Типы турбобуров. Назначение, условия работы и классификация буровых насосов

1. Турбобуры. Назначение, типы, конструктивные особенности.

В турбинном бурении наибольший крутящий момент обусловлен только сопротивлением породы вращению долота (труб и механизмов между долотом и турбобуром в случае их установки). Максимальный крутящий момент в трубах, определяемый расчетом турбины (значением её тормозного момента) не зависит от глубины скважины, скорости вращения долота, осевой нагрузки на долото и механических свойств проходимых горных пород.

Практика применения турбобуров показывает, что стойкость труб при этом способе бурения примерно в 10 раз превышает стойкость труб в роторном бурении. В турбинном бурении коэффициент передачи мощности от источника энергии к долоту значительно выше, чем в роторном.

Современный турбобур должен обеспечивать следующие характеристики и функции:

    Достаточный крутящих момент при удельных расходах жидкости не более 0,07 л/с на 1 см² площади забоя.

    Устойчивую работу при частотах вращения менее 7 с для шарошечных и 7 – 10 с для алмазных долот.

    Максимально возможный КПД.

    обеспечение перепада давления на долоте не менее 7 МПа.

    Наработку на отказ не менее 300 ч.

    Долговечность не менее 2000 ч.

    Постоянство энергетической характеристики по меньшей мере до наработки на отказ.

    Независимость энергетической характеристики от давления и температуры окружающей среды.

    Возможность изменения реологических свойств бурового раствора в процессе долбления.

    Возможность введения в буровой раствор различных наполнителей и добавок.

    Возможность осуществления промывки ствола скважины без вращения долота.

    Возможность проведения замеров траектории ствола скважины в любой точке вплоть до долота без подъема бурильной колонны.

    Стопорение выходного вала с корпусом в случае необходимости и освобождение от стопорения.

    Гашение вибраций бурильного инструмента

    Экономию проведённых затрат на 1 м проходки скважины по сравнению с альтернативными способами и средствами бурения.

В одной конструкции все эти требования воплотить очень сложно. В то же время целесообразно иметь возможно меньшее количество типов турбобуров одинакового диаметра.

В начале 50-х годов в связи с возрастанием глубин скважин стали стремиться к увеличению числа ступеней турбины для снижения частот вращения долот. Появились секционные турбобуры, состоящие из двух-трёх секций, собираемых непосредственно на буровой. Секции свинчивались с помощью конической резьбы, а их валы соединялись сначала конусными, а затем конусно-шлицевыми муфтами. Осевая опора секционного турбобура устанавливалась в нижней секции.

В дальнейшем с целью упрощения эксплуатации турбобуров осевая опора была вынесена в отдельную секцию – шпиндель. Это усовершенствование позволило производить смену на буровой наиболее быстроизнашиваемого узла турбобура – его опоры.

Резинометаллическая пята, хорошо работающая при использовании в качестве бурового раствора воды или буровых (глинистых) растворов с относительно низким содержанием твердой фазы, а также при невысоких значениях перепада давления на долоте, в случае применения утяжеленных или сильно загрязненных буровых растворов существенно искажала выходную характеристику турбобура, что снижало эффективность способа бурения, поэтому в конце 50-х годов были начаты интенсивные исследования по разработке опоры качения турбобура.

В начале 60-х годов Р.А. Ионнесяном и соавторами была создана упорно-радиальная шаровая опора турбобура серии 128 000, представляющая собой многоступенчатый шарикоподшипник двухстороннего действия.

Дальнейшее совершенствование конструкций турбобура связано с появлением новых высокопроизводительных шарошечных долот с герметизированными маслонаполненными опорами. Для эффективной отработки этих долот требуются частоты вращения приблизительно 2,5 – 5 с, что привело к созданию ряда новых направлений в конструировании турбобуров:

    с системой гидродинамического торможения;

    многосекционных;

    с высокоциркулятивной турбиной и клапаном-регулятором расхода бурового раствора;

    с системой демпфирования вибраций;

    с разделенным потоком жидкости и полым валом;

    с плавающей системой статора;

    с тормозной приставкой гидромеханического типа;

    с редукторной приставкой.

Появились также гидравлические забойные двигатели объемного типа – винтовые.

Секционные унифицированные шпиндельные турбобуры

Секционные унифицированные шпиндельные турбобуры типа 3ТСШ! Предназначены для бурения скважин шарошечными и алмазными долотами. Состоят из трех турбинных и одной шпиндельной секции. В шпинделе установлена непроточная резинометаллическая осевая опора, которая выполняет также функцию уплотнения вала турбобура.

В каждой турбинной секции размещено около 100 ступеней турбины, по четыре радиальные опоры и по три ступени предохранительной осевой пяты. Последняя применяется для устранения опасности соприкосновения роторов и статоров турбины из-за износа шпиндельного подшипника в процессе работы.

Высокомоментные турбобуры с системой гидроторможения

Высокомоментные турбобуры типа АГТШ с системой гидродинамического торможения предназначены для бурения глубоких скважин шарошечными долотами, но могут применяться и при алмазном бурении.

Состоят из трех секций и шпинделя. Две турбинные секции содержат многоступенчатую высокоциркулятивную турбину. В третьей устанавливаются ступени гидродинамического торможения (ГТ). Ступени ГТ состоят из статора и ротора, лопатки венцов которых имеют безударное обтекание жидкостью на тормозном режиме. При вращении такого ротора возникает крутящий момент, противоположный моменту, развиваемому турбиной турбобура. Значение тормозящего момента пропорционально частоте вращения вала.

В шпинделе турбобура установлен упорно-радиальный шарикоподшипник серии 128 000. в качестве уплотнения вала используются круглые резиновые кольца ПРУ.

Многосекционные турбобуры

С целью снижения частоты вращения долота и наращивания крутящего момента на валу турбобура применяются многосекционные (свыше трех секций) турбинные сборки. Серийные турбобуры, собранные из пяти-шести турбинных секций, позволяют эффективно отрабатывать высокопроизводительные долота при пониженных расходах бурового раствора, а также предоставляют технологам значительно более широкие возможности для выбора оптимальных параметров режима бурения.

По своей конструктивной схеме многосекционный турбобур не отличается от серийного. Однако увеличение числа турбинных секций предъявляет более высокие требования к надежности работы шпинделя турбобура: он должен быть более надежным и более долговечным, чем шпиндели серийных турбобуров. Этим требованиям отвечают шпиндели с лабиринтным дисковым уплотнением типа ШФД. Их долговечность составляет 2000-4000 ч.

Формирование энергетической характеристики многосекционного турбобура может осуществляться несколькими путями: использованием разных типов турбин, их сочетанием со ступенчатыми ГТ, а также регулированием расхода бурового раствора через турбину.

Турбобур с независимой подвеской

Увеличение числа секций турбобура позволяет сформировать оптимальную энергетическую характеристику для бурения шарошечными долотами с герметизированными маслонаполненными опорами и алмазными породоразрушающими инструментами. Этот путь представляется наиболее простым и надежным, однако требует более квалифицированного подхода к сборке и регулировке турбинных секций. Для упрощения этих операций и взаимозаменяемости секций разработана конструкция турбобура с независимой подвеской.

Каждая турбинная секция с независимой подвеской имеет свой упорный шарикоподшипник. Корпусы секций соединяются между собой с помощью конической резьбы, а валы – квадратными полумуфтами и могут свободно перемещаться в осевом направлении. В результате такой компоновки секций износ упорного подшипника шпинделя не влияет на осевой зазор между статором и ротором турбины. Последний определяется только износом подшипников, установленных в турбинных секциях. Поскольку осевая нагрузка на эти секции действует только с одной стороны и практически не имеет динамической составляющей, то этот износ легко прогнозируется. При сборке ротор турбины устанавливается в крайнее верхнее положение относительно статора, что позволяет увеличить время работы упорного подшипника секции. По данным промысловых испытаний диапазон наработки турбинной секции на отказ составляет 120-350 ч.

Упорный подшипник шпинделя работает в тяжелых условиях. Действующая на него реакция забоя скважины переменна по величине и частотам возмущения. Динамические силы приводят к интенсивному износу этого подшипника. Однако допустимый осевой люфт в опоре может составлять около 16-20 мм, поэтому наработка на отказ может быть вполне соизмерима и даже выше, чем у шпинделя обычного типа, но только в тех случаях, когда износ опоры не сопровождается расколом отдельных ее элементов (обоймы, шара).

Турбобур с независимой подвеской может быть собран с турбиной любого типа. В каждой секции можно установить по 80-90 ступеней.

Турбобур с плавающим статором

Турбобуры с плавающим статором обладают теми же преимуществами, что и турбобуры с независимой подвеской секций, однако осевая опора шпинделя имеет повышенную гидравлическую нагрузку.

Их конструкции принципиально отличаются от известных. Каждый статор такого турбобура имеет свободу перемещения в осевом направлении и с помощью шпонки, заходящей в специальный паз корпуса, запирается от проворота под действием собственного реактивного момента. Каждый ротор представляет собой и пяту для соответствующего статора, который не имеет приставочных дистанционных колец.

Такое исполнение ступени турбины позволяет до максимума увеличить средний диаметр турбины и в то же время до минимума сократить осевой люфт в ступени. Тем самым в корпусе стандартной длины удается разместить число ступеней в 1,4 раза больше, чем у серийных турбобуров.

Недостаток этой конструкции – свободный выход бурового раствора на внутреннюю поверхность корпуса турбинной секции.

Турбобур состоит из трех турбинных секций и шпинделя с двумя вариантами осевой опоры: подшипник ШШ)-172 и резинометаллическая пята ПУ-172. Средняя наработка турбобура на отказ (по шпинделю) составляет 210 ч. Отсутствие взаимосвязи между осевыми люфтами турбины и осевой опорой шпинделя позволяет исключить из практики турбинного бурения торцовый износ лопаточных венцов турбин и повысить межремонтный период работы шпинделей.

Турбобур с полым валом

Турбобуры с полым валом предназначены для бурения скважин шарошечными и алмазными долотами в сложных горно-геологических условиях. Турбобур состоит из турбинных секций и шпинделя. В зависимости от условий эксплуатации возможно использование от трех до шести турбинных секций для обеспечения требуемой характеристики турбобура.

Турбинные секции состоят из корпуса и полого вала, установленного внутри корпуса на четырех резинометаллических радиальных опорах. В пространстве между корпусом и полым валом установлено около 100 ступеней турбины. Концы полого вала оборудованы конусно-шлицевыми полумуфтами, внутри которых имеются уплотнительные элементы, предотвращающие утечку бурового раствора из полости вала к турбине. При сборке турбинных секций соблюдаются заданные размеры вылета и утопания полумуфт для обеспечения необходимого положения роторов относительно статоров.

Шпиндель турбобура состоит из корпуса и полого вала, установленного внутри корпуса на резинометаллических радиальных опорах и упорно-радиальном шариковом подшипнике серии 128 000.

Наличие полых валов турбинных секций и шпинделя позволяет осуществлять следующие операции:

    поддерживать в насадках долота перепад давления 6-9 МПа без дополнительного нагружения буровых насосов;

    проводить замеры пространственного положения ствола скважины в непосредственной близости от долота без подъема бурильной колонны на дневную поверхность;

    на основании проведенных замеров корректировать осевую нагрузку на долото для управления процессом набора, сброса или стабилизации угла искривления ствола скважины;

    прокачивать через полость валов, минуя турбину, разного рода наполнители;

    спускать в аварийных случаях в полость вала приборы для определения места прихвата ПО-50 по Т 39-020-75 и торпеды, например, ТШ-35, ТШ-43, ТШ-50 по ТУ 25-04-2726-75, ТУ 25-04-2702-75 или ТДШ-25-1, ТДШ-50-2 по ТУ 39/5-137-73 и ТУ 39/5-138-73;

    продавливать буровой раствор и выравнивать его свойства через полый вал с последующим сбросом гидромониторного узла – такая операция позволяет во много раз сократить время для проведения указанных работ.

Турбобур с редуктором-вставкой

Турбобуры с редуктором вставкой типа РМ предназначены для эффективного использования шарошечных долот с маслонаполненными опорами при технологически необходимом расходе бурового раствора и уменьшенным по сравнению с другими гидравлическими двигателями перепадом давлений.

Маслонаполненный редуктор-вставка применяется в сочетании с турбинными секциями и шпинделем серийно выпускаемых турбобуров. Редуктор-вставка устанавливается между шпинделем и турбинными секциями, снабжен планетарной передачей и системой маслозащиты передачи и опор.

Планетарная передача двухрядная, зубчатая, с косозубым зацеплением Новикова. Система маслозащиты имеет уплотнение торцового типа. Выходной вал с помощью шлицевой муфты соединен с валом шпинделя, а входной вал с помощью полумуфты – с турбинными секциями.

Редуктор-вставка представляет собой автономный узел, который может быть заменен непосредственно на буровой. Средняя наработка на отказ маслонаполненного редуктора составляет 100-115 ч, а при бурении скважин с высокими забойными температурами (свыше 150 С) – около 40 ч.

В июне нынешнего года исполняется 120 лет изобретению, которое еще на рубеже XIX-XX веков при благоприятном стечении обстоятельств могло обеспечить российской нефтяной промышленности мощный технологический рывок. В 1895 году департамент торговли и промышленности Министерства финансов выдал инженеру-технологу Кузьме Симченко привилегию № 5892 «на систему бурения кругловращательными машинами», где основу составлял ротационный гидравлический забойный двигатель. Однако внедрение этой инновационной идеи в буровое дело последовало только через несколько десятилетий — и уже в рамках нового государства, Советского Союза

Роторный гамбит

Внедрение технологии механического роторного бурения, при котором вращение долота вместе со всей колонной бурильных труб осуществлялось станком с поверхности, стало одним из знаковых событий на этапе промышленного переворота в нефтяной промышленности в начале ХХ века. До этого наиболее распространенным методом был ударно-канатный. Впервые новую технологию применили американские бурильщики на нефтяных промыслах Техаса в 1901 году, а его производительность удалось существенно повысить после изобретения спустя семь лет (также в Штатах) шарошечного долота.

В России впервые роторное бурение было применено на Апшеронском полуострове в 1911 году, когда подрядчик фон Габер использовал на промысле в Сураханах два станка производства американской Oil Well Supply Co. Они представляли собой несложные механические устройства, в которых осевое усилие создавалось дифференциально-винтовыми, цепными и рычажными системами от парового двигателя. Высокая производительность нового оборудования произвела впечатление на русских нефтепромышленников, и этому примеру последовали инженеры лидера российской нефтяной промышленности «Товарищества нефтяного производства братьев Нобель», закупившие в США несколько роторных буровых станков, чуть позже к процессу подключились «Каспийско-Черноморское нефтепромышленное и торговое общество», подрядная фирма «Молот» и другие.

В 1913 году на промыслах Апшеронского полуострова работало 20 роторных станков

В 1913 году на промыслах Апшеронского полуострова работало уже 20 роторных станков. Однако вскоре выявились и недостатки этого способа бурения, проявлявшиеся на больших глубинах. Главная проблема — большое отклонение ствола скважины от вертикали, в связи с чем обсадные колонны часто не доходили до проектной глубины. Это заметно приостановило развитие направления.

С установлением советской власти и национализацией отрасли в стране началась реализация госпрограммы технического перевооружения нефтяной промышленности. К 1929 году роторное бурение стало бесспорным лидером: 86,7% применения на Апшеронском полуострове и 73,2% — в Грозненском районе. Буровые станки уже оснащались гидравлической подачей и системами плавного регулирования частоты вращения. Изменения в конструкции оборудования и технологии бурения привели к более чем десятикратному увеличению скорости проходки и снижению себестоимости буровых работ. Однако параллельно с массовым внедрением роторного бурения на советских нефтяных промыслах начались испытания еще более прогрессивного способа бурения скважин, призванного стать открытием новой эпохи в развитии нефтяной промышленности. Ведущая роль в этом процессе принадлежала талантливому российскому инженеру-механику Матвею Капелюшникову.

Турбобур инженера Капелюшникова

Матвей Капелюшников окончил механическое отделение Томского технологического института в 1914 году и был приглашен на работу в британскую компанию «Бакинское общество русской нефти» на Апшеронском полуострове. Уже после национализации нефтяной промышленности, в начале 1922 года инженер Капелюшников был назначен заместителем начальника Технического бюро объединения «Азнефть», и с того времени основным направлением его деятельности стало совершенствование буровой техники. Занявшись исследованием проблем роторного бурения, вскоре он весьма точно определил существенный недостаток этого способа: при значительной длине масса колонны бурильных труб внушительна, и всю эту тяжесть двигатель-ротор, находящийся на поверхности, должен вращать только для того, чтобы сообщить движение небольшому долоту, разрушающему породу на большой глубине. Таким образом, на полезную работу идет лишь малая часть энергии, а большая пропадает бесполезно. Вращаются сами трубы, при этом их наружные стенки истираются от породы, а внутренние повреждаются песком, всегда имеющимся в глинистом буровом растворе, конструкция быстро изнашивается, ломается, скручивается и требует частой замены. Выходом из технологического тупика стала бы разработка надежного и высокопроизводительного забойного двигателя. То есть применение на практике идеи Кузьмы Симченко.

Матвей Алкунович Капелюшников

Советский ученый, специалист в области нефтяной и горной механики, добычи и переработки нефти

Турбобур конструкции Капелюшникова

Напряженная работа инженера Капелюшникова и его помощников Семена Волоха и Николая Корнева принесла необходимый результат: впервые в мировой инженерной практике была успешно решена задача создания работоспособного забойного двигателя — редукторного турбобура. Первая опытная конструкция весила около тонны. В цилиндрическом кожухе помещался двигатель — одноступенчатая турбина, приводимая в движение глинистым раствором, накачиваемым насосом через полости бурильных труб. Она была соединена с долотом через зубчатый редуктор, при помощи которого уменьшалось число оборотов долота.

Первую в мире скважину с использованием нового метода пробурили в 1924 году на Сураханском промысле — ее глубина составила около 600 м. Преимущества турбобура стали очевидны практически сразу: при бурении вращается только долото, а тяжелая колонна труб лишь перемещается вдоль скважины по мере ее углубления. Что, соответственно, значительно сокращает количество аварий, особенно при работе на больших глубинах. Сообщение о выдаче патента «на изобретение гидравлического аппарата для бурения скважин вращательным способом при неподвижных трубах» на имя инженера Матвея Капелюшникова было опубликовано в центральной печати 31 августа 1925 года с указанием, что действие патента распространялось от 15 сентября 1924 года на 15 лет.

Изобретение турбобура в СССР вскоре привлекло пристальное внимание иностранного инженерного сообщества. В 1928 году американский журнал Petroleum пригласил Матвея Капелюшникова выступить с докладом о турбобуре на Международной выставке нефтяного оборудования в Талсе (штат Оклахома). В то же время крупные нефтяные компании Standard Oil Company of New York и Texaco Inc. обратились к руководству советской внешнеторговой организации «Амторг» с просьбой продемонстрировать работу турбобура Капелюшникова на американских нефтяных промыслах. Пожелание заокеанских коллег было удовлетворено, и в США отправилась советская буровая бригада во главе с инженером Капелюшниковым и с двумя турбобурами редукторного типа. Показательное турбинное бурение скважины прошло недалеко от городка Эрлсборо, на промысле компании Texas Oil Co. В одних и тех же условиях, на глубине около 700 м, при подаче глинистого раствора 16,5 л в секунду турбобур показал скорость бурения на 60% выше, чем роторный станок, потребляя втрое меньше энергии.

Результаты работы буровой бригады инженера Капелюшникова на американских нефтяных промыслах произвели большое впечатление на мировое деловое и инженерное сообщество, и вскоре ряд зарубежных фирм предложил советским торговым представителям и непосредственно Матвею Капелюшникову продать лицензию на турбобур. Однако советское правительство предпочло самостоятельно совершенствовать технологию, оставляя за собой право исключительного пользования. Правда, вскоре работа зашла в тупик.

Шумиловский прорыв

Главным недостатком турбобура конструкции Капелюшникова было ограничение эффективной работоспособности оборудования всего несколькими часами, и средняя коммерческая скорость турбинного бурения значительно отставала от роторного бурения в тех же условиях. Высокая скорость течения бурового раствора между лопатками турбины вызывала интенсивный эрозионный износ ее проточной части. Низкой была и долговечность маслонаполненного зубчатого редуктора. Его трущиеся части от большого удельного давления и попадания глинистого раствора в картер двигателя сильно изнашивались, и их приходилось менять очень часто. Наработка на отказ турбобура в среднем не превышала 10 часов. Поэтому первый турбобур по основным технико-экономическим показателям все же уступал доминировавшему в то время роторному способу бурения.

Петр Павлович Шумилов

Советский ученый,
ученый-нефтяник, изобретатель, педагог

Успешная проходка скважины в бухте Ильича (Баку) турбинным наклонно-направленным бурением положила начало внедрению наклонного турбобурения

Несовершенство оборудования привело к тому, что к началу 1930-х годов в СССР турбинное бурение стало терять сторонников среди практиков-буровиков и инженеров. Способствовал этому и очевидный прогресс в роторном бурении, которое благодаря применению мощных насосов, модернизации долот РХ («рыбий хвост») с наплавками из твердых сплавов существенно улучшило основные технико-экономические показатели. Изменить положение дел мог только технический прорыв. Этот прорыв обеспечила в первую очередь творческая группа специалистов Государственного исследовательского нефтяного института (ГИНИ) под руководством Петра Шумилова. Выпускника физико-механического факультета МГУ Шумилова сразу после получения им диплома, в 1928 году, на работу в ГИНИ пригласил академик Иван Губкин. Молодой инженер быстро прошел путь от научного сотрудника до заведующего отделом промысловой механики. В начале 30-х годов ХХ века Петр Шумилов принял активное участие в написании первого полного курса нефтяной гидравлики, который на долгие годы стал базовым учебником для специалистов-нефтяников. В этот же период он занялся главным делом жизни — созданием многоступенчатого турбобура.

Проанализировав работу турбобура Капелюшникова, Петр Шумилов пришел к принципиально новому в нефтяном машиностроении решению — применению многоступенчатой аксиальной турбины. На основании оригинальных теоретических исследований ученый разработал основные принципы теории безредукторного турбобура с многоступенчатой осевой гидравлической турбиной. Результаты этой работы стали основанием для создания в Баку «Экспериментальной конторы турбинного бурения» (ЭКТБ) во главе с самим автором новых подходов.

Реализацию концепции турбинного бурения Петр Шумилов видел в обеспечении максимальной мощности на долоте — забое. Итогом масштабной работы стала разработка конструкции многоступенчатого безредукторного турбобура Т6-150, первое испытание которого состоялось в 1935 году на Апшеронском полуострове на нефтепромысле имени Кагановича. Идеальной конструкция сразу не получилась: например, не была решена проблема надежности бурового долота на повышенных частотах вращения, необходимо было также решить ряд технологических задач, связанных и с режимами бурения, и с промышленным производством турбобура.

1. Проходка с морского основания
2. Разбуривание морского нефтяного месторождения с берега
3. Отклонение ствола скважины от сбросовой зоны (зоны разрыва) по направлению к нефтеносному участку
4. Проходка наклонной скважины, когда забой будет расположен под учаском, недоступным для монтажа буровой установки
5. Бурение на нефтяные пласты моноклинального типа
6. Бурение вспомогательной наклонной скважины для ликвидации пожара или открытого фонтана
7. Уход в сторону при аварии
8. Проходка наклонных скважин в районе замывания соляного купола
н нефть; в вода; г газ; с соль

В 1940 году коллектив ЭКТБ создал опытный образец турбобура Т10-100 с новой многоступенчатой турбиной, оснащенной одноярусным редуктором усиленного типа, обеспечивающим необходимое для бурения число оборотов непосредственно на валу. К началу Великой Отечественной войны турбобурами ЭКТБ было пробурено несколько опытных скважин на промыслах Азербайджана, Башкирии, Бугуруслана, что позволило найти технические решения, существенно повышающие надежность оборудования, оптимизирующие технологии его изготовления.

Пермский машиностроительный завод в 1950-е был одним из центров серийного производства турбобуров

В 1942 году Петру Шумилову и трем его соратникам была присуждена Сталинская премия «за изобретение многоступенчатой гидравлической турбины для бурения глубоких скважин». Этот год стал последним годом жизни ученого — он погиб на полигоне во время испытания нового типа противотанкового оружия. В 1943 году вышло посмертное издание Петра Шумилова «Теоретические основы турбинного бурения», по существу, подтвердившее наступление нового этапа становления турбинного бурения — теперь уже как самостоятельной области знания со своей научной базой, принципами конструирования, специфическими задачами и возможностями.

Дело Петра Шумилова достойно продолжили специалисты «Экспериментальной конторы турбинного бурения». В годы Великой Отечественной войны ЭКТБ было эвакуировано из Баку в Молотовскую (Пермскую) область. Здесь и произошло важное событие в истории отечественного бурового дела. На Краснокамском нефтяном месторождении под руководством главного инженера конторы Степана Аликина была разработана и успешно внедрена в производство технология наклонно-направленного турбинного бурения. Сложность бурения наклонных скважин на месторождении определялась необходимостью получать отклонение забоя на 400 м и более при глубинах скважин около 1 тыс. м, причем максимальная кривизна ствола пробуренных скважин должна была составлять 32-34°. В 1943 году 90% всех скважин в Прикамье были пробурены наклонно-направленным способом, что позволило уже в первом квартале года увеличить добычу нефти на 31%, повысить интенсивность бурения на 40%, производительность труда — на 24%. Успешный опыт наклонно-направленного турбинного бурения дал возможность пермским нефтяникам впервые в мире начать промышленное внедрение кустового бурения. При этом методе на одной площадке бурилось несколько наклонных скважин, забои которых направлялись в разные точки нефтяного пласта. Убедительный пример пермских нефтяников положил начало активному применению наклонно-направленного бурения в других районах «Второго Баку», что также решало и одну из серьезнейших проблем, замедлявших нефтедобычу в стране, — дефицита обсадных труб.

На месторождениях «Второго Баку»

После окончания войны в процессе создания новой топливно-энергетической базы страны — «Второго Баку», — Татарская и Башкирская АССР, Куйбышевская и Пермская области стали районами массового применения турбинного бурения, одновременно с которым активно проводились мероприятия по форсированию режима работы. Все это позволило увеличить коммерческую и механическую скорости проходки в 4-5 раз и за 15 лет (с 1945-го по 1960-й) объем буровых работ в стране вырос с 927 тыс. м до 6,7 млн м. За это время доля турбинного бурения выросла с 23% до 87%. Локомотивом процесса развития технологии стал Всесоюзный научно-исследовательский и проектный институт по бурению нефтяных и газовых скважин (ВНИИбурнефть), созданный 28 февраля 1953 года. С первых дней своего образования ВНИИбурнефть активно включился в освоение новых месторождений Волго-Уральской нефтегазовой провинции. Новым достижением ученых стало создание секционного турбобура ТС-1, состоящего из нескольких самостоятельных корпусов и валов с насаженными на них турбинами. Корпуса секций соединялись между собой при помощи замковой резьбы. Валы секции были взаимно связаны конусными фрикционными муфтами, что позволяло полностью передать гидравлическую нагрузку верхнего ротора на пяту нижней турбины. Испытания турбобура на месторождениях в Башкирской АССР продемонстрировали рост механической скорости бурения на 20% почти при той же проходке на долото. Причем в связи с уменьшением количества прокачиваемой жидкости энергетические затраты на 1 м проходки снижались до 40%.

Для бурения скважин малого диаметра в институте ВНИИбурнефть были спроектированы и изготовлены малогабаритные трехсекционные турбобуры ТС4. К этому же периоду относится разработка коротких турбобуров Т122М2К для направленного бурения, преимущества которых быстро оценили нефтяники.

В 1957 году ВНИИБУРнефть был переименован во Всесоюзный научно-исследовательский институт буровой техники (ВНИИБТ), в институте появились два крупных научно-конструкторских подразделения — «Отдел турбобуров» и «Лаборатория высокомоментных турбобуров». Опытные образцы новых турбобуров изготавливались на «Экспериментальном заводе ВНИИБТ» в подмосковных Люберцах и «Опытном заводе ВНИИБТ» в Котово Волгоградской области. Серийным производством турбобуров, в свою очередь, занимались Кунгурский, Пермский и Павловский машиностроительные заводы в Пермской области. Качество, надежность и высокую производительность советских турбобуров по достоинству оценило и международное сообщество буровиков. В 1958 году на Брюссельской международной выставке турбобур ТС4-5 был удостоен серебряной медали. Вскоре лицензии на изготовление и применение нескольких типов турбобуров были проданы в США, Канаду, Великобританию, Францию, ФРГ, Бельгию, Японию.

В Сибирь

В начале 1960-х годов началось создание новой топливно-энергетической базы Советского Союза в Западной Сибири. Уже к 1970 году на территории Тюменской области было открыто более 80 нефтяных, газовых и нефтегазовых месторождений. Среди них были и крупнейшие в мире: Самотлорское, Федоровское, Мамонтовское нефтяные месторождения, и Уренгойское, Медвежье, Заполярное — газовые. В крайне тяжелых природных и климатических условиях региона работать обычными методами было крайне сложно, а порой и невозможно. Начался поиск качественно новых подходов к эксплуатации техники, технологии, организации производства. Значимое место в этом процессе заняло и турбинное бурение. Например, в 1970 году бригада бурового мастера Михаила Сергеева, применяя форсированный режим при турбинном бурении, пробурила эксплуатационную скважину глубиной 1500 м с коммерческой скоростью 20 081 м/ст. — мес., что превысило средний показатель по Главтюменнефтегазу почти в семь раз.

14 апреля 1971 году в Западной Сибири впервые в стране было создано специализированное буровое объединение «ЗапСиббурнефть», что дало новый импульс развитию нефтедобычи в регионе. В числе основных направлений работы предприятия значилось и внедрение горизонтального и разветвтленно-горизонтального бурения с использованием турбобуров.

К этому времени в ВНИИБТ впервые в мире был разработан и испытан винтовой забойный двигатель, в котором в качестве рабочих органов был использован многозаходный винтовой героторный механизм. Свое применение в Западной Сибири и в других регионах нашли и секционные шпиндельные турбобуры 3ТСШ. Важная особенность их конструкции — принцип унификации, предусматривающий возможность использования в турбобуре турбин и опор любого типа соответствующего габаритного размера. Кроме того, в ВНИИБТ были разработаны турбобуры с высоколитражными турбинами точного литья 3ТСШ1-195 ТЛ, которые стали основным техническим средством, позволившим в СССР достичь наивысших скоростных показателей бурения скважин.

В 1980-е годы совершенствование техники и технологии турбинного бурения привело к появлению ряда новых направлений в конструировании турбобуров и соответствующих им технических средств. В целом к началу 90-х годов ХХ века в СССР с помощью турбинного бурения проходилось более 32 млн м скважин в год. Да и сейчас в России более 75% объема бурения ведется именно турбобуром.

Представляет собой гидравлическую турбину, приводимую в движение потоком промывочной жидкости. Основные детали: турбина, вал, опоры и корпус. Турбина – многоступенчатая, каждая ступень которой состоит из двух лопастных систем: неподвижной (статор) 2 и вращающейся (ротор) 1 см. рис. 1.

Рисунок 1. Ступень турбины турбобура. (1 – ротор; 2 – статор)

Многоступенчатость турбобура объясняется тем, что ограничены значения трех следующих факторов, от которых в прямой зависимости находится крутящий момент:

    расход промывочной жидкости не может быть увеличен из – за возрастания давления в циркуляционной системе и на выкиде бурового насоса;

    диаметр турбобура ограничен размером ствола скважины4

    частота вращения вала турбины, задается режимом бурения применительно к типу используемых долот и не может быть произвольно увеличена.

Большое число ступеней турбины при её малом диаметре (100 – 250 мм0, малом расходе жидкости (до 50 л/с) и частоте вращения вала (60 – 900 об/мин) позволяет создать довольно высокий (до 4 кН*м) крутящий момент. В разных моделях турбобуров применяется от 100 до 350 ступеней (укороченные, предназначенные для бурения в искривленных участках скважины, 30 – 60 ступеней, например Т12М3К – 215 бывает с 30 и 55 ступенями). При большом числе ступеней значительно увеличивается длина турбобура. Такие турбобуры для удобства изготовления и монтажа выполняют многосекционными (две – три секции).

По направлению течения жидкости в лопастных системах турбобур относится к прямоточным турбинам. Как в статоре, так и в роторе жидкость движется вдоль оси турбины.

Принцип действия

В статоре поток жидкости подготовляется для работы в роторе: скорость увеличивается и изменяет направление (см рис. 1). В каналах ротора, лопасти которого наклонены в противоположном направлении, скорость восстанавливается по величине и направлению. Затем жидкость входит в следующую ступень, где процесс повторяется.

При изменении скорости в межлопаточных каналах (и соответствующего импульса потока) возникает сила, с которой поток действует на лопасти, суммируясь во всех ступенях в общий крутящий момент. Крутящий момент в статоре (реактивный) воспринимается корпусом турбобура, жестко связанным с бурильной колонной. Равный, но противоположно направленный крутящий момент (активный), действующий в роторе, через вал турбобура передается долоту.

Устройство односекционного турбобура

Устройство односекционного турбобура показано на рис. 2.

Рисунок 2. Односекционный турбобур

1 и 24 – переводники; 2 – втулка корпуса; 3 – корпус; 4 – контргайка; 5 – колпак; 6 – роторная гайка; 7 и 10 – диски пяты; 8 – подпятник; 9 – кольцо пяты; 11 и 18 – регулировочные кольца; 12 и 17 – уплотнительные кольца; 13 – статор; 14 – ротор; 15 – втулка средней опоры; 16 – средняя опора; 19 – упор; 20 – шпонка; 21 – втулка нижней опоры; 22 – ниппель; 23 – вал

Он состоит из деталей двух систем: вращающейся – ротора и неподвижной – статора. К ротору относится вал с насаженными на нем рабочими (турбинными) колесами, вращающимися частями опор и крепежными деталями. Систему статора составляют корпус с переводником, направляющие колеса, неподвижные части опор и ниппель. Крепление деталей на валу и в корпусе – силами трения, действующими по торцам деталей при затяжке резьбовых соединений роторной гайки и ниппеля. Ротор фиксируется относительно статора при помощи осевой и радиальной опор. Для регулировки взаимного положения лопастных систем ротора статора служит кольцо, расположенное между статором и подпятником.

Выходные параметры турбобура: мощность на валу, крутящий момент, перепад давления в турбобуре – существенно зависят от расхода промывочной жидкости Qи частоты вращения вала машиныn. Зависимость крутящего момента М, мощности на валу N, перепада давления ΔР и коэффициента полезного действия η от частоты вращения n представляет собой рабочую характеристику турбины турбобура (рис. 3)

Рисунок 3. Энергетическая характеристика турбины турбобура.

Режим работы, соответствующий максимальной мощности на валу турбины при постоянном расходе промывочной жидкости, называется экстремальным.

Поскольку при работе турбобура часть мощности затрачивается на преодоление трения в опорах, а иногда и между статорами и роторами, внешняя характеристика турбобура будет отличаться от рабочей характеристики турбины. Внешняя характеристика турбобура отражает зависимость мощности и крутящего момента от частоты вращения вала турбобура с учетом потерь в опорах.

Негосударственное образовательное учреждение

Среднего профессионального образования

«Нефтяной техникум»

КОНТРОЛЬНАЯ РАБОТА

ПО ДИСЦИПЛИНЕ

«Технология бурения нефтяных и газовых скважин»

№ Варианта13

Ижевск

1) Принцип работы турбобура. Сущность турбинного бурения, преимущества, недостатки и область применения…………………………..3

2) Основные требования, предъявляемые к расположению бурового оборудования……………………………………………………………………5

3) Бурение горных пород. Классификация пород по бурению………….8

4) Одношарошечные долота: конструкция, вооружение, типоразмеры, преимущества, недостатки и область применения их……………………..12

5) Легко сплавные бурильные трубы и замки к ним. Конструкция, размеры, преимущества, недостатки и область применения………………..15

6) Задача №1………………………………………………………………..18

7) Задача №2………………………………………………………………..19

8) Задача №3………………………………………………………………..20

9) Задача №4………………………………………………………………..21

10) Задача №5………………………………………………………………..22

11) Задача №6………………………………………………………………..23

12) Задача №7………………………………………………………………..24

13) Задача №8………………………………………………………………..25

14) Задача №9………………………………………………………………..26

15) Задача №10………………………………………………………………27

16) Список литературы……………………………………………………...28

Принцип работы турбобура. Сущность турбинного бурения, преимущества, недостатки и область применения

Турбобур - это разновидность бурового оборудования, гидравлический забойный двигатель, в котором гидравлическая энергия потока промывочной жидкости (бурового раствора) преобразуется в механическую энергию вращения вала, соединенного с породо-разрушающим инструментом (буровым долотом). Рабочим органом, в котором происходит преобразование энергии, служит многоступенчатая турбина осевого типа.

Так как турбобур устанавливают непосредственно над породо-разрушающим инструментом, то источником энергии и крутящего момента является давление потока жидкости, движущейся под напором поверхностного насоса.

Поток промывочной жидкости через бурильную колонну подается в первую ступень турбобура. В статоре первой ступени происходит формирование направления потока жидкости, то есть жидкость, пройдя каналы статора, приобретает направление. Таким образом, статор является направляющим аппаратом турбины.

Потоки жидкости из каналов статора поступают на лопатки ротора под заданным углом и осуществляют силовое воздействие на ротор, в результате которого энергия движущейся жидкости создает силы, стремящиеся повернуть ротор, жестко связанный с валом турбины. Поток жидкости из каналов ротора первой ступени поступает на лопатки направляющего аппарата второй ступени, где вновь происходят формирование направления движения потока жидкости и подача её на лопатки ротора второй ступени. На роторе второй ступени также возникает крутящий момент.

В результате жидкость под действием энергии давления, проходит все ступени турбины турбобура и через специальный канал подводится к породо-разрушающему инструменту. В многоступенчатых турбобурах крутящие моменты всех ступеней суммируются на валу. В процессе работы турбины на статорах, закрепленных неподвижно в корпусе турбобура, создается реактивный момент, равный по значению, но противоположный по направлению. Реактивный момент через корпус турбобура передается на бурильные трубы и осуществляет их закручивание на определенный угол, зависящий от жесткости и длины бурильной колонны.

Сущность турбинного бурения состоит в использовании забойной машины, называемой турбобуром. Турбобур преобразует поступательное движение очистного агента, подаваемого буровым насосом по колонне бурильных труб, во вращательное движение турбины, передающей вращение на долото или коронку.

Турбинное бурение чаще всего сочетается с оборудованием и процессами роторного бурения, может использоваться и совмещаться с колонковым и бурением подвижным вращателем.

Турбобуры применяется при бурении скважин различного назначения (группы А, Б, В, Г), разрез которых состоит из твердых, абразивных пород 6 - 12 категорий по буримости в интервалах бурения от 100 до 2000 (3000) м, когда плотность и вязкость бурового раствора может быть не высокой. Турбобуры также часто используются при разбуривании цементных мостов.

Кроме того, турбинное бурение эффективнее роторного при искусственном искривлении скважин, из-за повышенной гибкости секций турбобура.

Недостатками турбобуров являются высокая чувствительность к вязкости бурового раствора и высокая частота вращения, которая приводит к повышенной разработке ствола скважины при бурении мягких пород, а также ускоренному износу ПРИ и, следовательно, к увеличению количества СПО.

Турбобур (рис.2) представляет собой забойный гидравли­ческий агрегат с многоступенчатой гидравлической турбиной, приводимой в действие потоком бурового раствора, который закачивают в бурильную колонну с поверхности насосами.

Турбобур состоит из двух групп деталей: вращающихся и не вращающихся. Невращающуюся группу деталей составляют переводник 1, при помощи которого турбобур соединяется с бу­рильной колонной, цилиндрический корпус 2 с кольцами пяты 4, дисками статора 6, средней опорой и ниппелем 8. К вращаю­щейся группе деталей относится вал 3 с насаженными на нем дисками роторов 7 и пяты 5, закрепленными на валу при по­мощи шпонки, гайки и контргайки. Нижняя часть вала имеет отверстие внутри и боковые каналы для протока раствора к до­лоту и снабжено резьбой, которой через переводник присоеди­няется долото.

Турбина состоит из большого числа ступеней (100-350). Каждая ступень (Рис.3.) представляет собой два диска с лопатками: один диск - ротор - укреплен на валу турбобура, второй - статор. Лопатки статора и ротора расположены под углом друг к другу, вследствие чего поток жидкости, посту­пающий под углом из каналов статора на лопатки ротора, ме­няет свое направление и производит силовое воздействие на них. В результате этого создаются силы, стремящиеся повер­нуть закрепленный на валу ротор в одну сторону, а закреплен­ный в корпусе диск статора - в другую сторону. Далее поток раствора из каналов ротора вновь поступает на лопатки ста­тора ниже расположенной ступени, где вновь происходят изме­нение направления потока жидкости и подача его на лопатки ротора этой ступени. На роторе второй ступени также возни­кают силы, создающие активный крутящий момент, и т. д.



Рис.3. Ступень турбины турбобура.

А-внешний вид; Б-схема ступени; 1-статор; 2-ротор; 3-лопатки статора; 4-обод статора; 5-лопатки ротора.

Жидкость, поступающая в турбобур, про­ходит через все его ступени и подводится к В зависимости от требований бурения применяют турбобуры диаметром от 127 до 220 мм с числом ступеней от 25 до 350 и более. При большем числе ступеней для удобства перевозки и монтажа турбобур выполняется из отдельных секций (до че­тырех) длиной 6-10 м каждая, соединяемых между собой на буровой в один агрегат перед спуском в скважину.

Диски ротора и статора отливают из стали, ковкого чугуна или комбинируют из пластмассовых (капроновых, полипропиле­новых) венцов и стальных ступиц ротора и ободов статора. Профили лопаток статора и ротора обычно являются зеркальным отображением.

В турбобурах диаметром 170 мм и менее при­меняют безободные диски.

Ротор фиксируется в статоре посредством радиально-осевого и радиальных резинометаллических подшипников скольжения. В односекционных турбобурах и первых (нижних) секциях сек­ционных турбобуров используется различное расположениеопор.

Опора-пята, через которую передается осевая нагрузка от бурильной колонны долоту, в зависимости от конструкции рас­полагается в верхней или нижней частях турбобура. Резинометаллическая пята состоит из нескольких ступеней (рис.4). Каждая ступень имеет подпятник, который пред­ставляет собой металлический обод / с резиновой облицовкой 2, укрепляемый в корпусе, и стальной диск 3, сидящий на валутурбобура.



Рис. 4. Резинометаллическая пята.

Эластичная резиновая облицовка одного из элементов пяты или подшипника обеспечивает его работу при смазке буровым раствором и распределяет нагрузку по поверхности трения. Резинометаллические опоры турбобуров в зависимости от усло­вий эксплуатации имеют работоспособность в пределах 50-150 ч.

Пята, расположенная в верхней части турбобура, снабжа­ется каналами для протока раствора, а пята, расположенная в нижней части вала, не имеет каналов и служит лабиринтным уплотнением, препятствующим утечкам раствора в зазор между валом и ниппелем. При такой конструкции можно работать с некоторым перепадом давления в долотах без значительных утечек раствора через нижнее уплотнение. Валы верхних сек­ций имеют только радиальные опоры.

Ниппель, свинченный с корпусом турбобура, служит для зажатия дисков статора. Резиновая обкладка ниппеля является одновременно нижней радиальной опорой и сальником, уплот­няющим зазор между корпусом и валом турбобура.

Валы секций соединяются с помощью конусных фрикцион­ных или шлицевых муфт. Последний тип, более сложный в из­готовлении, приспособлен к условиям сильной вибрационной нагрузки при бурении крепких пород. Шлицы предназначены для предотвращения проворота муфты.

Активный крутящий момент, создаваемый каждым ротором, суммируется на валу, а реактивный момент, создаваемый на лопатках дис­ков статора, суммируется на корпусе турбобура. Эти оба мо­мента- активный и реактивный - равны по величине и про­тивоположны по направлению. Реактивный момент через кор­пус турбобура передается соединенной с ним бурильной ко­лонне, а активный - долоту.