Сопротивление паропроницанию песчаника. Сопротивление паропроницанию материалов и тонких слоев пароизоляции

Таблица паропроницаемости строительных материалов

Информацию по паропроницаемости я собрал, скомпоновав несколько источников. По сайтам гуляет одна и та же табличка с одними и теми же материалами, но я её расширил, добавил современные значения паропроницаемости с сайтов производителей строительных материалов. Также я сверил значения с данными из документа «Свод правил СП 50.13330.2012» (приложение Т), добавил те, которых не было. Так что на данный момент это наиболее полная таблица.

Материал Коэффициент паропроницаемости,
мг/(м*ч*Па)
Железобетон 0,03
Бетон 0,03
Раствор цементно-песчаный (или штукатурка) 0,09
Раствор цементно-песчано-известковый (или штукатурка) 0,098
Раствор известково-песчаный с известью (или штукатурка) 0,12
Керамзитобетон, плотность 1800 кг/м3 0,09
Керамзитобетон, плотность 1000 кг/м3 0,14
Керамзитобетон, плотность 800 кг/м3 0,19
Керамзитобетон, плотность 500 кг/м3 0,30
Кирпич глиняный, кладка 0,11
Кирпич, силикатный, кладка 0,11
Кирпич керамический пустотелый (1400 кг/м3 брутто) 0,14
Кирпич керамический пустотелый (1000 кг/м3 брутто) 0,17
Крупноформатный керамический блок (тёплая керамика) 0,14
Пенобетон и газобетон, плотность 1000 кг/м3 0,11
Пенобетон и газобетон, плотность 800 кг/м3 0,14
Пенобетон и газобетон, плотность 600 кг/м3 0,17
Пенобетон и газобетон, плотность 400 кг/м3 0,23
Плиты фибролитовые и арболит, 500-450 кг/м3 0,11 (СП)
Плиты фибролитовые и арболит, 400 кг/м3 0,26 (СП)
Арболит, 800 кг/м3 0,11
Арболит, 600 кг/м3 0,18
Арболит, 300 кг/м3 0,30
Гранит, гнейс, базальт 0,008
Мрамор 0,008
Известняк, 2000 кг/м3 0,06
Известняк, 1800 кг/м3 0,075
Известняк, 1600 кг/м3 0,09
Известняк, 1400 кг/м3 0,11
Сосна, ель поперек волокон 0,06
Сосна, ель вдоль волокон 0,32
Дуб поперек волокон 0,05
Дуб вдоль волокон 0,30
Фанера клееная 0,02
ДСП и ДВП, 1000-800 кг/м3 0,12
ДСП и ДВП, 600 кг/м3 0,13
ДСП и ДВП, 400 кг/м3 0,19
ДСП и ДВП, 200 кг/м3 0,24
Пакля 0,49
Гипсокартон 0,075
Плиты из гипса (гипсоплиты), 1350 кг/м3 0,098
Плиты из гипса (гипсоплиты), 1100 кг/м3 0,11
Минвата, каменная, 180 кг/м3 0,3
Минвата, каменная, 140-175 кг/м3 0,32
Минвата, каменная, 40-60 кг/м3 0,35
Минвата, каменная, 25-50 кг/м3 0,37
Минвата, стеклянная, 85-75 кг/м3 0,5
Минвата, стеклянная, 60-45 кг/м3 0,51
Минвата, стеклянная, 35-30 кг/м3 0,52
Минвата, стеклянная, 20 кг/м3 0,53
Минвата, стеклянная, 17-15 кг/м3 0,54
Пенополистирол экструдированный (ЭППС, XPS) 0,005 (СП); 0,013; 0,004 (???)
Пенополистирол (пенопласт), плита, плотность от 10 до 38 кг/м3 0,05 (СП)
Пенополистирол, плита 0,023 (???)
Эковата целлюлозная 0,30; 0,67
Пенополиуретан, плотность 80 кг/м3 0,05
Пенополиуретан, плотность 60 кг/м3 0,05
Пенополиуретан, плотность 40 кг/м3 0,05
Пенополиуретан, плотность 32 кг/м3 0,05
Керамзит (насыпной, т.е. гравий), 800 кг/м3 0,21
Керамзит (насыпной, т.е. гравий), 600 кг/м3 0,23
Керамзит (насыпной, т.е. гравий), 500 кг/м3 0,23
Керамзит (насыпной, т.е. гравий), 450 кг/м3 0,235
Керамзит (насыпной, т.е. гравий), 400 кг/м3 0,24
Керамзит (насыпной, т.е. гравий), 350 кг/м3 0,245
Керамзит (насыпной, т.е. гравий), 300 кг/м3 0,25
Керамзит (насыпной, т.е. гравий), 250 кг/м3 0,26
Керамзит (насыпной, т.е. гравий), 200 кг/м3 0,26; 0,27 (СП)
Песок 0,17
Битум 0,008
Полиуретановая мастика 0,00023
Полимочевина 0,00023
Вспененный синтетический каучук 0,003
Рубероид, пергамин 0 - 0,001
Полиэтилен 0,00002
Асфальтобетон 0,008
Линолеум (ПВХ, т.е. ненатуральный) 0,002
Сталь 0
Алюминий 0
Медь 0
Стекло 0
Пеностекло блочное 0 (редко 0,02)
Пеностекло насыпное, плотность 400 кг/м3 0,02
Пеностекло насыпное, плотность 200 кг/м3 0,03
Плитка (кафель) керамическая глазурованная ≈ 0 (???)
Плитка клинкерная низкая (???); 0,018 (???)
Керамогранит низкая (???)
ОСП (OSB-3, OSB-4) 0,0033-0,0040 (???)

Узнать и указать в этой таблице паропроницаемость всех видов материалов трудно, производителями создано огромное количество разнообразных штукатурок, отделочных материалов. И, к сожалению, многие производители не указывают на своей продукции такую важную характеристику как паропроницаемость.

Например, определяя значение для теплой керамики (позиция «Крупноформатный керамический блок»), я изучил практически все сайты производителей этого вида кирпича, и только лишь у некоторых из них в характеристиках камня была указана паропроницаемость.

Также у разных производителей разные значения паропроницаемости. Например, у большинства пеностекольных блоков она нулевая, но у некоторых производителей стоит значение «0 - 0,02».

Показаны 25 последних комментариев. Показать все комментарии (63).
























Чтобы создать в доме благоприятный для проживания климат, нужно учитывать свойства используемых материалов.Особое внимание стоит уделить паропроницаемости. Этим термином называется способность материалов пропускать пары. Благодаря знаниям о паропроницаемости можно правильно подобрать материалы для создания дома.

Оборудование для определения степени проницаемости

Профессиональные строители имеют специализированное оборудование, которое позволяет точно определить паропроницаемость определенного строительного материала. Для вычисления описываемого параметра применяется следующее оборудование:

  • весы, погрешность которых является минимальной;
  • сосуды и чаши, необходимые для проведения опытов;
  • инструменты, позволяющие точно определить толщину слоев строительных материалов.

Благодаря таким инструментам точно определяется описываемая характеристика. Но данные о результатах опытов занесены в таблицы, поэтому во время создания проекта дома не обязательно определять паропроницаемость материалов.

Что нужно знать

Многие знакомы с мнением, что «дышащие» стены полезны для проживающих в доме. Высокими показателями паропроницаемости обладают следующие материалы:

  • дерево;
  • керамзит;
  • ячеистый бетон.

Стоит отметить, что стены, сделанные из кирпича или бетона, также обладают паропроницаемостью, но этот показатель является более низким. Во время скопления в доме пара он выводится не только через вытяжку и окна, но еще и через стены. Именно поэтому многие считают, что в строениях из бетона и кирпича дышится «тяжело».

Но стоит отметить, что в современных домах большая часть пара уходит через окна и вытяжку. При этом через стены уходит всего лишь около 5 процентов пара. Важно знать о том, что в ветреную погоду из строения, выполненного из дышащих стройматериалов, быстрее уходит тепло. Именно поэтому во время строительства дома следует учитывать и другие факторы, влияющие на сохранение микроклимата в помещении.

Стоит помнить, что чем выше коэффициент паропроницаемости, тем больше стены вмещают в себя влаги. Морозостойкость стройматериала с высокой степенью проницаемости является низкой. При намокании разных стройматериалов показатель паропроницаемости может увеличиваться до 5 раз. Именно поэтому необходимо грамотно производить закрепление пароизоляционных материалов.

Влияние паропроницаемости на другие характеристики

Стоит отметить, что, если во время строительства не был установлен утеплитель, при сильном морозе в ветреную погоду тепло из комнат будет уходить достаточно быстро. Именно поэтому необходимо грамотно производить утепление стен.

При этом долговечность стен с высокой проницаемостью является более низкой. Это связано с тем, что при попадании пара в стройматериал влага начинает застывать под воздействием низкой температуры. Это приводит к постепенному разрушению стен. Именно поэтому при выборе стройматериала с высокой степенью проницаемости необходимо грамотно установить пароизоляционный и теплоизоляционный слой. Чтобы узнать паропроницаемость материалов стоит использовать таблицу, в которой указаны все значения.

Паропроницаемость и утепление стен

Во время утепления дома необходимо соблюдать правило, согласно которому паропрозрачность слоев должна увеличиваться по направлению наружу. Благодаря этому зимой не будет происходить накопление воды в слоях, если конденсат станет накапливаться в точке росы.

Утеплять стоит изнутри, хотя многие строители рекомендуют закреплять тепло- и пароизоляцию снаружи. Это объясняется тем, что пар проникает из помещения и при утеплении стен изнутри влага не будет попадать в стройматериал. Часто для внутреннего утепления дома применяется экструдированный пенополистирол. Коэффициент паропроницаемости такого строительного материала является низким.

Еще одним способом утепления является разделение слоев при помощи пароизолятора. Также можно применить материал, который не пропускает пар. В пример можно привести утепление стен пеностеклом. Несмотря на то, что кирпич способен впитывать влагу, пеностекло препятствует проникновению пара. В таком случае кирпичная стена будет служить аккумулятором влаги и во время скачков уровня влажности станет регулятором внутреннего климата помещений.

Стоит помнить, что если утеплить стены неправильно, стройматериалы могут потерять свои свойства уже через небольшой отрезок времени. Именно поэтому важно знать не только о качествах используемых компонентов, но еще и о технологии их закрепления на стенах дома.

От чего зависит выбор утеплителя

Часто владельцы домов для утепления используют минеральную вату. Данный материал отличается высокой степенью проницаемости. По международным стандартам сопротивления паропроницаемости равен 1. Это означает, что минеральная вата в этом отношении практически не отличается от воздуха.

Именно об этом многие производители минеральной ваты упоминают достаточно часто. Часто можно встретить упоминание о том, что при утеплении кирпичной стены минеральной ватой ее проницаемость не снизится. Это действительно так. Но стоит отметить, что ни один материал, из которого изготавливаются стены, не способен выводить такое количество пара, чтобы в помещениях сохранялся нормальный уровень влажности. Также важно учитывать, что многие отделочные материалы, которые используются при оформлении стен в комнатах, могут полностью изолировать пространство, не пропуская пар наружу. Из-за этого паропроницаемость стены значительно уменьшается. Именно поэтому минеральная вата незначительно влияет на обмен паром.

Всем известно, что комфортный температурный режим, и, соответственно, благоприятный микроклимат в доме обеспечивается во многом благодаря качественной теплоизоляции. В последнее время ведется очень много споров о том, какой должна быть идеальная теплоизоляция и какими характеристиками она должна обладать.

Существует ряд свойств теплоизоляции, важность которых не вызывает сомнения: это теплопроводность, прочность и экологичность. Совершенно очевидно, что эффективная теплоизоляция должна обладать низким коэффициентом теплопроводности, быть прочной и долговечной, не содержать веществ, вредных для человека и окружающей среды.

Однако есть одно свойство теплоизоляции, которое вызывает массу вопросов – это паропроницаемость. Должен ли утеплитель пропускать водяной пар? Низкая паропроницаемость – достоинство это или недостаток?

Аргументы «за» и «против»

Сторонники ватных утеплителей уверяют, что высокая паропропускная способность – это несомненный плюс, паропроницаемый утеплитель позволит стенам вашего дома «дышать», что создаст благоприятный микроклимат в помещении даже при отсутствии какой-либо дополнительной системы вентиляции.

Адепты же пеноплэкса и его аналогов заявляют: утеплитель должен работать как термос, а не как дырявый «ватник». В свою защиту они приводят следующие аргументы:

1. Стены – это вовсе не «органы дыхания» дома. Они выполняют совершенно иную функцию – защищают дом от воздействия окружающей среды. Органами дыхания для дома является вентиляционная система, а также, частично, окна и дверные проемы.

Во многих странах Европы приточно-вытяжная вентиляция устанавливается в обязательном порядке в любом жилом помещении и воспринимается такой же нормой, как и централизованная система отопления в нашей стране.

2. Проникновение водяного пара сквозь стены является естественным физическим процессом. Но при этом количество этого проникающего пара в жилом помещении с обычным режимом эксплуатации настолько мало, что его можно не брать в расчет (от 0,2 до 3%* в зависимости от наличия/отсутствия системы вентиляции и её эффективности).

* Погожельски Й.А, Каспэркевич К. Тепловая защита многопанельных домов и экономия энергии, плановая тема NF-34/00, (машинопись), библиотека ITB.

Таким образом, мы видим, что высокая паропроницаемость не может выступать в качестве культивируемого преимущества при выборе теплоизоляционного материала. Теперь попробуем выяснить, может ли данное свойство считаться недостатком?

Чем опасна высокая паропроницаемость утеплителя?

В зимнее время годы, при минусовой температуре за пределами дома, точка росы (условия, при которых водяной пар достигает насыщения и конденсируется) должна находиться в утеплителе (в качестве примера взят экструдированный пенополистирол).

Рис.1 Точка росы в плитах ЭППС в домах с облицовкой по утеплителю

Рис.2 Точка росы в плитах ЭППС в домах каркасного типа

Получается, что если теплоизоляция имеет высокую паропроницаемость, то в ней может скапливаться конденсат. Теперь выясним, чем же опасен конденсат в утеплителе?

Во-первых, при образовании в утеплителе конденсата он становится влажным. Соответственно, снижаются его теплоизоляционные характеристики и, наоборот, увеличивается теплопроводность. Таким образом, утеплитель начинает выполнять противоположную функцию – выводить тепло из помещения.

Известный в области теплофизики эксперт, д.т.н., профессор, К.Ф. Фокин заключает: «Гигиенисты рассматривают воздухопроницаемость ограждений как положительное качество, обеспечивающее естественную вентиляцию помещений. Но с теплотехнической точки зрения воздухопроницаемость ограждений скорее отрицательное качество, так как в зимнее время инфильтрация (движение воздуха изнутри-наружу) вызывает дополнительные потери тепла ограждениями и охлаждение помещений, а эксфильтрация (движение воздуха снаружи-вовнутрь) может неблагоприятно отразиться на влажностном режиме наружных ограждений, способствуя конденсации влаги».

Кроме того в СП 23-02-2003 «Тепловая защита зданий» раздел №8 указано, что воздухопроницаемость ограждающих конструкций для жилых зданий должна быть не более 0,5 кг/(м²∙ч).

Во-вторых , вследствие намокания теплоизолятор утяжеляется. Если мы имеем дело с ватным утеплителем, то он проседает, и образуются мостики холода. К тому же возрастает нагрузка на несущие конструкции. Через несколько циклов: мороз – оттепель такой утеплитель начинает разрушаться. Чтобы защитить влагопроницаемый утеплитель от намокания его прикрывают специальными пленками. Возникает парадокс: утеплитель дышит, но ему требуется защита полиэтиленом, либо специальной мембраной, которая сводит на нет все его «дыхание».

Ни полиэтилен, ни мембрана не пропускают молекулы воды в утеплитель. Из школьного курса физики известно, что молекулы воздуха (азот, кислород, углекислый газ) размером больше, чем молекула воды. Соответственно, воздух также не способен проходить через подобные защитные пленки. В итоге мы получаем помещение с дышащим утеплителем, но покрытое воздухонепроницаемой пленкой – своеобразную теплицу из полиэтилена.

Паропроницаемость материалов таблица – это строительная норма отечественных и, конечно же, международных стандартов. Вообще, паропроницаемость – это определенная способность матерчатых слоев активно пропускать водяные пары за счет разных результатов давления при однородном атмосферном показателе с двух сторон элемента.

Рассматриваемая способность пропускать, а также задерживать водяные пары характеризуется специальными величинами, носящими название коэффициент сопротивляемости и паропроницаемости.

В момент лучше акцентировать собственное внимание на международные установленные стандарты ISO. Именно они определяют качественную паропроницаемость сухих и влажных элементов.

Большое количество людей являются приверженцами того, что дышащие – это хороший признак. Однако это не так. Дышащие элементы – это те сооружения, которые пропускают как воздух, так и пары. Повышенной паропроницаемостью обладают керамзиты, пенобетоны и деревья. В некоторых случаях кирпичи тоже имеют данные показатели.

Если стена наделена высокой паропроницаемостью, то это не значит, что дышать становится легко. В помещении набирается большое количество влаги, соответственно, появляется низкая стойкость к морозам. Выходя через стены, пары превращаются в обычную воду.

Большинство производителей при расчетах рассматриваемого показателя не учитывают важные факторы, то есть хитрят. По их словам, каждый материал тщательно просушен. Отсыревшие увеличивают тепловую проводимость в пять раз, следовательно, в квартире или ином помещении будет достаточно холодно.

Наиболее страшным моментом является падение ночных температурных режимов, ведущих к смещению точки росы в настенных проемах и дальнейшему замерзанию конденсата. Впоследствии образовавшиеся замерзшие воды начинают активно разрушать поверхности.

Показатели

Паропроницаемость материалов таблица указывает на существующие показатели:

  1. , являющаяся энергетическим видом переноса теплоты от сильно нагретых частиц к менее нагретым. Таким образом, осуществляется и появляется равновесие в температурных режимах. При высокой квартирной тепловой проводимости жить можно максимально комфортабельно;
  2. Тепловая емкость рассчитывает количество подаваемого и содержащегося тепла. Его в обязательном порядке необходимо подводить к вещественному объему. Именно так рассматривается температурное изменение;
  3. Тепловое усвоение является ограждающим конструкционным выравниванием в температурных колебаниях, то есть степень поглощения настенными поверхностями влаги;
  4. Тепловая устойчивость — это свойство, ограждающее конструкции от резких тепловых колебательных потоков. Абсолютно вся полноценная комфортабельность в помещении зависит от общих тепловых условий. Тепловая устойчивость и емкость может быть активной в тех случаях, когда слои выполняются из материалов с повышенным тепловым усвоением. Устойчивость обеспечивает нормализованное состояние конструкциям.

Механизмы паропроницаемости

Влага, располагаемая в атмосфере, при пониженном уровне относительной влажности активно транспортируется через имеющиеся поры в строительных компонентах. Они приобретают внешний вид, подобный отдельным молекулам водяного пара.

В тех случаях, когда влажность начинает повышаться, поры в материалах заполняются жидкостями, направляя механизмы работы для скачивания в капиллярные подсосы. Паропроницаемость начинает увеличиваться, понижая коэффициенты сопротивляемости, при повышении в строительном материале влажности.

Для внутренних сооружений в уже оттапливаемых зданиях применяются показатели паропроницаемости сухого типа. В местах, где отопление переменное или же временное используются влажные виды строительных материалов, предназначенные для наружного варианта конструкций.

Паропроницаемость материалов, таблица помогает эффективно сравнить разнообразные типы паропроницаемости.

Оборудование

Для того чтобы корректно определить показатели паропроницаемости, специалисты используют специализированное исследовательское оборудование:

  1. Стеклянные чашки или сосуды для исследований;
  2. Уникальные средства, необходимые для измерительных толщинных процессов с высоким уровнем точности;
  3. Весы аналитического типа с погрешностью взвешивания.

С целью ее разгромождения

Расчеты единиц паропроницаемости и сопротивления паропроницанию. Технические характеристики мембран.

Часто, вместо величины Q используют величину сопротивления паропроницанию, по нашему это Rп (Па*м2*ч/мг), зарубежное Sd (м). Сопротивление паропроницанию обратная величина Q. При том импортная Sd - та же Rп, только выраженная в виде эквивалентного диффузионного сопротивления паропроницанию слоя воздуха (эквивалентная диффузионная толщина воздуха).
Вместо того чтобы дальше рассуждать словами соотнесем Sd и Rп численно.
Что значит Sd=0,01м=1см?
Это значит что плотность диффузионного потока при перепаде dP составляет:
J=(1/Rп)*dP=Dv*dRo/Sd
Здесь Dv=2,1e-5м2/с коэффициент диффузии водяного пара в воздухе (взятый при 0градC)/
Sd - наше самое Sd, а
(1/Rп)=Q
Преобразуем правое равенство воспользовавшись законом идеального газа (P*V=(m/M)*R*T => P*M=Ro*R*T => Ro=(M/R/T)*P)и видим.
1/Rп=(Dv/Sd)*(M/R/T)
Отсюда пока не понятное нам Sd=Rп*(Dv*M)/(RT)
Чтобы получить верный результат нужно все представить в единицах Rп,
точнее Dv=0,076 м2/ч
M=18000 мг/моль - молярная масса воды
R=8,31 Дж/моль/К - универсальная газовая постоянная
T=273К - температура по шкале Кельвина, соответствующая 0градC где и будем вести расчеты.
Итак, все подставляя имеем:

Sd= Rп*(0,076*18000)/(8,31*273)=0,6Rп или наоборот:
Rп=1,7Sd.
Здесь Sd - тот самый импортный Sd [м], а Rп [Па*м2*ч/мг] - наше сопротивление паропроницанию.
Также Sd можно связать с Q - паропроницаемостью.
Имеем, что Q=0,56/Sd , здесь Sd [м], а Q [мг/(Па*м2*ч)].
Проверим полученные соотношения. Для этого возьме технические характеристики различных мембран и подставим.
Для начала возьму данные по Tyvek отсюда
Данные в итоге интересные, но не очень пригодные для проеврки формул.
В частности для мембраны Soft получаем Sd=0,09*0,6=0,05м. Т.е. Sd в таблице занижен в 2,5 раза или, соответсвенно завышен Rп.

Беру дальше данные с просторов интернета. По мембране Fibrotek
Воспользуюсь последней парой данных проницаемость, в данном случае Q*dP=1200 г/м2/сут, Rп=0,029 м2*ч*Па/мг
1/Rп=34,5 мг/м2/ч/Па=0,83 г/м2/сут/Па
Отсюда вытащим перепад абсолютной влажности dP=1200/0,83=1450Па. Данная влажность соответствует точке росы 12,5град или влажности 50% при 23град.

На просторах интернета также обнаружил на ином форуме фразу:
Т.е. 1740 нг/Па/с/м2=6,3 мг/Па/ч/м2 соответствует паропроницаемости ~250г/м2/сут.
Попробую получить такое соотношение сам. Упоминается, что величина в г/м2/сут измеряется в том числе при 23град. Берем полученную ранее величину dP=1450Па и имеем приемлемое схождение результатов:
6,3*1450*24/100=219 г/м2/сут. Ура-ура.

Итак, теперь мы умеем соотносить паропроницаемость которую можете встретить в таблицах и сопротивление паропроницанию.
Осталось еще убедится что полученное выше соотношение между Rп и Sd верно. Пришлось порыться и нашел мембрану для которой приведены обе величины (Q*dP и Sd), при том Sd конкретная величина, а не "неболее". Перфорированная мембрана на основе ПЭ пленки
И вот данные:
40,98 г/м2/сут => Rп=0,85 =>Sd=0,6/0,85=0,51м
Опять не сходится. Но в принципе результат недалек, что учитывая то что неизвестно при каких параметрах определена паропроницаемость вполне нормально.
Что интересно, по Tyvek получили несхождение в одну сторону, по IZOROL в другую. Что говорит о том что везде каким-то величинам доверять нельзя.

PS Буду признателен за поиски ошибок и сравнений с иными данными и нормативами.