных, особенно низкоуглеродистых сталей и сплавов на основе никеля, хрома, железа, кобальта.

    Важным достоинством тигельных печей являются простота конструкции и малые габариты. Благодаря этому они могут быть полностью помещены в вакуумную камеру и в ней возможно по ходу плавки обрабатывать металл вакуумом. Как вакуумные сталеплавильные агрегаты индукционные тигельные печи получают все более широкое распространение в металлургии качественных сталей.


    Рисунок 3. Схематическое изображение индукционной канальной печи (а) и трансформатора (б)

    Индукционные печи. Технология плавки в индукционных печах

    ИНДУКЦИОННЫЕ ТИГЕЛЬНЫЕ ПЕЧИ.

    В этих печах выплавляют сплавы чёрных и цветных металлов и чистые Ме (чугун, сталь, бронза, латунь, медь, алюминий). По частоте тока : 1) Печи промышленной частоты 50 Гц. 2) Средней частоты до 600 Гц. (до 2400 Гц также входят). 3) Высокой частоты до 18000 Гц.

    Часто инд. печи работают в паре (дуплекс процесс). В первой печи расплавляют шихту, во второй доводят Ме до нужного хим. состава либо выдерживают Ме при нужной t-ре до момента разливки. Передача Ме-ла из печи в печь может производиться непрерывно по желобу при помощи крановых ковшей либо ковшами на электрокаре. В индукционных печах изменяется состав шихты, вместо чушкового чугуна используют легковесные низкокачественные материалы (стружка, легковесный металлолом, отходы собственного производства, т.е. обрезь).

    Принцип действия В тигель загружается шихта, переменный эл. ток, проходящий по индуктору (катушка), создает магнитное поле, которое индуктирует в металлической садке электродвижущую силу, которой и вызывают индуктированные токи, которые и вызывают нагрев и расплавление Ме-ла. Внутри катушки тигель из огнеупорного материала, который защищает индуктор от воздействия жидкого Ме-ла. Первичной обмоткой является индуктор. Вторичной обмоткой и одновременно нагрузкой – Ме-л в тигле.

    КПД печи зависит от электрического сопротивления Ме-ла и от частоты тока. Для высокого КПД необходимо, чтобы диаметр садки (d тигля) составлял не менее 3,5-7 глубин проникновения тока в Ме-л.Ориентировочные соотношения между ёмкостью тигля и частотой тока для стали и чугуна. Производительность печей как правило для чугуна и стали 30-40 т/час. При расходе эл.энергии 500-1000 кВт*ч/тонну. Для бронзы, меди 15-22 т/час, для алюминия 8-9 т/час.Чаще всего используют тигель цилиндрической формы. Магнитный поток, создаваемый индуктором, проходит по замкнутым линиям как внутри индуктора, так и снаружи.

    В зависимости от способа прохождения магнитного потока с внешней стороны различают: 1) открытую; 2) экранированную; 3) закрытую конструкции печи

    При открытой конструкции магнитный поток проходит по воздуху, поэтому конструктивные эл-ты (например каркас) выполняют неметаллическими или размещают на большом расстоянии от индуктора. При экранировании магнитный поток от стальных конструкций отделяется экраном из меди. При закрытой – магнитный поток проходит по радиально-расположенным пакетам трансформаторной стали – магнитопроводам.

    Схема устройства электрической индукционной печи: 1 - крышка, 2 узел поворота, 3 - индуктор, 4 - магнитопроводы, 5 - металлоконструкция, 6 - подводы водяного охлаждения, 7 - тигель, 8 - площадка

    Печь включает сл. узлы: Индуктор, Футеровку, Каркас, Магнитопроводы, Крышку, Падину, Механизмы наклона.

    Печь для плавки алюминия

    Индуктор кроме основного назначения выполняет также ф-ию эл-та, который воспринимает мех. и тепловую нагрузку со стороны тигля. Кроме того, охлаждение индуктора обеспечивает отвод теплоты, которая возникает из-за электрических потерь, поэтому индукторы выполняют либо в виде цилиндрической однослойной катушки, где все витки расположены в виде спирали с постоянным углом наклона, либо в виде катушки все витки которой уложены в горизонтальной плоскости, а переходы между ними в виде коротких наклонных участков.

    В зависимости от марки Ме-ла и уровня t-р используют 3 вида футеровки:

    1. Кислая (содержит > 90% SiO2) выдерживает 80-100 плавок

    2. Основная (до 85% MgO) выдерживает 40-50 плавок для малых печей и до 20 плавок для печей ёмкостью >1 тонны

    3. Нейтральная (на основе оксидов Al2O3или CrO2)

    Схемы индукционных плавильных печей: а - тигельная, б - канальная; 1 - индуктор; 2 - расплавленный металл; 3 - тигель; 4 - магнитный сердечник; 5 - подовый камень с каналом тепловыделения.

    Падина выполняется из шамотного кирпича для больших печей или аспоцемент для малых. Крышка вып. из конструкционной стали и футеруется изнутри. Достоинства тигельных печей :1)Интенсивная циркуляция расплава в тигле; 2) Возможность создания атмосферы любого типа (окислительная, восстановительная, нейтральная) при любом давлении; 3) Высокая производительность; 4) Возможность полного слива Ме-ла из печи; 5) Простота обслуживания, возможность механизации и автоматизации. Недостатки: 1)Относительно низкая t-ра шлаков, наводимых на зеркало Ме-ла; 2) Сравнительно низкая стойкость футеровки при высоких t-рах расплава и при наличии теплосмен.

    ИНДУКЦИОННЫЕ КАНАЛЬНЫЕ ПЕЧИ.

    Принцип действия состоит в том, что переменный магнитный поток пронизывает замкнутый контур, образованный жидким Ме-лом и возбуждает в этом контуре ток.

    Контур жидкого Ме-ла окружен огнеупорным материалом, который запечен в стальной корпус. Пространство, которое заполняется жидким Ме-лом имеет форму изогнутого канала. Рабочее пространство печи (ванна) соединяется с каналом 2-мя отверстиями за счет чего и образуется замкнутый контур. Во время работы печи жидкий Ме-л движется в канале и местах соединения с ванной. Движение обусловлено перегревом Ме-ла (в канале выше на 50-100 ºС чем в ванне), а также воздействием магнитного поля.

    При сливе всего Ме-ла из печи происходит разрыв электрического контура, который создаётся жидким Ме-лом в канале. Поэтому в канальных печах производят частичный слив жидкого Ме-ла. Масса «болота» опр-ся исходя из того, чтобы масса столба жидкого Ме-ла над каналом превышала электродинамическую силу, выталкивающую Ме-л из канала.

    Канальные печи используют в качестве миксера раздаточных и плавильных печей. Миксер предназначен для накопления определенной массы Ме-ла и выдержке Ме-ла при определенной t-ре. Ёмкость миксера принимают равной не менее двукратной часовой производительности плавильной печи. Раздаточные печи используют для заливки жидкого Ме-ла непосредственно в формы.

    По сравнению с тигельными печами канальные имеют более низкие капиталовложения (50-70% от тигельной), низкий удельный расход электроэнергии (более высокий КПД). Недостаток : Отсутствие гибкости регулирования хим.состава.

    К основным узлам относят: Каркас печи; Футеровку; Индуктор; Мех-зм наклона; Электрооборудование; Система водяного охлаждения.

    Принцип индукционного нагрева заключается в преобразовании энергии электромагнитного поля, поглощаемой электропроводным нагреваемым объектом, в тепловую энергию.

    В установках индукционного нагрева электромагнитное поле создают индуктором, представляющим собой многовитковую цилиндрическую катушку (соленоид). Через индуктор пропускают переменный электрический ток, в результате чего вокруг индуктора возникает изменяющееся во времени переменное магнитное поле. Это — первое превращение энергии электромагнитного поля, описываемое первым уравнением Максвелла .

    Нагреваемый объект помещают внутрь индуктора или рядом с ним. Изменяющийся (во времени) поток вектора магнитной индукции, созданной индуктором, пронизывает нагреваемый объект и индуктирует электрическое поле. Электрические линии этого поля расположены в плоскости, перпендикулярной направлению магнитного потока, и замкнуты, т. е. электрическое поле в нагреваемом объекте носит вихревой характер. Под действием электрического поля, согласно закону Ома, возникают токи проводимости (вихревые токи). Это — второе превращение энергии электромагнитного поля, описываемое вторым уравнением Максвелла .

    В нагреваемом объекте энергия индуктированного переменного электрического поля необратимо переходит в тепловую. Такое тепловое рассеивание энергии, следствием чего является нагрев объекта, определяется существованием токов проводимости (вихревых токов). Это — третье превращение энергии электромагнитного поля, причем энергетическое соотношение этого превращения описывается законом Ленца-Джоуля .

    Описанные превращения энергии электромагнитного поля дают возможность:
    1) передать электрическую энергию индуктора в нагреваемый объект, не прибегая к контактам (в отличие от печей сопротивления)
    2) выделить тепло непосредственно в нагреваемом объекте (так называемая «печь с внутренним источником нагрева» по терминологии проф. Н. В. Окорокова), в результате чего использование тепловой энергии оказывается наиболее совершенным и скорость нагрева значительно увеличивается (по сравнению с так называемыми «печами с внешним источником нагрева»).

    На величину напряженности электрического поля в нагреваемом объекте оказывают влияние два фактора: величина магнитного потока, т. е. число магнитных силовых линий, пронизывающих объект (или сцепленных с нагреваемым объектом), и частота питающего тока, т. е. частота изменений (во времени) магнитного потока, сцепленного с нагреваемым объектом.

    Это дает возможность выполнить два типа установок индукционного нагрева, которые различаются и по конструкции и по эксплуатационным свойствам: индукционные установки с сердечником и без сердечника.

    По технологическому назначению установки индукционного нагрева подразделяют на плавильные печи для плавки металлов и нагревательные установки для термической обработки (закалки, отпуска), для сквозного нагрева заготовок перед пластической деформацией (ковкой, штамповкой), для сварки, пайки и наплавки, для химико-термической обработки изделий и т. д.

    По частоте изменения тока, питающего установку индукционного нагрева, различают:
    1) установки промышленной частоты (50 Гц), питающиеся от сети непосредственно или через понижающие трансформаторы;
    2) установки повышенной частоты (500-10000 Гц), получающие питание от электромашинных или полупроводниковых преобразователей частоты;
    3) высокочастотные установки (66 000-440 000 Гц и выше), питающиеся от ламповых электронных генераторов.

    Установки индукционного нагрева с сердечником

    В плавильной печи (рис. 1) цилиндрический многовитковый индуктор, изготовленный из медной профилированной трубки, насаживают на замкнутый сердечник, набранный из листовой электротехнической стали (толщина листов 0,5 мм). Вокруг индуктора размещают огнеупорную керамическую футеровку с узким кольцевым каналом (горизонтальным или вертикальным), где находится жидкий металл. Необходимым условием работы является замкнутое электропроводное кольцо. Поэтому невозможно расплавить отдельные куски твердого металла в такой печи. Для пуска печи приходится в канал заливать порцию жидкого металла из другой печи или оставлять часть жидкого металла от предыдущей плавки (остаточная емкость печи).

    Рис.1. Схема устройства индукционной канальной печи: 1 - индикатор; 2 - металл; 3 - канал; 4 - магнитопровод; Ф - основной магнитный поток; Ф 1р и Ф 2р - магнитные потоки рассеяния; U 1 и I 1 - напряжение и ток в цепи индуктора; I 2 - ток проводимости в металле

    В стальном магнитопроводе индукционной канальной печи замыкается большой рабочий магнитный поток и лишь небольшая часть полного магнитного потока, создаваемого индуктором, замыкается через воздух в виде потока рассеяния. Поэтому такие печи успешно работают на промышленной частоте (50 Гц).

    В настоящее время существует большое число типов и конструкций таких печей, разработанных во ВНИИЭТО (однофазные и многофазные с одним и несколькими каналами, с вертикальным и горизонтальным закрытым каналом разной формы). Эти печи применяют для плавки цветных металлов и сплавов со сравнительно низкой температурой плавления, а также для получения высококачественного чугуна. При плавке чугуна печь используют либо в качестве копильника (миксера), либо в качестве плавильного агрегата. Конструкции и технические характеристики современных индукционных канальных печей приведены в специальной литературе.

    Установки индукционного нагрева без сердечника

    В плавильной печи (рис. 2) расплавляемый металл находится в керамическом тигле, помещенном внутрь цилиндрического многовиткового индуктора. изготовляют из медной профилированной трубки, через которую пропускают охлаждающую воду. Узнать подробнее о конструкции индуктора можно .

    Отсутствие стального сердечника приводит к резкому увеличению магнитного потока рассеяния; число магнитных силовых линий, сцепляемых с металлом в тигле, будет крайне мало. Это обстоятельство требует соответствующего увеличения частоты изменения (во времени) электромагнитного поля. Поэтому для эффективной работы индукционных тигельных печей приходится питать их токами повышенной, а в отдельных случаях и высокой частоты от соответствующих преобразователей тока. Подобные печи имеют очень низкий естественный коэффициент мощности (cos φ=0,03-0,10). Поэтому необходимо применять конденсаторы для компенсации реактивной (индуктивной) мощности.

    В настоящее время имеется несколько типов индукционных тигельных печей, разработанных во ВНИИЭТО в виде соответствующих размерных рядов (по емкости) высокой, повышенной и промышленной частоты, для плавки стали (тип ИСТ).


    Рис. 2. Схема устройства индукционной тигельной печи: 1 - индуктор; 2 - металл; 3 - тигель (стрелками показана траектория циркуляции жидкого металла в результате электродинамических явлений)

    Преимуществами тигельных печей являются следующие: выделяющееся непосредственно в металле тепло, высокая равномерность металла по химическому составу и температуре, отсутствие источников загрязнения металла (помимо футеровки тигля), удобство управления и регулирования процесса плавки, гигиеничность условий труда. Кроме этого, для индукционных тигельных печей характерны: более высокая производительность вследствие высоких удельных (на единицу емкости) мощностей нагрева; возможность плавить твердую шихту, не оставляя металл от предыдущей плавки (в отличие от канальных печей); малая масса футеровки по сравнению с массой металла, что уменьшает аккумуляцию тепловой энергии в футеровке тигля, снижает тепловую инерцию печи и делает плавильные печи этого типа исключительно удобными для периодической работы с перерывами между плавками, в частности для фасонно-литейных цехов машиностроительных заводов; компактность печи, что позволяет достаточно просто изолировать рабочее пространство от окружающей среды и осуществлять плавку в вакууме или в газовой среде заданного состава. Поэтому в металлургии широко применяют вакуумные индукционные тигельные печи (тип ИСВ).

    Наряду с преимуществами у индукционных тигельных печей имеются следующие недостатки: наличие относительно холодных шлаков (температура шлака меньше температуры металла), затрудняющих проведение рафинировочных процессов при выплавке качественных сталей; сложное и дорогое электрооборудование; низкая стойкость футеровки при резких колебаниях температуры вследствие небольшой тепловой инерции футеровки тигля и размывающего действия жидкого металла при электродинамических явлениях. Поэтому такие печи применяют для переплава легированных отходов с целью снижения угара элементов.

    Использованная литература:
    1. Егоров А.В., Моржин А.Ф. Электрические печи (для производства сталей). М.: «Металлургия», 1975, 352 с.

    Сам принцип работы индукционной печи состоит в том, что тепло для плавки получают из электричества, которое вырабатывается переменным магнитным полем. В таких печах происходит преобразование энергии от электромагнитной, далее в электрическую и в конечном итоге в тепло. Как же делается индукционная печь своими руками?

    Такие печи делят на два типа:

    1. Тигельные. В таких печах индуктор и сердечник находятся внутри металла. Такой тип печей используют в промышленных плавильнях, для плавки меди, алюминия, чугуна, стали, а также на ювелирных заводах для плавки драгоценных металлов.
    2. Канальные. В таком виде печей индуктор и сердечник находятся вокруг металла.

    По сравнению с котлами или же другими печками, индукционные печи имеют ряд преимуществ:

    • моментально разогреваются;
    • фокусируют энергию в заданном диапазоне;
    • экологически чистое устройство и относительная безопасность;
    • отсутствует угар;
    • огромные возможности регулировки температуры и емкости;
    • однородность металла, который плавится.

    Индукционные печи также применяют для отопления. Это удобный и в то же время бесшумный метод отопления.

    Не требует специального помещения для котла. На греющем элементе накипь не скапливается, а для циркуляции по отопительной системе можно использовать любую жидкость, будь то масло, вода и другие. Также печь долговечна, так как минимально изнашивается. Как и говорилось ранее, она очень экологична, ведь нет никаких вредных выбросов в воздух, а также отвечает всем требованиям пожарной безопасности.

    Сбор информации

    Человеку, который понимает, как прочитать и понять электрическую схему, будет не сложно разобраться, как сделать подобную индукционную печь. В сети Интернет вы увидите десятки, а то и сотни вариантов изготовления различных индукционных печей с использованием домашнего хлама, например, из старой микроволновки или сварочного инвертора.

    Обязательно помните, что электрический ток – вещь опасная. И для изготовления индукционной печи нужно иметь представления о том, что такое нагрев с помощью индукции. Желательно, чтобы с вами был человек, который хорошо понимает хотя бы основы электротехники или имеет опыт работы с электрооборудованием.

    Принцип работы

    Основа работы такой печки – это извлечение тепла из электрического тока, которое вырабатывает переменное магнитное поле с помощью катушки индуктивности. Выходит, мы получаем тепло сначала из электромагнитной энергии, а потом с электрической. Замкнутость токов, которые текут по виткам индуктора (катушке индуктивности), выделяет тепло и прогревает металл изнутри.

    Такая печь может работать иметь упрощенный вариант и работать от домашней сети 220В. Но для этого требуется выпрямитель, то есть адаптер.

    Устройство печи

    Конструкция индукционного прибора похоже на трансформатор. В нем первичная обмотка питается переменным током, а вторичная служит нагреваемым телом.

    Самым простым индуктором считается изолированный проводник (имеющий вид спирали или сердечника), который расположен на поверхности металлической трубы или внутри нее.

    Вот некоторые узлы, которые работают по индукции:

    • индуктор;
    • отсек для плавильной печи;
    • нагревающий элемент для обогревательной печи;
    • генератор;
    • корпус.