Солнечная батарея своими руками. Самостоятельное изготовление солнечных батарей в домашних условиях

Солнечные батареи позволяют перерабатывать энергию солнца для получения электричества. Система достаточно популярная, но дорогая. Удешевить конструкция можно, выполнив изготовление в домашних условиях. Для работы потребуется изучить принцип работы, процесс спаивания и сборки.

Составляющие для изготовления солнечной батареи своими руками

Для бесплатного получения электроэнергии используют солнечные батареи, которые с каждым годом обретают все большую популярность. Но еще больше удешевить процесс получения солнечной энергии можно путем самостоятельного сбора модуля.

Схема самодельной солнечной батареи:

  • Коллекторная установка;
  • Аккумулятор напряжения;
  • Инвертор.

Коллектор – это компактная конструкция из небольших элементов. Система перерабатывает солнечную энергию в поток положительных и негативных электронов. Создавать высокое напряжение коллектор не может.

Одна деталь способна вырабатывать 0,5 Вт. Коллектор вырабатывает напряжение в 18 Вт. Такой энергии хватит для заряда небольшого аккумулятора. Для больших объемов потребуется увеличение площади солнечной батареи.

Аккумуляторы обеспечивают необходимое количество энергии. Работы одной батареи будет недостаточно. Но здесь роль играют электрические приборы, которые работают от солнечного модуля. Количество аккумулятор придется постоянно добавлять. Вместе с этим не нужно забывать обновлять коллекторы. Для одной батареи может потребоваться 10 аккумуляторов.

Аккумуляторы и коллекторы приобретаются в специализированных магазинах. Материалами для батареи послужат подручные средства.

Инвертор перерабатывает полученную солнечную энергию в ток. Покупая деталь, следует изучить ее характеристики. Мощность устройства при этом должна быть не меньше 4 кВт.

Расчет электричества от солнечных батарей своими руками: подготовка

Сделать сборку конструкции можно из подручных материалов. Так раму выполняют из дюралюминия. Можно взять и другой материал, но обязательно выполнить защитную покраску. Это поможет сэкономить на монтаже конструкции. Но при желании можно приобрести готовую раму в специализированном магазине.


При самостоятельном изготовлении для начала проводится расчет. За основу берется требуемый заряд аккумулятора. Данный показатель считается основным, и делиться на 0,5 Вт. В итоге получает необходимое количество элементов.

Ток зарядом в 3,6 А требует соединения трех последовательных цепочек. Так количество элементов умножается на 3. При умножении полученных данных на стоимость элемента, то можно получить цену солнечной батареи.

Элементы солнечного модуля требуется соединять в параллельно-последовательной схеме. В каждой цепочке при этом должно быть равное количество элементов.

Расчет электричества на практике окажется меньше. Это объясняется неравномерным потоком солнечной энергии на протяжении дня. Для эффективной работы потребуется использовать сразу несколько батарей.

Требуемый инструментарий для самостоятельной сборки:

  • Паяльник;
  • Канифоль;
  • Установочный провод;
  • Силиконовый герметик;
  • Двусторонний скотч.

Инструменты могут отличаться, а их количество может меняться. Для размещения всех элементов на раме, потребуется конструкция размерами 90х50 см. При других габаритах готовых конструкций проводят другие расчеты.

Советы, как самому сделать солнечные батареи: этап пайки

Оптимальная температура для работы панели – 70-90 градусов. Но выполнять контроль показателя сложно. Чтобы упростить данную работу, в раме выполняют отверстия для вентиляции. Диаметр дыр составляет 1 см. Спаивать детали необходимо самому.


Набор деталей для пластин следует приобрести в магазине. Это недешевая покупка, но выгодней, чем приобретать готовую солнечную батарею от производителя. Понадобится кремниевая пластина, которая перерабатывает энергию солнца в электричество. Их изготавливают из поликристаллического кремния.

Последовательность пайки элементов:

  • Согласно заготовкам нарезаем проводники;
  • Детали фиксируем на необходимых местах;
  • На контакты наносим кислоту и припой;
  • Затем устанавливаем проводники;
  • Начинаем спайку элементов.

Выполнять переворот спаянной системы бывает затруднительно. Поэтому сначала выполняют крепление элементов, а затем рядов. На крайних деталях следует выполнить шину на положительный и отрицательный заряд. Проводка вывода оборудуется изоляцией. На наружной стороне рамы устанавливается клемма.

При проблемах спаивания требуется подпилить контакты наждачкой.

Затем панели крепятся к раме. При креплении следует воспользоваться герметиком на силиконовой основе. Он выполняет роль связывающего вещества панели с рамой. Когда все конструкция собрана, нужно проверить ее исправность. Здесь используют специальный тестер. Показания прибора должны составлять 17-19 Вт. Процедуру следует проводить несколько дней и только потом выполнить герметизацию.

Между рамой и оргстеклом должен быть слой герметика. Требуется подождать, пока вещества полностью застынет. Закрепление оргстекла проводится с помощью саморезов. Стыки также обрабатываются силиконом.

Как собрать солнечную батарею своими руками: завершающие работы

После спаивания конструкции необходимо завершить сборку всех элементов в одну систему. Сначала уделяют внимание инверторам. Они работают на переработку тока.

Разновидности инверторов:

  1. Системные выполняют роль дополнительного источника энергии. При переработке тока вместе с центральным источником аккумуляторы можно не использовать.
  2. Гибридные – могут стать главным источником энергии. Но лучше не отказываться от основного источника. Такие системы могут не только перерабатывать, но и накоплять энергию.
  3. Автономные конструкции используются в виде основного источника питания. Для работы потребуются аккумуляторы.

Необходимое количество аккумулятор основывается на требуемой мощности. При этом следует уделить внимание батарей и высоте их монтажа. Чем выше будет находиться конструкция, тем эффективней будет работать модуль.

Для частного дома потребуется мощность батареи в 4 кВт.

К аккумулятору батарея крепится с помощью диода. Это предохранить панель от разрядки в ночное время. Также защиту обеспечит контроллер заряда . Менее мощные батареи можно соорудить с помощью медного листа и пластиковой бутылки. Для работы конструкции потребуется соль и теплая вода. Из инструментов следует взять наждачную бумагу, элекроплиту и тестер. Нередко в качестве материала изготовления солнечной батареи используют жестяные банки. Обычно они выполняются из алюминия.

Солнечные батареи своими руками (видео)

Чтобы собрать конструкцию своими руками, требуется последовательно соединить все элементы. Основу для солнечной батареи составляют три элемента: аккумулятор, конвектор, инвертор. Раму можно изготовить из подручных материалов.

Комфортность проживания в домах и квартирах современного человека с годами требует все большего количества электроэнергии. Но в современных условиях себестоимость каждой единицы электроэнергии неуклонно повышается, что, соответственно, сказывается и на затратах. Поэтому вопрос о переходе на альтернативные источники электроэнергии является наиболее актуальным. Одним из способов обеспечить независимость в получении электроэнергии является возможность применять для этих целей солнечные батареи для дома.

Эффективная альтернатива или всеобщее заблуждение?

Разговоры об автономном питании бытовых приборов и освещении в домах с использованием солнечной энергии ведутся еще с середины прошлого века. Развитие технологий и всеобщий прогресс позволили приблизить эту технологию к обыкновенному потребителю. Утверждение о том, что использовать солнечные батареи для дома станет довольно эффективным способом замены традиционных энергосетей, можно было бы считать бесспорным, если бы не пара существенных «но».

Основным требованием эффективности использования гелиевых батарей является количество солнечной энергии. Устройство солнечной батареи позволяет эффективно пользоваться энергией нашего светила только в регионах, где большую часть года солнечно. Необходимо также принимать во внимание и широту, на которой монтируются солнечные батареи, - чем выше широта, тем меньшей силой обладает луч солнца. В идеале можно добиться эффективности около 40%. Но это в идеале, а на практике все несколько иначе.

Следующий момент, на который стоит обратить внимание, - необходимость использования достаточно больших площадей, позволяющих смонтировать автономные солнечные батареи. Если батареи планируется размещать на дачном участке, загородном доме, коттедже, то здесь проблем не будет, а вот живущим в многоквартирных домах думать об этом придется серьезно.

Солнечная батарея - что это такое?

Устройство солнечной батареи основано на способности фотоэлементов преобразовывать солнечную энергию в электричество. Соединенные в общую систему, эти преобразователи создают многоячеистое поле, каждая ячейка которого под воздействием солнечной энергии становится источником электрического тока, который затем аккумулируется в специальных устройствах - аккумуляторах. Разумеется, что мощность такого устройства тем выше, чем больше данное поле. То есть чем больше в нем фотоэлементов, тем большее количество электроэнергии оно способно произвести.

Но это не значит, что только огромные площади, на которых возможна установка солнечных батарей, могут обеспечить необходимой электроэнергией. Существует множество гаджетов, которые имеют возможность работать не только от привычных всем автономных источников питания - батареек, аккумуляторов - но и использовать энергию солнца. В конструкции таких приборов вмонтированы портативные солнечные батареи, дающие возможность как подзаряжать устройство, так и работать автономно. Например, обычный карманный калькулятор: в солнечную погоду, положив его на стол, можно обеспечить подзарядку батареи, что продлевает срок ее службы на долгие годы. Существует масса различных устройств, где такие батареи используются: это и ручки-фонарики, и фонарики-брелоки и т. д.

На дачных и загородных участках в последнее время стало модным использовать для освещения фонарики на солнечных батареях. Экономичное и несложное устройство обеспечивает освещение вдоль садовых дорожек, на террасах и во всех необходимых местах, используя электроэнергию, накопленную в светлое время суток, когда светит солнце. Экономные лампы освещения способны расходовать эту энергию достаточно долгое время, что и обеспечивает большой интерес к таким устройствам. Освещение на солнечных батареях используется и в домах, коттеджах, а также подсобных помещениях.

Типы автономных солнечных батарей

Существует два типа преобразователей солнечной энергии, обусловленных устройством самой батареи, - пленочные и кремневые. К первому виду относятся тонкопленочные батареи, в которых преобразователи представляют собой пленку, изготовленную по особой технологии. Еще их называют полимерными. Такие батареи устанавливаются в любом доступном месте, но обладают несколькими недостатками: им нужно много места, низкий коэффициент полезного действия и при даже средней облачности их энергоэффективность падает на 20 процентов.

Кремневый тип солнечных батарей представлен монокристаллическими и поликристаллическими устройствами, а также аморфными кремниевыми панелями. Монокристаллические батареи состоят из множества ячеек, в которых встроены кремневые преобразователи, соединенные в общую схему и заполненные силиконом. Просты в эксплуатации, с высоким (до 22%) КПД, водонепроницаемые, легкие и гибкие, но для эффективной работы требуют прямого солнечного потока. Облачная погода может стать причиной полного прекращения выработки электроэнергии.

Поликристаллические батареи от монокристаллических отличаются количеством преобразователей, размещенных в каждой ячейке и установленных разнонаправленно, что обеспечивает их эффективную работу даже при рассеянном свете. Это наиболее распространенный вид батарей, которые применяются и в городских условиях, хотя их КПД несколько ниже, чем у монокристаллических.

Аморфные кремниевые источники питания, несмотря на свою низкую энергоэффективность - около 6%, тем не менее считаются более перспективными. Они поглощают солнечный поток в двадцать раз больше, чем кремниевые, и намного эффективнее в пасмурные дни.

Все это промышленные устройства, которые имеют свою - и в настоящее время не очень демократичную - цену. А возможно ли собирать солнечные батареи своими руками?

Общий принцип выбора и компоновки деталей для солнечных батарей

В связи с последними требованиями к производству электрической энергии, которые направлены на переход с традиционного сырья, используемого при его производстве, тема солнечных источников питания принимает все более практическое значение. Массовое производство элементов для создания собственной электрической сети уже предлагает потребителю различные варианты обеспечения автономной электроэнергией. Но пока еще стоимость автономного солнечного источника питания достаточна высока и недоступна для массового потребителя.

Но это не значит, что нельзя смастерить солнечные батареи своими руками. При этом просто необходимо определиться со способом сборки такого устройства. Или, приобретая отдельные элементы, компоновать их самостоятельно, или делать все составные части собственноручно.

Из чего, собственно, состоит система питания, основанная на преобразовании солнечной энергии в электрический ток? Основным, но не последним из ее элементов, является солнечная батарея, конструкция которой была рассмотрена выше. Вторым элементом в схеме является контроллер солнечной батареи, задача которого состоит в контроле зарядки аккумуляторных батарей электрическим током, полученным в солнечных батареях. Следующей частью домашней солнечной электростанции является батарея электрических аккумуляторов, в которой и накапливается электричество. И последним элементом «солнечной» электрической цепи будет инвертор, позволяющий полученное электричество небольшого вольтажа использовать для бытовых приборов, рассчитанных на 220 В.

Рассматривая каждый элемент домашней гелиоэлектростанции отдельно, можно увидеть, что каждый ее элемент может быть приобретен в розничной сети, на электронных аукционах и т. д. или собран собственноручно. И даже контроллер солнечной батареи своими руками можно изготовить - при наличии определенных навыков и теоретических знаний.

Теперь что касается задач, которые ставятся перед собственной электростанцией. Они просты и сложны одновременно. Простота их в том, что солнечная энергия используется для определенных целей: освещения, отопления или полного обеспечения потребностей жилища. Сложность - в правильном расчете требуемой мощности и соответствующем подборе комплектующих частей.

Начинаем собирать солнечную панель

Сейчас можно найти массу предложений о том, как и из чего можно собрать солнечные панели. Способов много, и выбрать можно по своему предпочтению. В данном материале рассматриваются базовые принципы, которые необходимо использовать, изготавливая солнечные батареи своими руками.

Прежде всего, нужно определиться с мощностью, которую необходимо получить, и решить, на каком напряжении будет работать сеть. Существует два варианта сетей на солнечной энергии - с постоянным током и переменным. Переменный ток более предпочтителен из-за возможности разнесения потребителей электроэнергии на значительное расстояние - более 15 метров. Это как раз для небольшого дома. Не вдаваясь глубоко в расчеты и отталкиваясь от опыта тех, кто уже пользуется солнечной энергией на своих дачах, можно с уверенностью говорить о том, что на широтах Москвы - а опускаясь южнее, эти показатели будут, естественно, выше - один квадратный метр солнечных панелей может производить до 120 ватт в час. Это если при сборке использовать поликристаллические элементы. Они более привлекательны по цене. А суммарную мощность вполне реально определить, сложив всю потребляемую мощность каждого отдельного электроприбора. Очень приблизительно можно сказать, что для семьи из 3-4 человек, требуется около 300 киловатт в месяц, которые могут быть получены от солнечных панелей в 20 кв. метров.

Также можно встретить описание сетей на солнечной энергии, использующих панели из 36 элементов. Каждая из панелей имеет мощность около 65 Ватт. Солнечная батарея для дачи или небольшого частного дома может состоять из 15 таких панелей, которые способны вырабатывать до 5 кВт в час общей электрической мощности, имея собственную мощность в 1 кВт.

Солнечные панели своими руками

А теперь о том, как сделать солнечную батарею. Первым, что придется приобрести, будет набор преобразующих пластин, количество которых зависит от мощности самодельной гелиоэлектростанции. Для одной батареи нужно будет 36 штук. Можно воспользоваться набором Solar Cells, а также приобрести поврежденные элементы или с дефектами - это скажется лишь на внешнем виде батареи. Если они рабочие, то на выходе получится почти 19 Вольт. Спаивать их нужно с учетом на расширение - оставляя зазор до пяти миллиметров между ними. Устройство солнечной батареи своими руками требует предельной внимательности при исполнении пайки фотопластинок. Если пластинки приобретались без проводников, то их необходимо напаивать вручную. Процесс сложный и ответственный. Если работа выполняется паяльником на 60 Вт, лучше всего последовательно с ним подключить простую стоваттную лампочку.

Схема солнечной батареи очень проста - каждая пластина спаивается с другими последовательно. Стоит отметить, что пластины очень хрупкие, и их спайку желательно проводить с использованием какого-нибудь каркаса. При распайке фотопластинок также необходимо помнить о том, что в цепь нужно вставить предохранительные диоды, предотвращающие разряд фотоэлементов при затемнении или снижении освещенности. Для этого шины половинок панели выводятся на клеммник, создавая среднюю точку. Эти диоды предотвращают также разряд аккумуляторов ночью.

Качество пайки - основное требование к безупречной работе солнечных батарей. Перед установкой подложки необходимо все места пайки протестировать. Выводить ток рекомендуется с использованием проводов малого сечения. Например, акустическим кабелем с силиконовой изоляцией. Все проводники необходимо закрепить герметиком.

Затем стоит определиться с поверхностью, на которую эти пластины будут крепиться. Вернее, с материалом для ее изготовления. Самым подходящим по характеристикам и легкодоступным является стекло, которое имеет максимальную пропускную способность светового потока по сравнению с оргстеклом или карбонатом.

Следующим шагом станет изготовление короба. Для этого используется алюминиевый уголок или деревянный брус. В каркас на герметик сажается стекло - желательно тщательное заполнение всех неровностей. Следует заметить, что герметик должен высохнуть полностью - во избежание загрязнения фотопластинок. Затем на стекло крепится готовый лист из спаянных фотоэлементов. Способ крепления может быть различный, но солнечные батареи для дома, отзывы о которых распространены, закреплялись в основном с помощью прозрачной эпоксидной смолы или герметика. Если эпоксидку наносят равномерно на всю поверхность стекла, после чего на нее помещают преобразователи, то герметиком крепят в основном на каплю посредине каждого элемента.

Для подложки используется различный материал, который также крепится на герметик. Это могут быть и древесно-стружечные плиты небольшой толщины или лист ДВП. Хотя можно, опять же, залить и эпоксидной смолой. Корпус батареи должен быть герметичным. Сделанная таким способом солнечная батарея своими руками, схема сборки которой оговаривалась выше, даст 18-19 Вольт, обеспечив зарядку 12-вольтового аккумулятора.

Можно ли сделать преобразователь солнечной энергии своими руками?

Мастеровые люди, обладающие обширными познаниями в электронике, могут сделать фотоэлементы для преобразования солнечной энергии в электрическую и самостоятельно. Для этого используются кремневые диоды, вернее их кристаллы, освобожденные из корпусов. Процесс этот трудоемкий, и начинать его или нет, каждый решает самостоятельно. Можно брать диоды, использующиеся в мостовых схемах выпрямителей напряжения и стабилизаторах - Д226, КД202, Д7 и др. Находящийся в этих диодах полупроводниковый кристалл при попадании на него солнечного света становится точно так же как и фотопластинка. Но добраться до него и при этом его не повредить - довольно сложный и кропотливый процесс.

Всем, кто решится заняться созданием элементов для преобразователя самостоятельно, стоит запомнить следующее - если удалось аккуратно разобрать и спаять батарею, состоящую всего из двадцати диодов марки КД202 по схеме из параллельно соединенных 5 групп, то можно получить напряжение около 2 В с током до 0,8 Ампера. Этой мощности хватит лишь на питание небольшого радиоприемника, имеющего в своей схеме всего один или два транзистора. Но чтобы из них получилась полноценная солнечная батарея для дачи, нужно очень сильно постараться. Огромный труд, большие площади, громоздкость конструкции делает это занятие бесперспективным. Но для маленьких приборов и гаджетов это вполне подходящая конструкция, которую могут сделать все, кто любит заниматься электротехникой.

Можно ли использовать светодиоды для солнечных панелей?

Светодиодная солнечная батарея является чистым вымыслом. Из светодиодов собрать даже небольшую солнечную микропанель практически невозможно. Вернее, создать можно, но стоит ли? С помощью солнечного света вполне реально получить на светодиоде около 1,5 вольта напряжения, но при этом сила сгенерированного тока очень мала, а для его генерации требуется только очень сильное солнце. И еще - светодиод при подаче на него напряжения сам выделяет лучевую энергию, то есть светится. А значит, те его собратья, на которые попал солнечный свет большей силы, будут вырабатывать электричество, которое этот светодиод сам же и будет потреблять. Все правильно и просто. И разобраться при этом в том, какие светодиоды производят, а какие потребляют энергию, просто невозможно. Даже если использовать десятки тысяч светодиодов - а это непрактично и неэкономично - толку никакого не будет.

Отапливаем дом солнечной энергией

Если про реальную возможность обеспечить бытовые электроприборы «солнечным» током уже говорилось выше, то для обогрева жилья солнечной энергией существуют два варианта. И чтобы использовать солнечные батареи для отопления дома, нужно знать некоторые требования, обязательные для выполнения этой задачи.

В первом варианте использование солнечной энергии для отопления происходит с помощью иной системы, нежели обычная электрическая сеть. Устройство для отопления дома, использующее солнечную энергию, называется гелиосистема и состоит из нескольких приборов. Основным рабочим устройством является вакуумный коллектор, который превращает солнечный свет в тепло. Он состоит из множества стеклянных трубок небольшого диаметра, в которые помещена жидкость с очень низким порогом нагрева. Нагреваясь, эта жидкость в дальнейшем передает свое тепло воде в баке-накопителе объемом не менее 300 литров воды. Затем эта нагретая вода подается на отопительные панели, выполненные из тонких медных труб, которые, в свою очередь, отдают полученное тепло, прогревая воздух в помещении. Вместо панелей можно, конечно, использовать и традиционные радиаторы, но эффективность их намного ниже.

Конечно, для отопления можно использовать и солнечные панели, но в этом случае нужно будет согласиться с тем, что на нагревание воды в бойлере с помощью ТЭНов потребуется львиная доля генерируемой батареями энергии. Простые расчеты показывают, что для нагревания бойлером 100 литров воды до 70-80 ⁰С требуется порядка 4 часов. За это время водяной котел с нагревателями на 2 кВт мощности потребит около 8 кВт. Если солнечные батареи в суммарной мощности смогут вырабатывать до 5 кВт в час, то проблем с энергообеспечением в доме не будет. Но если солнечные панели имеют площадь меньше 10 кв. метров, то такие мощности для полноценного обеспечения электрической энергией не подойдут.

Использование вакуумного коллектора для отопления дома оправдано в том случае, когда это полноценный жилой дом. Схема работы такой гелиосистемы обеспечивает теплом все жилище в течение круглого года.

И все-таки это работает!

В конце концов, солнечные батареи, своими руками собранные энтузиастами, являются вполне реальными источниками питания. И если использовать в цепи 12-вольтные аккумуляторы с током не менее 800 А/час, оборудование по превращению напряжения из низкого в высокое - инверторы, а также контроллеры напряжения на 24 В с рабочим током до 50 Ампер и простой «бесперебойник» с током до 150 Ампер, то получится очень приличная электростанция, работающая на солнечных лучах, которая способна обеспечить потребности в электроэнергии жильцов частного дома. Естественно, при определенных погодных условиях.

Уже не одно десятилетие человечество ищет альтернативные источники энергии, способные хотя бы частично заменить существующие. И самыми перспективными из всех на сегодняшний день представляются два: ветро‑ и солнечная энергетика.

Правда, ни тот ни другой не могут предоставить непрерывного производства. Это связано с непостоянством розы ветров и суточно‑погодно‑сезонными колебаниями интенсивности солнечного потока.

Сегодняшняя энергетика предлагает три основных метода получения электрической энергии, но все они тем или иным образом вредны для окружающей среды:

  • Топливная электроэнергетика — самая экологически грязная, сопровождается значительными выбросами в атмосферу углекислого газа, сажи и бесполезной теплоты, вызывая сокращение озонового слоя. Добыча топливных ресурсов для нее также наносит значительный вред природе.
  • Гидроэнергетика связана с очень значительными ландшафтными изменениями, затоплением полезных земель, причиняет ущерб рыбным ресурсам.
  • Атомная энергетика — самая экологически чистая из трёх, но требует очень значительных расходов на поддержание безопасности. Любая авария может быть связана с нанесением непоправимого долголетнего вреда природе. К тому же требует специальных мер по утилизации отходов использованного топлива.

Строго говоря, получить электроэнергию от солнечного излучения можно несколькими способами, но большинство из них используют промежуточное её преобразование в механическую, вращающую вал генератора и только затем в электрическую.

Такие электростанции существуют, они используют в работе двигатели внешнего сгорания Стирлинга, имеют неплохой КПД, но у них есть и существенный недостаток: чтобы собрать как можно больше энергии солнечного излучения, требуется изготовление огромных параболических зеркал с системами слежения за положением солнца.

Надо сказать, что существуют решения, позволяющие улучшить ситуацию, но все они достаточно дорогостоящие.

Есть методы, дающие возможность прямого преобразования энергии света в электрический ток. И хотя явление фотоэффекта в полупроводнике селене было открыто уже в 1876 году, но только в 1953 году, с изобретением кремниевого фотоэлемента, появилась реальная возможность создания солнечных батарей для получения электроэнергии.

В это время уже появляется теория, позволившая объяснить свойства полупроводников, и создать практическую технологию их промышленного производства. К сегодняшнему дню это вылилось в настоящую полупроводниковую революцию.

Работа солнечной батареи основана на явлении фотоэффекта полупроводникового p-n перехода, по сути представляющего собой обычный кремниевый диод. На его выводах при освещении возникает фото‑эдс величиной 0,5~0,55 В.

При использовании электрических генераторов и батарей необходимо учитывать различия, которые существуют между . Подключая трехфазный электродвигатель в соответствующую сеть, можно в три раза увеличить его выходную мощность.

Следуя определенным рекомендациям, с минимальными затратами по ресурсам и времени можно изготовить силовую часть высокочастотного импульсного преобразователя для бытовых нужд. Изучить структурные и принципиальные схемы таких блоков питания можно .

Конструктивно каждый элемент солнечной батареи выполнен в виде кремниевой пластины площадью в несколько см 2 , на которой сформировано множество соединённых в единую цепь таких фотодиодов. Каждая такая пластина является отдельным модулем, дающим при солнечном освещении определённое напряжение и ток.

Соединяя такие модули в батарею и комбинируя параллельно‑последовательное их подключение, можно получить широкий диапазон значений выходной мощности.

Основные недостатки солнечных батарей:

  • Большая неравномерность и нерегулярность энергоотдачи в зависимости от погоды, и сезонной высоты солнца.
  • Ограничение мощности всей батареи, если затенена хотя бы одна её часть.
  • Зависимость от направления на солнце в различное время суток. Для максимально эффективного использования батареи нужно обеспечивать её постоянную направленность на солнце.
  • В связи с вышесказанным, необходимость аккумулирования энергии. Наибольшее потребление энергии приходится на то время, когда выработка её минимальна.
  • Большая площадь, требующаяся для конструкции достаточной мощности.
  • Хрупкость конструкции батареи, необходимость постоянной очистки её поверхности от загрязнений, снега и т. п.
  • Модули солнечной батареи работают наиболее эффективно при 25°C. Во время работы же они нагреваются солнцем до значительно более высокой температуры, сильно снижающей их эффективность. Чтобы поддерживать КПД на оптимальном уровне, необходимо обеспечивать охлаждение батареи.

Следует заметить, что постоянно появляются разработки солнечных элементов, использующих новейшие материалы и технологии. Это позволяет постепенно устранять недостатки, присущие солнечным батареям или уменьшать их влияние. Так, КПД новейших элементов, использующих органические и полимерные модули, достигает уже 35% и есть ожидания достижения 90%, а это делает возможным при тех же размерах батареи получить много бòльшую мощность, либо, сохранив энергоотдачу, значительно уменьшить габариты батареи.

Кстати, средний КПД автомобильного двигателя не превышает 35%, что позволяет говорить о достаточно серьёзной эффективности солнечных панелей.

Появляются разработки элементов на основе нанотехнологий, одинаково эффективно работающих под разными углами падающего света, что избавляет от необходимости их позиционирования.

Таким образом, уже сегодня можно говорить о преимуществах солнечных батарей по сравнению с другими источниками энергии:

  • Отсутствие механических преобразований энергии и движущихся частей.
  • Минимальные расходы на эксплуатацию.
  • Долговечность 30~50 лет.
  • Тишина при работе, отсутствие вредных выбросов. Экологичность.
  • Мобильность. Батарея для питания ноутбука и зарядки аккумулятора для светодиодного фонарика вполне поместится в небольшом рюкзаке.
  • Независимость от наличия постоянных источников тока. Возможность подзарядки аккумуляторов современных гаджетов в полевых условиях.
  • Нетребовательность к внешним факторам. Солнечные элементы можно разместить в любом месте, на любом ландшафте, лишь бы они достаточно освещались солнечным светом.

В приэкваториальных районах Земли средний поток солнечной энергии составляет в среднем 1,9 кВт/м 2 . В средней полосе России он находится в пределах 0,7~1,0 кВт/м 2 . КПД классического кремниевого фотоэлемента не превышает 13%.

Как показывают опытные данные, если прямоугольную пластину направить своей плоскостью на юг, в точку солнечного максимума, то за 12‑часовой солнечный день она получит не более 42% суммарного светового потока из‑за изменения угла его падения.

Это означает, что при среднем солнечном потоке 1 кВт/м 2 , 13% КПД батареи и её суммарной эффективности 42% удастся получить за 12 часов не более 1000 x 12 x 0,13 x 0,42 = 622,2 Втч, или 0,6 кВтч за день с 1 м 2 . Это при условии полного солнечного дня, в облачную погоду — значительно меньше, а в зимние месяцы эту величину нужно разделить ещё на 3.

Учитывая потери на преобразование напряжения, схему автоматики, обеспечивающую оптимальный зарядный ток аккумуляторов и предохраняющую их от перезаряда, и прочие элементы можно принять за основу цифру 0,5 кВтч/м 2 . Этой энергией можно в течение 12 часов поддерживать ток заряда аккумулятора 3 А при напряжении 13,8 В.

То есть для заряда полностью разряженной автомобильной батареи ёмкостью 60 Ач потребуется солнечная панель в 2 м 2 , а для 50 Ач — примерно 1,5 м 2 .

Для того чтобы получить такую мощность можно приобрести готовые панели, выпускающиеся в диапазоне электрических мощностей 10~300 Вт. Например, одна 100 Вт панель за 12‑ти часовой световой день с учётом коэффициента 42% как раз обеспечит 0,5 кВтч.

Такая панель китайского производства из монокристаллического кремния с очень неплохими характеристиками стоит сейчас на рынке около 6400 р. Менее эффективная на открытом солнце, но имеющая лучшую отдачу в пасмурную погоду поликристаллическая — 5000 р.

При наличии определённых навыков в монтаже и пайке радиоэлектронной аппаратуры можно попробовать собрать подобную солнечную батарею и самому. При этом не стоит рассчитывать на очень большой выигрыш в цене, кроме того, готовые панели имеют заводское качество как самих элементов, так и их сборки.

Но продажа таких панелей организована далеко не везде, а их транспортировка требует очень жёстких условий и обойдётся достаточно дорого. Кроме того, при самостоятельном изготовлении появляется возможность, начав с малого, постепенно добавлять модули и наращивать выходную мощность.

Подбор материалов для создания панели

В китайских интернет‑магазинах, а также на аукционе eBay предлагается широчайший выбор элементов для самостоятельного изготовления солнечных батарей с любыми параметрами.

Ещё в недалёком прошлом самодельщики приобретали пластины, отбракованные при производстве, имеющие сколы или другие дефекты, но существенно более дешёвые. Они вполне работоспособны, но имеют немного пониженную отдачу по мощности. Учитывая постоянное снижение цен, сейчас это уже вряд ли целесообразно. Ведь теряя в среднем 10% мощности, мы теряем и в эффективной площади панели. Да и внешний вид батареи, состоящей из пластин с отколотыми кусочками выглядит довольно кустарно.

Можно приобрести такие модули и в российских онлайн‑магазинах, например, molotok.ru предлагает поликристаллические элементы с рабочими параметрами при световом потоке 1,0 кВт/м 2:

  • Напряжение: холостого хода — 0,55 В, рабочее — 0,5 В.
  • Ток: КЗ — 1,5 А, рабочий — 1,2 А.
  • Рабочая мощность — 0,62 Вт.
  • Габариты — 52х77 мм.
  • Цена 29 р.

Совет: Надо учитывать, что элементы очень хрупкие и при транспортировке часть из них может быть повреждена, поэтому при заказе следует предусмотреть некоторый запас по их количеству.

Изготовление солнечной батареи для дома своими руками

Для изготовления солнечной панели нам понадобится подходящая рама, которую можно сделать самостоятельно или подобрать готовую. Из материалов для нее лучше всего использовать дюралюминий, он не подвержен коррозии, не боится сырости, долговечен. При соответствующей обработке и покраске для защиты от атмосферных осадков подойдёт и стальная, и даже деревянная.

Совет: Не стоит делать панель очень больших размеров: она будет неудобна в монтаже элементов, установке и обслуживании. К тому же маленькие панели имеют низкую парусность, их можно удобнее разместить под требуемыми углами.

Рассчитываем комплектующие

Определимся с размерами нашей рамы. Для зарядки 12-ти вольтового кислотного аккумулятора требуется рабочее напряжение не ниже 13,8 В. Примем за основу 15 В. Для этого нам придётся соединить последовательно 15 В / 0,5 В = 30 элементов.

Совет: Выход солнечной панели следует подключать к аккумулятору через защитный диод во избежание его саморазряда в темное время суток через солнечные элементы. Так что на выходе нашей панели будет: 15 В – 0,7 В = 14,3 В.

Чтобы получить зарядный ток 3,6 А, нам необходимо соединить в параллель три таких цепочки, или 30 x 3 = 90 элементов. Это будет нам стоить 90 x 29 р. = 2610 р.

Совет: Элементы солнечной панели соединяются параллельно‑последовательно. Необходимо соблюдать равенство количества элементов в каждой последовательной цепочке.

Таким током мы можем обеспечить стандартный режим заряда для полностью разряженного аккумулятора ёмкостью 3,6 x 10 = 36 Ач.

Реально эта цифра будет меньше из‑за неравномерности солнечного освещения в течение дня. Таким образом, для заряда стандартной автомобильной батареи 60 Ач, нам нужно будет соединить параллельно две таких панели.

Эта панель может нам обеспечить электрическую мощность 90 x 0,62 Вт ≈ 56 Вт.

Или в течение 12‑часового солнечного дня с учётом поправочного коэффициента 42% 56 x 12 x 0,42 ≈ 0,28 кВтч.

Разместим наши элементы в 6 рядов по 15 штук. Для установки всех элементов нам потребуется поверхность:

  • Длина — 15 x 52 = 780 мм.
  • Ширина — 77 x 6 = 462 мм.

Для свободного размещения всех пластин примем габариты нашей рамы: 900×500 мм.

Совет: Если есть готовые рамы с другими габаритами, можно пересчитать количество элементов в соответствии с приведёнными выше намётками, подобрать элементы других типоразмеров, попробовать разместить их, комбинируя длину и ширину рядов.

Также нам потребуются:

  • Паяльник электрический 40 Вт.
  • Припой, канифоль.
  • Монтажный провод.
  • Силиконовый герметик.
  • Двусторонний скотч.

Этапы изготовления

Для монтажа панели необходимо подготовить ровное рабочее место достаточной площади с удобным подходом со всех сторон. Сами пластины элементов лучше разместить отдельно в стороне, где они будут защищены от случайных ударов и падений. Брать их следует аккуратно, по одной.

Устройства защитного выключения повышают безопасность домашней электросети, снижая вероятность поражения электричеством и возникновения пожаров. Детальное ознакомление с характерными особенностями разных видов выключателей дифференциального тока подскажет, для квартиры и дома.

При эксплуатации электросчетчика возникают ситуации, когда его надо заменить и заново подключить — об этом можно прочитать .

Обычно для изготовления панели используют способ приклеивания предварительно распаянных в единую цепь пластин элементов на плоскую основу‑подложку. Мы предлагаем другой вариант:

  1. Вставляем в раму, хорошо закрепляем и герметизируем по краям стекло или кусок плексигласа.
  2. Раскладываем на нем в соответствующем порядке, приклеивая их двусторонним скотчем, пластины элементов: рабочей стороной к стеклу, выводами для пайки — к задней стороне рамы.
  3. Положив раму на стол стеклом вниз, мы сможем удобно распаивать выводы элементов. Выполняем электрический монтаж в соответствии с выбранной принципиальной схемой включения.
  4. Склеиваем окончательно пластины с задней стороны скотчем.
  5. Подкладываем какую‑либо демпфирующую прокладку: листовую резину, картон, ДВП и т. п.
  6. Вставляем в раму заднюю стенку и герметизируем её.

При желании вместо задней стенки можно залить раму сзади каким‑нибудь компаундом, например, эпоксидкой. Правда, это уже исключит возможность разборки и ремонта панели.

Конечно, одной батареи в 50 Вт не хватит для обеспечения энергией даже небольшого домика. Но с её помощью уже можно реализовать в нем освещение, используя современные светодиодные светильники.

Для комфортного существования городского жителя сейчас в сутки требуется не менее 4 кВтч электроэнергии. Для семьи — соответственно количеству её членов.

Следовательно, солнечная батарея частного дома для семьи из трёх человек должна обеспечивать 12 кВтч. Если предполагается электроснабжение жилища только от солнечной энергии нам нужна будет солнечная батарея площадью, не менее 12 кВтч / 0,6 кВтч/м 2 = 20 м 2 .

Эту энергию необходимо запасти в аккумуляторных батареях, ёмкостью 12 кВтч / 12 В = 1000 Ач, или примерно 16 батарей по 60 Ач.

Для нормальной работы аккумуляторной батареи с солнечной панелью и её защиты потребуется контроллер заряда.

Чтобы преобразовать 12 В постоянного тока в 220 В переменного, нужен будет инвертор. Хотя сейчас на рынке уже в достаточном количестве представлено электрооборудование на напряжения 12 или 24 В.

Совет: В низковольтных сетях электроснабжения действуют токи значительно более высоких значений, поэтому для выполнения проводки к мощному оборудованию следует выбирать провод соответствующего сечения. Проводка для сетей с инвертором выполняется по обычной схеме 220 В.

Делаем выводы

При условии аккумулирования и рационального использования энергии, уже сегодня нетрадиционные виды электроэнергетики начинают создавать солидную прибавку в общем объёме её выработки. Можно даже утверждать, что они постепенно становятся традиционными.

Учитывая значительно снизившийся в последнее время уровень энергопотребления современной бытовой техники, применение энергосберегающих осветительных приборов и значительно увеличившийся КПД солнечных батарей новых технологий, можно сказать, что уже сейчас они способны обеспечивать электроэнергией небольшой частный дом в южных странах с большим количество солнечных дней в году.

В России же они вполне могут применяться, как резервные или дополнительные источники энергии в комбинированных системах электроснабжения, а если эффективность их удастся повысить хотя бы до 70%, то вполне реально будет и их использование в качестве основных поставщиков электроэнергии.

Видео о том, как изготовить прибор для сбора солнечной энергии самому

Все началось с прогулки по сайту eBay -увидел солнечные панели и заболел.

Споры с друзьями об окупаемости были смешны…. Покупая автомобиль никто, не думает об окупаемости. Авто как любовница, готовь сумму на удовольствие заранее. А тут совсем наоборот, затратил деньги так они еще и пытаются окупиться… Кроме того, подключил к солнечным панелям инкубатор так они еще как оправдывают свое предназначение, предохраняя ваше будущее хозяйство от гибели. В общем, имея инкубатор, ты зависишь от многих факторов, тут либо пан, либо профан. Когда будет время, напишу о самодельном инкубаторе. Ну ладно чего рассуждать, каждый в праве выбирать…..!

После долгих ожиданий, заветная коробочка с тонкими хрупкими пластинками, наконец, греет руки и сердце.

Первым делом конечно Интернет … ну, не боги горшки обжигают. Опыт чужой всегда полезен. И тут наступило разочарование….. Как оказалось, своими руками панели сделали человек пять, остальные просто перекопировали на свои сайты, причем некоторые, дабы быть оригинальней скопированы с разных разработок. Ну да бог с ними пусть это остается на совести хозяев страничек.

Решил почитать форумы, долгие рассуждения теоретиков «как доить корову» привели в полное уныние. Рассуждения о том, как ломаются пластины от нагрева, трудности герметизации и т д. Почитал и плюнул на все это дело. Мы пойдем своим путем, методом проб и ошибок, опираясь на опыт «коллег», чего изобретать велосипед?

Ставим задачу:

1) Панель должна быть изготовлена из подручных материалов, дабы не тянуть кошелек, ибо неизвестен результат.

2) Процесс изготовления должен быть нетрудоемким.

Начинаем изготовление солнечной панели:

Первым делом были приобретены 2 стекла 86х66 см. для будущих двух панелей.

Стекло простое, приобретал у производителей пластиковых окон. А может и не простое…

Долгий поиск алюминиевых уголков, по опыту уже проверенному «коллегами» закончился ничем.

Потому процесс изготовления начинался вяло, с чувством долгостроя.

Процесс пайки панелей описывать не стану, так как в сети много информации про это и даже видео есть. Просто оставлю свои заметки и замечания.

Не так страшен черт, как его малюют.

Не смотря на трудности, которые описывают на форумах, пластины элементов паяются легко, как лицевая сторона, так и тыльная. Так же, вполне пригоден наш советский припой ПОС- 40, во всяком случае, никаких трудностей я не испытал. Ну и конечно, наша родная канифоль, куда без нее… За время пайки не сломал ни одного элемента, думаю надо быть полным идиотом, чтобы сломать их на ровном стекле.

Проводники, которые идут в комплекте к панелям, очень удобны, во-первых, они плоские, во-вторых, они луженные, что значительно сокращает время пайки. Хотя вполне можно использовать обычный провод, провел эксперимент на запасных пластинах, трудностей в пайке не испытал. (на фото остатки плоского провода)

На пайку 36 пластин у меня ушло около 2 часов. Хотя на форуме читал, что люди паяют по 2 дня.

Паяльник желательно использовать на 40 Вт. Так как пластины легко отводят тепло, а это затрудняет пайку. Первые попытки паять 25 Ватным паяльником были нудными и печальными.

Так же при пайке желательно оптимально подбирать количество флюса (канифоли). Ибо большой избыток ее не дает прилипнуть олову к пластине. А потому приходилось практически залуживать пластинку, в общем, ничего страшного, все поправимо. (приглядитесь на фото видно.)

Расход олова довольно большой.

Ну вот, на фото пропаянные элементы, во втором ряду косяк, не пропаян один вывод, но ничего главное заметил и исправил.

Окантовка стекла сделана двухсторонним скотчем далее на этот скотч будет приклеена полиэтиленовая пленка.

Скотчи, которые использовал.

После припайки, начало герметизации (скотч вам в помощь).

Ну вот, проклеенные пластины скотчем и исправленным косяком.

Далее с окантовки панели снимаем защитный слой двухстороннего скотча и приклеиваем на нее полиэтиленовую пленку с запасом на края. (сфоткать забыл) Ах да, в скотче проделываем прорези для отходящих проводов. Ну не глупые, поймете, что и когда… По краю стекла, а так же выводы проводов, углы, промазываем силиконовым герметикам.

И загибаем пленку на внешнюю сторону.

Предварительно было изготовлена рамка из пластика. Когда в доме устанавливал пластиковые окна, на окно шурупами крепят пластиковый профиль для подоконника. Посчитал, что эта часть слишком тонкая. А потому удалил и сделал подоконник по своему. Потому, от 12 окон остались пластиковые профили. Так сказать материал в избытке.

Рамку клеил обычным, старым, советским утюгом. Жаль, процесс не снимал, но думаю, ничего тут сверх непонятного нет. Отрезал под 45 градусов 2 стороны, нагрел на подошве утюга и приклеил предварительно установив на ровный угол. На фото рамка под вторую панель.

Устанавливаем стекло с элементами и защитной пленкой в рамку

Лишнюю пленку обрезаем, а края проклеиваем силиконовым герметикам.

Получаем вот такую панель.


Да, забыл написать, что кроме пленки к рамке приклеил направляющие, которые не дают упасть элементам, если скотч отклеиться. Пространство между элементами и направляющими залито монтажной пеной. Что позволило прижать плотнее элементы к стеклу.

Ну, начнем испытания.

Так как панель одну я изготовил заранее, результат одной мне известен Напряжение 21Вольт. Ток короткого замыкания 3,4 Ампера. Сила тока заряда аккумуляторной батареи 40А. ч 2,1 Ампера.

К сожалению не фоткал. Надо сказать, что сила тока круто зависит от освещенности.

Теперь соединенные параллельно 2 батареи.

Погода на момент изготовления была облачная, было около 4 часов дня.

Вначале меня это расстроило, а потом даже обрадовало. Ведь это самые усредненные условия для батареи, а значит результат правдоподобнее, чем при ярком солнце. Солнышко просвечивало через облака не так ярко. Надо сказать, что и светило солнышко немного сбоку.

При таком освещении ток короткого замыкания составил 7.12 Ампер. Что считаю превосходным результатом.

Напряжение без нагрузки 20,6 Вольт. Ну, это стабильно около 21 вольта.

Ток заряда АКБ 2,78Ампера. Что при таком освещении гарантирует заряд АКБ.

Замеры показали, при хорошем солнечном деньке результат будет лучше.

К тому времени погода ухудшалась, тучи закрыли, солнышко полностью и мне стало интересно, а что покажет при таком раскладе. Это же практически вечерние сумерки…

Небо выглядело так, специально снял линию горизонта. Да впрочем, на самом стекле батареи видно небо как в зеркало.

Напряжение при таком раскладе 20,2 вольта. Как уже говорилось 21в. это практически константа.

Ток короткого замыкания 2,48А. В общем, то, для такого освещения замечательно! Практически равен одной батареи при хорошем солнышке.

Ток заряда АКБ 1,85 Ампера. Ну что сказать… Даже в сумерки АКБ будет заряжаться.

Вывод построена солнечная батарея, не уступающая по характеристикам промышленным образцам. Ну а долговечность….., будем смотреть, время покажет.

Ах да, заряд батареи ведется через диоды Шоттки на 40 А. ну, что нашлось.

Так же хочу сказать про контроллеры. Все это красиво выглядит, но не стоит затраченных на контроллер денег.

Если вы дружите с паяльником, схемы очень просты. Делайте и получайте удовольствие от изготовления.

Ну вот, налетел ветер и оставшиеся запасные 5 элементов сорвались в неуправляемый полет….. результат осколки. Ну что поделать, безалаберность должна быть наказана. А с другой стороны…. Куда их?

Решили сделать из осколочков еще одну панельку, вольт на 5. На изготовление ушло 2 часа. Остатки материалов как раз пришлись в пору. Вот что получилось.

Замеры сделаны вечером.

Надо сказать, что при хорошем освещении сила тока короткого замыкания более 1 ампера.

Кусочки спаяны параллельно и последовательно. Цель, обеспечить примерно одинаковую площадь. Ведь сила тока равна самому маленькому элементу. А потому при изготовлении подбирайте элементы по площади освещения.

Настало время рассказать о практическом применении изготовленых мною солнечных батарей.

Весной установил две изготовленые панели на крыше, высота 8 метров под углом 35 градусов, оринтированые на юговосток. Такое орентирование было выбрано не случайно, потому как было замечено, что в данной широте, летом солнышко всходит в 4 утра и к 6-7 часам вполне сносно заряжает аккумуляторы током в 5-6 ампер, тоже касается и вечера. Каждая панель должна обязательно иметь свой диод. Дабы исключить выгорание элементов при отличающийся мощности панелей. И как следствие неоправданое снижение мощности панелей.
Спуск с высоты был выполнен многожильным проводом сечением 6мм2 каждая жила. Таким образом удалось достигнуть минимальных потерь в проводах.

В качестве накопителей энергии использованы старые еле-живые аккумуляторы 150А.ч,75А.ч,55А.ч, 60А.ч. Все аккумуляторы соеденены паралельно и учитывая потерю емкости, сумарно составляют ококло 100А.ч.
Контроллер заряда аккумулятора отсутствует. Хотя думаю установка контроллера необходима.Над схемой контроллера сечас работаю. Так как в течении дня аккумуляторы начинают кипеть. Потому приходится ежедневно сбрасывать излишки энергии, путем включения ненужной нагрузки. В моем случаее включаю освещение бани. 100 Вт. Так же в течении дня работает LCD телевизор примерно 105Вт, вентилятор 40Вт., а к вечеру добавляется энергосберегающая лампочка 20Вт.

Любителям проводить расчеты скажу: ТЕОРИЯ И ПРАКТИКА не одно и тоже. Так как такой "сендвичь" вполне прекрасно работает свыше 12 часов. при этом иногда заряжаем от него телефоны.Полного разряда аккумуляторов еще не достиг ни разу. Что соответственно перечеркивает расчеты.

В качестве преобразователя использован чуть- чуть переделаный для свободного пуска от аккумуляторов компьютерный бесперебойник (инвертор) 600В.А, что примерно соответствует нагрузке в 300Вт.
Так же хочу отметить, что батареи заряжаются и при яркой луне. При этом ток составляет 0,5-1 Ампер, думаю для ночи это совсем неплохо.

Конечно хотелось бы увеличить нагрузку, но для этого требуется мощьный инвертор. Планирую изготовить инвернтор сам по ниже приведенной схеме. Так как покупать инвертор за бешаные деньги НЕРАЗУМНО!

Спрос на альтернативные источники энергии возрастает с каждым днём. Народные умельцы активно осваивают способы, как изготовить солнечную батарею своими руками.

Подготовительная стадия: что надо знать о солнечных батареях

Для самостоятельного изготовления солнечной батареи можно использовать как специально закупленные заготовки, так и по максимуму использовать материал, имеющийся в домашней мастерской – диоды, транзисторы, фольгу.

Солнечные батареи не могут в большинстве случаев заменить полноценную электростанцию и дать рабочее напряжение 220 В для работы мощных электроприборов. Ограничения возникают по причине их высокой стоимости и большой площади свободного пространства для монтажа.

Часто их применяют как дополнительный источник энергии и для не электрифицированных дачных участков.

КПД солнечных батарей зависит от погодных условий, интенсивности потока солнечных лучей, угла падения светового потока.

Небольшое количество ясных дней в конкретном регионе, сильная затенённость земельного участка, может быть причиной экономической нерентабельности новой установки: срок окупаемости будет больше, чем срок службы (до 30 лет).

Место для установки солнечной батареи для вашего дома должно быть хорошо освещённым, желательно находится выше уровня земли (на крыше), а сама конструкция иметь возможность коррекции положения в пространстве, чтобы лучи солнца падали перпендикулярно поверхности фотоэлементов.

Как самостоятельно сконструировать солнечную батарею

Чтобы собрать солнечную батарею надо:

  • Изготовить каркас – рамку из алюминиевых уголков или деревянных реек. Форму корпуса, и соответственно, форму солнечной батареи выбирать можно любую. Надо подготовить подложку из ДВП и защитное стекло в размер.
  • Спаять солнечные элементы. Самый ответственный этап: от качественной спайки зависит итоговый КПД батареи. 3. Уложить пластину в каркас и загерметизировать – завершающий этап работы.

Главная часть солнечной батареи составляют фотоэлементы, которые преобразовывают энергию дневного светила в электрическую.

Промышленность выпускает 3 вида пластин: монокристаллические, поликристаллические и тонкоплёночные (аморфные). Только 2 первых доступны по цене и закупаются как заготовки для будущих домашних экспериментов.

Различие между ними состоит в КПД – до 14% и 9% соответственно, долговечности – 30 и 20 лет службы, и чувствительности к интенсивности солнечного света.

Только батареи с поликристаллическими проводниками не снижают выработку электроэнергии в пасмурную погоду.

Имеет смысл закупать уценённые фотоэлементы второго сорта – для промышленных целей они не подходят, а существующие дефекты не ухудшают качество самоделок.

Приобретённые фотоэлементы требуется спаять между собой. Отдельный элемент даёт 0.5 В напряжения, обычно домашние умельцы ориентируются на номинальное напряжение готового изделия 18 В.

Правильно объединяя цепь, легко добиться нужных потребительских свойств: параллельное соединение увеличивает силу тока, последовательное – напряжение.

На рабочем столе должен быть паяльник, флюс и припой. Олово проволочное, флюс бескислотный, оставляющий минимум жирных следов.

Кремниевые пластины укладываются на защитное стекло, оставляя зазор 5 мм: при нагревании фотоэлементы расширяются. При спайке важно соблюдать полярность – дорожки с отрицательным знаком и положительным различить не сложно.

Обратите внимание!

Лучше приобретать солнечные элементы с уже припаянными плоскими проводниками к солнечным элементам, а самостоятельно только объединять их в цепь. Крайние элементы цепи выводятся на общую шину.

Дополнительно следует припаять диода Шоттки 31DQ03 или аналогичный, чтобы не допустить саморазряда батареи в неактивном состоянии.

Сердцевина солнечной батареи готова, осталось уложить её в подготовленный корпус. После этого по центру каждого отдельного фотоэлемента наносится одна капля термостойкого герметика (если капель несколько, то при расширении от нагревания пластина может лопнуть) и аккуратно накрывается подложкой, затем крышкой.

При помощи силикона следует загерметизировать стыки, и изделие готово.Что может быть альтернативой промышленным фотоэлементам

Фото солнечных батарей из подручных радиодеталей удивляют своей оригинальностью, хотя технические характеристики имеют не очень впечатляющие.

Обратите внимание!

Для домашнего производства электричества можно использовать разнообразный материал:

  • Транзисторы типа КТ или П, внутри которых расположен полупроводниковый кремниевый элемент. С них срезается металлическая крышка, и открывшееся пластина способна выполнить функции фотоэлемента, её напряжение 0,35 В.
  • Диоды Д223Б. Их преимущества перед другими – напряжение 0,35 В при компактных размерах, удобный корпус, лёгкое очищение от ненужной краски при помощи ацетона для последующей работы.
  • Медная фольга.

Чтобы она приобрела свойства преобразовывать солнечную энергию в электрическую, необходимо осуществить специальную обработку:

  • Обезжирить.
  • Обработать наждачной бумагой с целью удаления защитной оксидной плёнки и возможной коррозии. Прокалить на газовой горелке до образования оксида меди – пластина меняет цвет на чёрный и нагревается после этого полчаса.
  • Заготовка после медленного охлаждения аккуратно промывается под проточной водой с целью удаления черной пленки.

Искомый полупроводник – пластина с тонким слоем медной окиси. В отличие от первых двух вариантов, для дальнейшей работы паяльные работы здесь не нужны.

Требуется поместить соленый раствор 2 кусочка фольги одинакового размера, но разных по свойствам – обработанный и первоначальный вариант.

Соприкасаться они не должны, зажать «крокодильчиками» с проводами. Положительный полюс – к чистой меди, отрицательный – к оксиду. Солёный раствор в прозрачной ёмкости на 2-3 см не доходит до верхней части пластин.

Купить солнечные батареи в виду достаточно высокой цены безболезненно для семейного бюджета может не каждый. Проявите себя в техническом творчестве, порадуйте домочадцев и удивите гостей результатами своего труда.

Обратите внимание!

Фото солнечной батареи своими руками