Ветрогенераторы вертикальные своими руками. Ветряки для дома своими руками – какая модель самая подходящая? Из чего сделать ветрогенератор своими руками

В современных реалиях каждый домовладелец хорошо знаком с постоянным ростом стоимости коммунальных услуг – это касается и электрической энергии. Поэтому для создания комфортных условий обитания в загородном домостроении, как летом, так и зимой, придётся или оплачивать услуги по энергоснабжению, или найти альтернативный выход из сложившейся ситуации, благо природные источники энергии бесплатны.

Как сделать ветрогенератор своими руками - пошаговое руководство

Территория нашего государства – это по большей части равнины. Несмотря на то, что в городах доступ ветра перекрыт высотными постройками, за городом буйствуют сильные воздушные потоки. Поэтому самостоятельное изготовление ветряного генератора - единственно правильное решение для обеспечения загородного дома электричеством. Но для начала нужно разобраться, какая модель подходит для самостоятельного изготовления.

Роторный

Роторный ветряк – несложное преобразовательное устройство, которое просто сделать своими руками. Естественно, такое изделие не сможет обеспечить электроэнергией загородный особняк, но для дачного домика вполне сгодится. Он позволит осветить не только жиле домостроение а, и хозяйственные постройки и даже дорожки в саду. Для самостоятельной сборки агрегата мощностью до 1500 ватт нужно подготовить расходные материалы и комплектующие из следующего перечня:

Естественно, нужно иметь и минимальный комплект инструмента: ножницы для резки металла, болгарка, измерительная рулетка, карандаш, набор гаечных ключей и отвёрток, дрель со свёрлами и пассатижи.

Пошаговые действия

Сборку начинают с изготовления ротора и переделки шкива для чего придерживаются определённой последовательности работ.

Для подсоединения аккумуляторной батареи используются проводники с 4 мм сечением и длиной не более 100 см. Потребители подключаются проводниками с сечением в 2 мм. Важно в разрыв цепи включить преобразователь постоянного напряжения в переменное значение 220В согласно схеме клеммных контактов.

Плюсы и минусы конструкции

Если все манипуляции проделаны, верно, то аппарат прослужит достаточно долго. При использовании достаточно мощной аккумуляторной батареи и подходящего инвертора до 1,5 кВт можно обеспечить питанием уличное и внутридомовое освещение, холодильник и телевизор. Сделать такой ветряк очень просто и экономически выгодно. Такое изделие легко ремонтируется и неприхотливо в использовании. Оно очень надёжно в плане работы и не шумит, надоедая обитателям дома. Однако роторный ветряк имеет низкую производительность, и его работа зависит от наличия ветра.

Аксиальная конструкция с без железным статором на основе неодимовых постоянных магнитов, на территории нашего государства появились не так давно из-за недоступности комплектующих частей. Но на сегодняшний день, мощные магниты не являются редкостью, да и стоимость на них значительно упала по сравнению с несколькими годами тому назад.

Основой такого генератора является ступица с тормозными дисками от легковой машины. Если это будет не новая деталь, то целесообразно её перебрать и сменить смазочные материалы и подшипники.

Размещение и установка неодимовых магнитов

Работы начинают с наклеивания магнитов на диск ротора. С этой целью используются магниты в количестве 20 шт. и размерами 2,5 на 0,8 см. Для изменения количества полюсов нужно придерживаться следующих правил:

  • однофазный генератор подразумевает количество магнитов соответствующе числу полюсов;
  • в случае с трёхфазным прибором соблюдается соотношение в 2/3 полюсов и катушек соответственно;
  • размещение магнитов должно происходить с чередованием полюсов, для упрощения их распределения лучше пользоваться готовым шаблоном, сделанным из картона.

По возможности целесообразно использовать магниты прямоугольной формы, так как в круглых аналогах сосредоточение магнитных полей идёт в центре, а не по всей поверхности. Важно соблюсти условие, чтобы стоящие друг напротив друга магниты имели противоположные полюса. С целью определения полюсов магниты подносятся друг к другу, и притягивающиеся стороны являются положительными, следовательно, отталкивающиеся края отрицательными.

Для крепления магнитов используется специальный клеевой состав, после чего для увеличения прочности выполняют усиление посредством эпоксидной смолы. С этой целью, ею заливают магнитные элементы. Для предотвращения растекания смолы делают бортики при помощи обычного пластилина.

Агрегат трёхфазного и однофазного типа

Однофазные статоры по своим параметрам уступают трёхфазным аналогам, так как при увеличении нагрузки возрастает вибрация. Это обусловлено разницей амплитуды тока возникающей в результате непостоянности его отдачи за определённый промежуток времени. В свою очередь, в трёхфазном аналоге такой проблемы нет. Это позволило увеличить отдачу трёхфазного генератора почти на 50% в сравнении с однофазной моделью. Плюс ко всему из-за отсутствия дополнительной вибрации во время работы устройства не создаются посторонние шумы.

Намотка катушек

Каждый электрик в курсе, что прежде чем начинать намотку катушки, важно выполнить предварительные расчёты. Самодельный ветрогенератор на 220В – устройство, работающее на малых скоростях. Необходимо добиться, чтобы зарядка аккумуляторной батареи стартовала со 100 оборотов в минуту.

Если исходить из таких параметров, то для намотки всех катушек потребуется не более 1200 витков. Для определения витков для одной катушки нужно выполнить простое деление общих показателей на число отдельных элементов.

Для поднятия мощности ветряка с низкими оборотами увеличивается число полюсов. При этом будет происходить увеличение частоты тока в катушках. Намотка катушек должна, выполнятся толстыми медными проводами. Это позволит уменьшить величину сопротивления а, следовательно, увеличить силу тока. Важно учитывать, что с резким увеличением напряжения ток может полностью расходоваться на сопротивление обмоток. Для упрощения намотки можно использовать специальный станок.

В соответствии с числом и толщиной магнитов, закреплённых на дисках, изменяются рабочие характеристики аппарата. Чтобы выяснить, какие показатели мощности получатся в конечном счёте, достаточно выполнить намотку одного элемента и прокрутить его в агрегате. Для определения мощностных характеристик замеряется напряжение при определённых оборотах.

Зачастую катушка выполняется круглой, но целесообразно её слегка вытянуть. В таком случае меди в каждом секторе будет больше, а расположение витков становится плотнее. По диаметру внутреннее отверстие катушки должно равняться габаритам магнита. При изготовлении статора важно учитывать, что он по толщине должен равняться параметрам магнитов.

Обычно в качестве заготовки для статора используется фанера, но, вполне возможно, выполнить разметку на бумажном листе расчертив сектора для катушек, а для бордюров использовать обычный пластилин. Для придания прочности изделию используется стеклоткань, располагаемая на дне формы сверху катушек. Важно чтобы не происходило прилипания эпоксидной смолы к форме. Для этого её покрывают сверху воском. Катушки неподвижно фиксируются друг с другом, а концы фаз выводятся наружу. После чего выполняется соединение всех проводов по схеме звезда или треугольник. Для тестирования готового устройства его вращают вручную.

Обычно конечная высота мачты составляет 6 метров, но по возможности лучше её увеличить в 2 раза. Из-за этого для её крепления используется бетонное основание. Крепление должно быть таким, чтобы труба легко поднималась и опускалась с помощью лебёдки. На верхнем конце трубы выполняется фиксация винта.

Чтобы сделать винт, понадобиться ПВХ труба, сечение которой должно составлять 16 см. Из трубы вырезается винт двухметровой длины с шестью лопастями. Оптимальная форма лопастей определяется экспериментальным путём, что позволяет увеличить крутящий момент при минимальных оборотах. Для отвода винта от сильных порывов ветра используется хвост складной конструкции. Вырабатываемая электроэнергия накапливается в аккумуляторных батареях.

Видео: самодельный ветряной генератор

После рассмотрения доступных вариантов ветрогенераторов каждый домовладелец сможет определиться с подходящим для его целей устройством. Каждый из них имеет как свои положительные стороны, так и отрицательные качества. Особенно прочувствовать эффективность ветряка можно за городом, где происходит постоянное движение воздушных масс.

Генератор для ветряка из автомобильного генератора

Генератор переменного тока от автомобиля Достоинства: дешевый, просто отыскать, уже собран.

Недостатки: требуется высочайшая скорость вращения, требуется зубчатая передача или шкив, маленький выход энергии, токосъемник просит постоянного техобслуживания.

Пригодность для ветроэлектростанции: низкая.

Главная неувязка при применении авто генераторов для ветряков – то, что они изобретены для очень больших скоростей – для получения ветряный энергии приходится исполнить очень много значимых трансформаций. Даже малая и трудящаяся на сравнительно стремительных оборотах ветряная мельница требует скорости 600 об/ мин, что даже близко невозможно назвать достаточным для авто генератора. Это означает, что будет необходимо применять зубчатые передачи или шкивы, чтоб большая часть энергии тратилась на вращение. Стандартный авто генератор электромагнитный – то имеется часть вырабатываемой энергии должна быть послана на якорь чрез щетки и токосъемники, чтоб создать магнитное поле. Генератор, который употребляет электричество для возникновения поля, наименее действенный и наиболее непростой. Тем не наименее, его легче выверять, так как магнитный поток может существовать изменен настройкой мощности поля. Кроме такого, щетки и токосъемники имеют тенденцию срабатываться, требуя неизменного ухода. Генератор еще может быть перемотан для выработки энергии на наиболее низких скоростях. Это может быть методом подмены имеющихся витков статора наиболее частыми витками из наиболее узкой лигированной стали.

Генератор для ветряка на магнита

Самодельный генератор с постоянными магнитами Достоинства: низкая цену киловатт-часа, высокая эффективность. может быть получение большой мощности, потрясающе сильная конструкция.

Недостатки: трудозатратный, непростой проект, требующий отделки на токарном станке.

Пригодность для ветроэлектростанции: отменная.

Многочисленные опыты проявили, что рукодельный генератор с неизменными магнитами является более массивным и экономным решением для ветрогенератора. Он способен непревзойденно действовать на низких скоростях вращения, на больших же скоростях он практически выдает амперы благодаря собственной эффективности. Наиболее нередко рукодельные генераторы изготавливаются из тормозных дисков от volvo, так как они чрезвычайно крепкие и имеют интегрированные упорные подшипники. Так как таковой генератор изготовляет неустойчивый ток, требуется вентиль для преображения его в неизменный и следующей зарядки батареи. Наилучшие итоги указывает трехфазный генератор, но его труднее выстроить, чем монофазный, так что при построении генератора нужно постановить, можете ли вы выстроить трехфазный или ограничитесь однофазным. Генератор для ветряка 7 футов в поперечнике выдает более 60 А в 12-вольтную батарею, а это наиболее 700 Вт. На пике мощности он может вручать даже 100 А. Пока что это заключение более отлично.

Конверсионный асинхроичный генератор для ветряка

Конверсионный асинхроичный генератор переменного тока Достоинства: дешевенький, просто отыскать, сравнимо просто переоснастить, отменная служба на низких оборотах.

Недостатки: результирующая емкость ограничена внутренним противодействием, неэффективен на больших скоростях, просит отделки на токарном станке.

Пригодность для ветроэлектростанции: средняя.

Обычный асинхроичный электродвигатель, вырабатывающий неустойчивый ток, может довольно элементарно существовать перестроен в генератор с неизменными магнитами. Эксперименты демонстрируют, что получившийся генератор отлично работает на чрезвычайно низких скоростях, но скоро делается неэффективным на больших скоростях. Асинхронный движок не владеет никаких проводов в сердечнике, лишь переменные пластинки из алюминия и стали(извне они смотрятся гладкими). Если вы выдолбите желоба в центре сердечника и вставите туда неизменные магниты, электродвигатель будет генератором с неизменными магнитами. На практике таковой генератор выдает возле 10-20 А. Он чрезвычайно скоро делается малоэффективным: при возрастании скорости ветра численность результирующих ампер растет некординально, остальная же емкость тратится на нагрев самого генератора. Асинхронный электродвигатель обмотан очень узкой проволокой и не может помогать ток большущий мощности. Для такого же ветряка поперечником 7 футов пиковая держава тока одинакова только 25 А. Если вас устраивает маленький ток при больших скоростях ветра, асинхроичный движок может очутиться неплохим решением. Рекомендуется избирать трехфазный движок. Так как таковой генератор изготовляет неустойчивый ток, требуется вентиль для преображения его в неизменный и следующей зарядки батареи.

Генератор постоянного тока для ветряка

Генератор постоянного тока Достоинства: обычный и уже организованный, некие хорошо работают на низких оборотах.

Генератор для ветряка

Цена на электроэнергию постоянно растет и это вынуждает владельцев загородных домов искать новые ее источники. Это могут быть альтернативные. то есть, возобновляемого источники электроэнергии – ветряные электростанции, которые по другому называют ветряками. Они генерируют электрическую энергию с помощью перемещающихся воздушных масс, то есть ветра. Стационарные ветряки способны в полной мере обеспечить электропитанием жилой дом или даже небольшой промышленный объект и накапливать ресурс, чтобы давать энергию в безветренный период.

Проблемы с приобретением генераторов

При строительстве ветряка многие сталкиваются с проблемой подбора генератора, но купить их довольно сложно, так как они очень дорого, это довольно специфическая вещь и выпускают их не так уж много. Именно поэтому приходится каким-то образом выходить из положения и приспосабливаться к реалиям. Чаще всего проще сделать генератор для ветряка самому.

Из чего можно сделать генератор

Можно взять двигатели с постоянными магнитами, автомобильные генераторы, шаговые двигатели или асинхронные, а также генераторы от сломаных бензогенераторов. То есть, можно применить любые электродвигатели, так как все они при определенных условиях могут работать как генераторы, но с разной эффективностью. Также и переделки их может быть как серьезной так и не очень, причем, иногда, с вложением некоторых средств. Зачем переделывать? Все просто объяснить – все эти двигатели быстроходные, кроме шаговых, не менее 1000 оборотов в минуту. Если же говорить о параметрах быстроходности ветряка, то при подсчете ее с учетом скорости ветра и размеров самого сооружения, выясняется, что обороты ветряка, даже самого быстроходного, равняются всего от двухсот до четырехсот оборотов в минуту, несмотря на сильный ветер.

Из низкооборотных генераторов есть только, как уже упоминалось, шаговые двигатели. ПО сути, это двигатель, который поворачивает вас на определенный угол, то есть шаг при подаче на обмотки импульса напряжения. Такой мотор имеет несколько обмоток, а в роторе очень много магнитов. Все эти качества и дают возможность применить шаговый двигатель как генератор для ветряка. Если придать извне вращение валу такого двигателя, то он начнет эффективно вырабатывать электричество.

Чтобы точно быть уверенным, что этот двигатель шаговый, нужно убедиться, что он вращается толчками, а не плавно, то есть, создается эффект, называемый «залипание». При попытке закоротить все выводы двигателя вал начинает вращаться труднее, то данный двигатель уже начал вырабатывать электричество. Следует отметить, что именно таким способом проверяют все двигатели постоянного тока. То есть, в случае проверки любого двигателя, сделать вышеописанную операцию и вал станет труднее вращать, то данный электромотор вполне возможно использовать, как генератор и поэтому нужно внимательно изучить его характеристики.

Самодельный генератор для ветряка

Некоторые умельцы делают генератор сами. Такое самодельное изделие представляет собой однофазный генератор с магнитной системой с так называемыми «когтеобразными» полюсами, похожими на те, которые используются в автомобильных генераторах, но «когти» в первых располагаются аксиально, а не радиально. Магнитное поле создается за счет закрепленных на роторе восьми неодимовых магнитов размера N42. Когда ротор начинает вращаться, «когти» создают изменение магнитного поля в катушки, на выходе которой и образуется переменное напряжение.

Генераторы для ветрогенраторов

  • Генератор Energy Wind 1 кВт.

Генератор для ветряной электростанции мощностью 1 кВт.

Цена: 32 500 руб.

Генератор для ветряной электростанции мощностью 2 кВт.

Цена: 40 000 руб.

Генератор к ветряной электростанции мощностью 3 кВт.

Цена: 68 000 руб.

Генератор к 4 кВт.

Цена: 85 000 руб.

Генератор для ветряной электростанции мощностью 5 кВт.

Цена: 130 000 руб.

Генератор для ветряной электростанции мощностью 6,5 кВт.

Цена: 200 000 руб.

Генератор для ветряной электростанции мощностью 8 кВт.

Цена: 240 000 руб.

Генератор для ветряной электростанции мощностью 10 кВт.

Ветряной электрический генератор. Как сделать ветряк и электрический генератор самому.

Раздел . ЭКО электроснабжение

Итак, самым популярным вариантом является использование ветряков для выработки электроэнергии.

Казалось бы – чего проще, сделал ветряк, насадил на его ось электрогенератор и вауля! Получай электричество!

Но не все так просто. Давайте рассмотрим, почему.

Все ветряки или ветровые установки приводятся в действие (вращение) силой ветра. О мощности ветрового потока мы уже говорили. И понятно, что большей энергии от генератора мы не сможем получить принципиально.

Другой важнейшей характеристикой ветряка является т.н. КИЭВ – коэффициент использования энергии ветра. У самых лучших образцов ветряков он составляет всего 40-45%! (Хотя можно встретить утверждения о чуть ли не о 60-80% КИЭВ. Это, мягко сказать, преувеличение продавцов этих ветряков. Поэтому рассчитывайте, что ветряк будет использовать ветер едва ли на 25-30% и не забудьте поделить расчетную мощность ветряка на 3-4. Вот что вы реально сможете получить с ветроустановки в случае использования идеального электрогенератора.

Кстати, о мощности ветряка. Вы можете не поверить, и это действительно парадоксально выглядит, но единственно, от чего зависит мощность ветряка (кроме скорости ветра) – это его площадь. Иногда ее называют «площадь ометания». Можно привести много формул математических доказательств и практических подтверждений, но мощность ветряка с одной лопастью (которая ометает – описывает круг диаметром D), и ветряка с 6-ю лопастями такого диаметра – одинакова! Вот хотите верьте, хотите нет, но это – так!

Дело в том, что ветер воспринимает лопасти не как отдельные «дощечки» и давит на каждую по очереди, а как круг, диск. Поэтому важна только площадь, а не количество лопастей. Ветер, раскручивая лопасти ветряка, придает ей скорость. Кроме угловой скорости вращения, лопасть еще имеет и линейную скорость. А следовательно, поскольку крутится не в вакууме, начинает встречать сопротивление воздуха, которое растет пропорционально кубу скорости. Тем более, что лопасть представляет собой не плоскую дощечку, а определенный аэродинамический профиль, имеющий и конкретную толщину, и угол поворота. И этот профиль при вращении «натыкается» на воздух «межлопастного» пространства. И получается, что чем большую мощность потока мы собираемся собрать увеличивая число лопастей, тем большее сопротивление воздуха они испытывают во время вращения. Как результат – то, что написано выше – мощность ветряка зависит от площади ометания, а не от числа лопастей.

Таким образом, мы подошли к другой важной характеристикой ветряка – быстроходности. Быстроходность ветряка – величина, показывающая, насколько линейная скорость лопасти больше скорости ветра. Если вы узнаете, например, что у ветряка быстроходность 7, то это значит, что кончик его лопасти имеет линейную скорость в 7 раз больше скорости ветра. И при ветре в 10 м/с, кончик лопасти летит по воздуху со скоростью 70 м/сек, т.е 250 км/час! Так что очень не рекомендую пытаться останавливать лопасть руками. Их просто срежет как бритвой.

К быстроходности и ее расчету мы еще вернемся, а сейчас давайте посмотрим, чем она важна именно для процесса выработки электроэнергии.

Так уж исстари повелось на Руси, что электроэнергию тут добывают с помощью специальных устройств – генераторов. Конструкций генераторов много, но в плане стыковки с ветряком, нас интересуют электрогенераторы, выдающие электроэнергию в результате вращения. В самом деле, зачем нам от добра добра искать. Ветряк нам поставляет вращение, его надо и использовать.

Так вот, при строительстве ветряка вы обязательно столкнетесь с тем, что генераторов-то пригодных для ветряка вобщем-то НЕТ. Ну вообще то в природе они есть, их даже выпускают серийно. Но купить их достаточно проблематично и по цене, и по возможности. Слишком это специфическая вещь, оттого и дороги и их мало. Поэтому придется либо приспосабливать то, что есть, либо делать генератор самому.

А что у нас есть, что б электричества поесть? Из готового. Выбор блюд, вобщем небогатый. Это двигатели с постоянными магнитами, шаговые двигатели, автомобильные генераторы, асинхронные двигатели, генераторы от умерших бензогенераторов. Вобщем, практически любые электро двигатели. Их подробный анализ мы проведем позже. Согласно всем теориям, всякая электрическая машина является обратимой. Т.е. любой электродвигатель при соответствующих условиях может работать и как генератор. С той или иной эффективностью. С той или иной серьезностью, степенью и ценой переделки.

Почему нельзя просто использовать то что есть? Да потому что оно все – быстроходное! Можете воспринимать это восклицательный знак как знак траура. Ну разве что кроме шаговых двигателей. Они по определению тихоходы. Остальные все двигатели – генераторы рассчитаны на 1000 оборотов в минуту и выше (т.е. 15-20 оборотов в секунду). Соответствующие обороты им надо придать и для получения обратного эффекта – генерации электротока. Например, казалось бы самый доступный и дешевый вариант приличного генератора в 0,5 КВт – автомобильного, натыкается на цифру в 2-3 тыс. об/мин. Двигатель машины даже на холостых оборотах держит вращение со скоростью 800 об/мин. Плюс мультипликация шкивов мотора и генератора 1:2 как минимум. Генератор крутится уже 1500 об/мин. А если газу поддать и мотор «открутить» до 3-4 тыс (рядовой случай) – генератор тогда выдает свои полкиловатта. При 5-8 тыс. оборотов/мин.

То же и с другими моторами. За что ни схватись – меньше 1000 об/минуту и не найти ничего.

Вернувшись к параметру быстроходности ветряка и пересчитав ее с учетом скорости ветра, размеров ветряка, вы с удивлением обнаружите, что обороты вала ветряка не так велики. 200-400 об/минуту у самых быстроходных ветряков и при хорошем крепком ветре!

Поставим мультипликатор, скажете вы и повысим обороты в 5-10 раз! (Кстати, то, что снижает обороты – это редуктор. А то, что повышает – это мультипликатор). Ну справедливости ради скажу – так, вобщем то и делается. Но только на очень больших и мощных ветряках, что бы закрутить большие и мощные генераторы. На ветряках с мощностью менее 500 Ватт мультипликаторы – это роскошь. Надежный и качественный необслуживаемый мультипликатор с малыми потерями – это само по себе дорогое устройство. И его цена, соответственно переносится на стоимость вырабатываемой электроэнергии. Поэтому применение мультипликатора в маленьком «домашнем» ветряке необоснованно никак. Разве что он достался на халяву.

А из низкооборотных генераторов у нас есть только шаговые двигатели. Что такое шаговый двигатель? Это двигатель, который поворачивает свой вал на определенный угол (шаг) при подаче на его обмотки импульса напряжения. Такие моторы имеют как правило несколько обмоток, а из ротор буквально напичкан магнитами. Этот отрадный факт и позволяет использовать шаговые двигатели в качестве генератора. При придании вращения валу шагового двигателя извне, он начинает вырабатывать электричество, причем весьма эффективно.

«Вычислить» шаговый двигатель просто. При вращении вала, он вращается не плавно, а как бы толчками. Этот эффект называется «залипание». Если закоротить все выводы двигателя, то вращать вал станет заметно труднее. Это значит, что шаговый мотор уже вырабатывает электрический ток. Кстати, это общий принцип проверки двигателей постоянного тока «на вшивость». Если при закорачивании выводов вращать вал мотора стало труднее, то электромотор в плане использования его в качестве электрогенератора небезнадежен и есть смысл снять его характеристики.

Добыть шаговый электромотор малой мощности несложно. Любой принтер, который можно купить на интернет-аукционе за 100-300 рублей, содержит их как минимум 2. Один «гонял» головку, другой – бумагу. Сканер – 1, старые дисководы на 5,25 дюйма – тоже 1. Это хорошая новость. Плохая состоит в том, что легкодоступны шаговые двигатели лишь очень малой мощности! 1-2-3 Ватта. Добыть шаговый двигатель на 30-50 Ватт хотя бы – это редкая удача, считайте что отличный генератор у вас в кармане!

Куда применить шаговик на 2 Ватта? Да вобщем заряжать аккумулятор мобильника, плеера и т.п. Этой мощности уже хватит. Надо 10-20 Ватт? Ну поставьте 10 таких двигателей. Они дешевле, чем яичная скорлупа после Пасхи.

Ну а если вы хотите получать с ветряка 200-300 Ватт, причем желательно задешево (держим в уме соотношение затраты / отдача), то скорее всего, придется делать генератор самому. Это сложно, но абсолютно реально, если вы все же решите делать ветро электрогенератор.

Генератор для ветряка 2м

Предлагаю Вам познакомиться с нашей разработкой генератора для ветряка отличающейся тем, что магниты и катушки расположены аксиально, вдоли оси вращения генератора

Сам генератор 4-х фазный (отношение числа магнитов к числу катушек – 3/4). Это и то что сердечники магнитопроводов расположены под углом к магнитам позволило, в последнем варианте генератора, добиться малого зубцового эффекта. Я его не измерял, но по скольку собраный генератор страгивается лего левой рукой, могу предположить, что момент не более 50…60 гр на метр. Вес генератора – 6,9 кг.

Вторая особенность – магнитопроводы – 22 мкм нанокристаллическая лента нашего Украинского производства. Сердечник на основе ее работает с в разы меньшими потерями на частотах в десятки кГц.

Сердечники относительно дорогие.

Сейчас проектируем анологичный генератор на 10 кВт, анологичный двигатель (правда трех фазный) ну и естественно ветряк с регулируемой головкой (центробежный регулятор угла установки лопастей).

Генератор Для Ветряка


Генератор для ветряка из автомобильного генератора,из асинхронного двигателя, с постоянными магнитами и другиеГенератор для ветряка из автомобильного генератораГенератор переменного тока от автомо…

Ветряк из автомобильного генератора без переделки

У каждого “Кулибина” есть свое видение, как сделать простой ветрогенератор в домашних условиях. После продолжительных поисков на просторах Интернета, я выработал некую общую идею. Идея не нова и не уникальна, но она легкая в исполнении и обойдется относительно недорого.

В местном строительном магазине я купил трубы, переходной тройник, заглушку и несколько метров 3/8-16 проводов (some 3/8-16 all thread). Для этого творения я нашел в своих запасах генератор переменного тока GM 7127. На просторах Internet я нашел компанию, которая занимается продажей высоковольтных катушек статора, еще одна фирма занимается продажей трансмиссии, а у третьей я купил электронный контролер для простоты наблюдения за процессом зарядки моего аккумулятора.

В местном строительном магазине я купил трубы, переходной тройник, заглушку и несколько метров 3/8-16 проводов (some 3/8-16 all thread). Для этого творения я нашел в своих запасах генератор переменного тока GM 7127. На просторах Internet я нашел компанию, которая занимается продажей высоковольтных катушек статора, еще одна фирма занимается продажей трансмиссии, а у третьей я купил электронный контролер для простоты наблюдения за процессом

зарядки моего аккумулятора.

После покраски весь механизм выглядит намного симпатичнее. Я установил небольшой диод на верхушке стойки турбины и подсоединил ее проводами к катушке. Это не генератор с постоянным магнитом. Лампочка позволит катушке самовозбуждаться и покажет, когда генератор не выдает заряд и может быть отсоединен от аккумулятора

На фото выше видно как я уже установил лопости из углеволокна. Я покрасил ступицу и крепежи лопастей в белый цвет. Осталось дождаться безветрянного дня или практически безветрянного дня, чтобы протестировать мою конструкцию “в полевых условиях”. Генератор 7127 я купил в компании AutoZone, набор для усовершенствования статора – MTM cientific, углеволоконные лопости и ступица – Picou Builders Supply, Co Inc., трубы и остальные мелкие детали – в ближайшем строительном магазине. Итого я потратил $135.00. Как только я установлю механизм на верхушку башни и подключу ее, смогу посчитать затраты на 1 Вт.

При монтаже на месте, я решил снять лопасти, чтобы облегчить процесс установки и не повредить лопасти при поднятии и установке.

После более тщательных подсчетов я обнаружил, что при текущей длине флагштока мне не удасться правильно установить механизм на месте. Я отрезал 16″ трубы согласно новым расчетам, но почему-то новый отрезок трубы оказался на 0.015″ толще, чем нужно. При помощи напильника и наждачной бумаги через 2 часа я получил желаемый диаметр.

Благодаря помощнику я поднял свою турбину на платформу, но оказалось, что на платформе я не могу самостоятельно поднять и правильно сбаланстровать турбину, чтобы укрепить ее на стойке. На этом я решил остановиться и привязал турбину к платформе, чтобы в случае сильного ветра она не свалилась вниз.

На фото вверху Вы видите три 10′ куска 3/4″ кабеля. Можно купить в любом строительном магазине по приемлемой цене.

Благодаря своим инженерным способностям я собрал трехног-подъемник для удобства самостоятельного поднятия и установки ветротурбины.

Наконец-то турбина заработала. Осталось только подсоединить ее к аккумулятору

Прошлой ночью дул достаточно сильный ветер, но турбина “была на высоте”. Временами порыв ветра достигал 35 – 40 миль/час. При таком ветре турбина создавала шум, но главное, что она выдержала такое испытание. Из-за заводского ограничения автомобильный генератор не начинает вырабатывать ток, пока сила ветра не достигнет 12 миль/час. Но для моих нужд этого много. Проблема с автомобильным генератором заключается в том, что при нулевых оборотах он не вырабатывает и не показывает напряжение, а при низких оборотах до момента начала выработки тока, он его потребляет. Такие перемены напряжения практически испортили мой аккумулятор. Я немного отложил установку турбины на флагшток и купил небольшие “навороты”, чтобы сделать генератор переменного тока с постоянным магнитом.

Я перемотал обмотку статора, который купил в сети. Изначально статор имел 4 витка провода №14. Я подсчитал, что могу заменить их на 10 витков провода №18. (Несколько лет назад я уже менял обмутку статора обычного автомобиля на меньшее кол-во витков при большем диаметре провода. В этом случае мотор генерирует больше тока и имеет большую мощность. Я просчитался и сделал обмотку из 11 витков, вместо планируемых 10. При укладке первого слоя (фазы) все прошло как по маслу, но уложить дополнительные 4 провода в последнем слое – оказалось непростой задачей.

Я попытался сделать с помощью пресса углубления в старом статоре, но безрезультатно. Отчаявшись добиться результата прессом, я вытачил карман глубиной в палец для нового магнита.

Моя затея с ручной перемоткой статора провалилась. Некоторые кольца обмотки соприкасались с металлическим сердечником и создавали короткое замыкание. Мне пришлось купить лентопротяжный мотор DC Ametek мощностью 38 В. Я пометил капы и развел их для пущего удобства. Купленный мною ротор со скошенными пазами дает хороший пусковой момент. Я подсоединил вольтметр и с помощью ручной тяги получил чуть более 9 В.

Я вытачил фланец для того, чтобы привентить к нему мотор/генератор к тому же креплению, что я использовал для автомобильного генератора переменного тока.

Новый статор не настолько велик как его предшественник – автомобильный генератор, но зато даже при легком ветерке вся конструкция пришла в действие. Нужно было с самого начала идти этим путем, но зато как говориться: “На ошибках учимся!” Предохраняющий диод не дает генератору перейти в режим мотора. Для выработки более 13 В, чтобы преодолеть сопротивление аккумулятора и начать зарядку, хвататет силы ветра равно 7-8 миль/час. Похоже дело стоило усилий. Думаю, нужно подготовить документацию на такую успешную модель.

Выше Вы видите фото моего старого аккумуляторного блока. Как видите наглядности в ней маловато. Сейчас я работаю над новой доской с измерительными приборами, которую я планирую повесить над аккумулятором. Доска с измерительными приборами будет состоять из индикатора заряда аккумулятора, резистора нагрузки, вентилятора системы охлаждения, выпрямительного моста, регулятора зарядки и клеммника с предохранителями. На следующий день при силе ветра 10 миль/час мой аккумулятор был полностью заряжен и регулятор зарядки переключил реле на сеть. Я подключил электросчетчик и “О, диво!” стрелка на нем показала чуть больше 16 В при 3 А и 8 Ом. (я последовательно соединил четыре по 2 Ом 100 Вт резистора.) Не плохо для начала!

Вот фото вращающегося механизма, над которым я сейчас работаю. Генератор Ametek монтируется справа, а хвост крепиться на изогнутую часть трубы сзади. При очень сильном ветре, вся конструкия генератора поворачивается по ветру поднимая и заворачивая хвост. Как только выпадет безветренный денек, я снова примусь за монтаж обновленной конструкции. При скорости ветра 40 миль/час лопасти при вращении задевают флагшток и создают такой звук как вроде бы на моей крыше пытается приземлиться вертолет. Соседи стали жаловаться и это послужило дополнительным стимулом для переделки.

Я соединил лентопротяжной мотор с механизмом вращения. Но монтировать всю конструкцию еще рано, пока я не закончил мотор. Когда я его открыл, то решил заменить подшипники и покрыть его слоем защитной краски, чтобы уберечь от стихии.

Возможно на картинке и не видно, но стрелочка силы ветра дошла до показателя в 13 миль/час, а это составляет 10 А при напряжении в 20 В = 200 Вт.

Как сделать ветрогенератор своими руками из автомобильного генератора

Выбор конструкции ветряка

Вертикальные роторы приходится устанавливать внизу по причине большого веса и габаритов, где скорость ветра в 2 раза ниже, что снижает мощность установки в 8 раз. В ряде случаев их применяют из-за меньшего шума, отсутствия ориентации на ветер, малой стартовой скорости и удобства эксплуатации.

Количество лопастей чаще всего выбирают не более трёх, благодаря высокой скорости вращения и меньшему шуму. При большом ветре они могут разрушиться, но в промышленных образцах углы поворота лопастей изменяются, что даёт возможность регулировать скорость и уменьшать гул.

Переделка автогенератора

Изготовление ротора

Сборка ветряка

Ветрогенератор обслуживают следующим образом:

  • проверка и регулировка креплений.Автогенератор без переделки под ветрогенератор не подходит, потому что для него необходима большая скорость вращения. Редуктор не решает проблему, так как увеличивается сопротивление вращению. Без определённого опыта сделать эффективный агрегат своими руками сложно. Качественно изготовленный ветряк будет без проблем вырабатывать мощность до 1 кВт.

    Как сделать ветрогенератор своими руками из автомобильного генератора


    Как сделать ветрогенератор своими руками из автомобильного генератора Школа ремонта. Содержание 1 Выбор

Генератор из автомобильного генератора своими руками

Одним из наиболее эффективных источников альтернативной энергии является ветрогенератор. Становятся популярными солнечные батареи, но пока вырабатываемая ими электроэнергия в 3 раза дороже, чем у ветряной электростанции. Кроме того, солнце светит не круглосуточно, пасмурная погода снижает производительность в 5 раз, а КПД солнечных батарей снижается на 5% ежегодно.

Как выглядит ветрогенератор из автомобильного генератора

Выбор конструкции ветряка

Ветрогенератор может иметь два расположения оси. Предпочтение отдаётся горизонтальной из-за меньших затрат и в 2 раза большего КПД.

Вид ветрогенератора с горизонтальной осью

Вертикальные роторы приходится устанавливать внизу по причине большого веса и габаритов, где скорость ветра в 2 раза ниже, что снижает мощность установки в 8 раз. В ряде случаев их применяют из-за меньшего шума, отсутствия ориентации на ветер, генератор из автомобильного генератора своими руками малой стартовой скорости и удобства эксплуатации.

Если изготовить для барабанных вертикальных агрегатов специальные направляющие, производительность увеличится, а разнос от сильного ветра будет исключён. Конструкция получается сложной, но результат того стоит.

Количество лопастей чаще всего выбирают не более автомобильного трёх, благодаря высокой скорости вращения и меньшему шуму. При большом ветре они могут разрушиться, но в промышленных образцах углы поворота лопастей изменяются, что даёт возможность регулировать скорость и уменьшать гул.

Ветрогенератор на 1 кВт промышленного изготовления вместе с комплектацией стоит около 50 тыс. руб. и выше. Для большинства пользователей эта сумма является слишком большой.

При наличии необходимых навыков и подручных материалов можно сделать ветряк своими руками.

Переделка автогенератора

В настоящее время ветряк из автомобильного генератора основательно разработан для изготовления своими руками. У многих автолюбителей он может лежать без дела в гараже. Даже если у него есть какая-либо неисправность, детали могут пригодиться, поскольку всё равно потребуется основательная переделка. Для генератора требуются большие обороты, которые смогут обеспечить только сильные ветра. При преобладании слабого ветра это устройство как ветрогенератор не подходит, даже с переделкой на меньшие обороты.

Перед тем как начать изготавливать ветрогенератор своими руками, надо иметь в виду, что для него дополнительно потребуются контроллер, АКБ и инвертор, последовательно расположенные друг за другом.

Как выглядит ветроустановка в полном комплекте

В целом конструкция обойдётся недёшево. Кроме того, батареи придётся время от времени менять на новые.

Изготовление ротора

Ротор автогенератора имеет обмотку электромагнитного возбуждения, для чего необходима дополнительная электроника управления и щётки с коллектором.

Если сделать его своими руками под постоянные магниты, конструкцию можно упростить, убрав коллектор. Кроме того, надо перемотать обмотки статора, чтобы устройство из быстроходного превратилось в тихоходное. Также следует переделать железный ротор, который замыкает магнитные линии на себя и в результате ток в катушках статора генерироваться не будет. На рисунке ниже изображён разобранный автогенератор.

Автогенератор в разобранном виде

Немагнитная насадка на старый вал ротора вытачивается из алюминия. Затем на неё надевается с натягом бандаж из стальной трубы. На нём делается разметка, и приклеиваются суперклеем прямоугольные неодимовые магниты с чередованием полюсов. Между ними заливается эпоксидная смола, после чего поверхность выравнивается.

Ротор с неодимовыми магнитами, сделанный своими руками

Генератор вырабатывает достаточно энергии при вращении со скоростью около 6000 об./мин. Чтобы он был эффективным при 600 об./мин., следует перемотать обмотку статора, увеличив количество витков в 5 раз. Сечение провода при этом надо уменьшить.

Чтобы получить мощный источник энергии, потребуется самодельный генератор для ветряка на неодимовых магнитах.

Недостатком генераторов на супермагнитах является магнитное залипание, когда сложно сдвинуть вал с места.

Для его уменьшения магниты наклеивают с небольшим перекосом. Кроме того, лопасти также следует выполнить большего размера. Магнитное поле уменьшится, если перебрать все пластины статора, отделяя их с помощью ножа и молотка. Затем они выравниваются на наковальне резиновым молотком. Сборка статора производится на специальной оснастке со стягиванием пластин струбцинами.

Ветровое колесо своими руками

Лопасти делаются из пластиковой или дюралевой трубы, диаметр которой составляет 20% от метража. Метровую трубу диаметром 20 см разрезают вдоль на 4 равные части. Из одной части делается крыло, а за ним – следующие, используя его как шаблон. Края лопастей скругляются и шлифуются до удаления заусенцев. Лопасти крепят на старый диск от циркулярной пилы, сточив с него зубья и просверлив отверстия для установки.

Лопасти с сегментами обычно применяются для несжимаемых сред. Профиль для воздушной среды должен иметь сложную форму, чтобы обеспечить высокую производительность. Основную работу выполняют наружные концы лопастей. Умельцы делают их на шпильках, поскольку внутренняя часть около ротора не работает. На рисунке ниже изображена такая конструкция, где лопасти привариваются к круглым стальным стержням.

Вид четырёхлопастного ветрового колеса

Ветроколесо устанавливают горизонтально на штативе и производят балансировку, подтачивая лопасти до равновесия конструкции. Они должны вращаться в одной плоскости с перекосом не более 2 мм.

Сборка ветряка

Диаметр вала ветрового колеса должен быть не менее 20 мм. Если у генератора он меньше, валы следует установить соосно, соединив их муфтой. Ветровое колесо устанавливается на шпонку и дополнительно крепится гайкой, накрученной на ось.

Рама устройства изготавливается из профильной трубы. Ось поворота представляет собой трубу, установленную в двух подшипниках. Она крепится наверху мачты. Флюгер вырезают из оцинкованной жести 40х60 см и крепят болтами. Длина хвоста составляет 1,5 м. Расстояние от лопастей до мачты делается не менее 25 см, чтобы при изгибе от сильного ветра они не разбились.

Генераторы работают на подзарядку аккумулятора, который должен снабжать бытовую технику на 220В.

Для преобразования напряжения нужен инвертор. При быстром вращении батарея может выйти из строя из-за большой величины зарядного тока. Чтобы этого не происходило, следует установить контроллер напряжения. Его можно купить или сделать самостоятельно.

Ветрогенератор обслуживают следующим образом:

  1. регулировка, чистка и смазка токосъёмника через каждые 2 месяца;
  2. ремонт лопастника при возникновении разбалансировки и вибрации;
  3. покраска металлических частей через 3 года;
  4. проверка и регулировка креплений.

Автогенератор без переделки под ветрогенератор не подходит, потому что для него необходима большая скорость вращения. Редуктор не решает проблему, так как увеличивается сопротивление вращению. Без определённого опыта сделать эффективный агрегат своими руками сложно. Качественно изготовленный ветряк будет без проблем вырабатывать мощность до 1 кВт.

Генератор из автомобильного генератора своими руками


Генератор из автомобильного генератора своими руками Главная > Генераторы > Как сделать ветрогенератор своими руками из автомобильного генератора Одним из наиболее эффективных источников

Ветер - это бесплатная энергия! Так давайте же её использовать в личных целях. Если создание ВЭС в промышленных масштабах это очень дорого, потому что кроме генератора нужно провести ряд исследований и расчётов, государство не берет на себя такие расходы, а инвесторам в странах бывшего СССР - это, почему-то не вызывает особого интереса. То в частном порядке можно сделать мини-ветряк для собственных нужд. Стоит понимать, что проект перевода вашего дома на альтернативную энергию очень дорогое занятие.

Как уже было сказано: нужно произвести длительные наблюдения и расчёты, чтобы подобрать оптимальное соотношение размеров ветряного колеса и генератора, подходящее к вашему климату, розе ветров и среднегодовой скорости ветра.

Эффективность ветроэлектрической установки в пределах одного региона может отличаться в разы, это связано с тем, что движение ветра зависит не только от климатического пояса, но и от рельефа местности.

Однако вы можете узнать, что такое ветроэнергетика с минимальными затратами собрав бюджетную установку для питания маломощной нагрузки, типа смартфона, лампочек или радиоприёмника. При должном подходе вы можете обеспечить электроэнергией небольшой дом или дачный участок.

Давайте рассмотрим каким образом можно сделать простейшую ветроэлектрическую установку своими руками.

Маломощные ветряки из подручных средств

Компьютерный кулер представляет собой бесколлектроный двигатель, который в своем первоначальном виде не представляет практической ценности.

Его нужно перемотать, так как в оригинале обмотки соединены неподходящим образом. Мотать катушки поочередно:

    По часовой стрелке;

    Против часовой стрелки;

    По часовой стрелке;

    Против часовой стрелки.

Соединять соседние катушки нужно последовательно, а еще лучше мотать одним куском провода переходя от одного паза к другому. Толщину провода в этом случае подбирать произвольно, лучше будет если вы намотаете как можно больше витков, а это возможно при использовании наименее тонким проводом.

Выходное напряжение с такого генератора будет переменным, а его величина будет зависеть от оборотов (скорости ветра), установите диодный мост из диодов Шоттки, чтобы выпрямить его до постоянного, обычные диоды подойдут, но будет хуже, т.к. на них упадёт напряжение от 1 до 2-х вольт.

Лирическое отступление, немного теории

Запомните величина ЭДС равняется:

где L - длина проводника помещенного в магнитное поле; V - скорость вращения магнитного поля;

При модернизации генератора вы можете влиять только на длину проводника, то есть на количество витков каждой из катушек. Количество витков - определяет выходное напряжение, а толщина провода - максимальную токовую нагрузку.

На практике влиять на скорость ветра нельзя. Однако из этой ситуации тоже есть выход, можно, узнав типовую скорость ветра для вашей местности спроектировать подходящий по оборотам винт для ветроэлектрической установки, а также редуктор или ременную передачу, для обеспечения достаточных оборотов для генерации нужного по величине напряжения.

ВАЖНО: Быстрее не значит лучше!!! При слишком большой скорости вращения ветрогенератора сократиться его ресурс, ухудшаться смазочные свойства втулок или подшипников ротора, и он заклинит, а быстрее всего произойдет пробой изоляции обмоток в генераторе

Генератор состоит из:

Увеличиваем мощность генератора из компьютерного кулера

Во-первых, чем больше лопастей и диаметр колеса - тем лучше, поэтому присмотритесь к 120-мм кулерам.

Во-вторых, мы уже сказали, что напряжение зависит и от магнитного поля, дело в том, что промышленные генераторы высокой мощности имеют обмотки возбуждения, а низкой мощности - сильные магниты. В кулере магниты крайне слабые и не позволяют добиться хороших результатов от генератора, да и зазор между ротором и статором весьма велик - порядка 1 мм, и это при и без того слабых магнитах.

Решение этой проблемы кардинально изменить конструкцию генератора. Вернее, от кулера потребуется только крыльчатка, в качестве самого генератора применим моторчик от принтера или любой другой бытовой техники. Наиболее часто встречаются щеточные двигатели с возбуждением от постоянных магнитов.

В результате это будет выглядеть так.

Мощности подобного генератора хватит, чтобы запитать светодиоды, радиоприемник. Для подзарядки телефона его не хватит, телефон будет отображать процесс заряда, но ток будет крайне мал, до 100 Ампер, при ветре 5-10 метров в секунду.

Шаговые двигателя в роли ветрогенератора

Шаговый двигатель очень часто встречается в компьютерной и бытовой технике, в различных проигрывателях, флоппи-дисководах (интересны старые модели 5.25”), принтерах (особенно матричных), сканерах и т.д.

Данные двигатели без переделок могут работать в роли генератора, они представляют собой ротор с постоянными магнитами, и статор с обмотками, типовая схема подключения шагового двигателя в режиме генератора изображена на рисунке.

В схеме установлен линейный стабилизатор на 5 Вольт, типа L7805, что позволит без опасения подключать мобильные телефоны к такому ветряку для их зарядки.

На фото генератор из шагового двигателя с установленными лопастями.

Двигатель в конкретном случае с 4-мя выходными проводами, схема соответственно под него. Двигатель с такими габаритами в режиме генератора выдаёт примерно 2 Вт при слабом ветре (скорость ветра около 3 м/с) и 5 м/с при сильном (до 10 м/с).

Кстати вот аналогичная схема со стабилитроном, вместо L7805. Позволяет заряжать Li-ion батареи.

Доработка самодельного ветряка

Чтобы генератор работал эффективнее нужно сделать ему направляющий хвостовик и закрепить его на мачте подвижно. Тогда при изменении направления ветра - будет изменяться направление ветрогенератора. Тогда возникает следующая проблема - кабель, идущий от генератора к потребителю будет закручиваться вокруг мачты. Чтобы это решить нужно обеспечить подвижный контакт. На Ebay и Aliexpress продаётся готовое решение.

Нижних три провода - неподвижны идут вниз, а верхний пучок проводов - подвижен, внутри установлен скользящий контакт или щеточный механизм. Если у вас нет возможности купить, проявите смекалку, и, вдохновившись решением конструкторов автомобиля Жигули, а именно реализацией подвижного контакта кнопки сигнала на руле и сделайте что-то похожее. Или воспользуйтесь контактной площадкой от электрочайника.

Соединив разъёмы, вы получите подвижный контакт.

Мощный ветрогенератор из подручных средств.

Для получения большей мощности вы можете использовать два варианта:

1. Генератор из шуруповерта (10-50 Вт);

Из шуруповерта понадобиться только моторчик, вариант аналогичен предыдущему, в качестве винта вы можете использовать лопасти от вентилятора, это увеличит итоговую мощность вашей установки.

Вот пример реализации такого проекта:

Обратите внимание как здесь реализована шестеренчатая повышающая передача - вал ветрогенератора расположен в трубе, на его конце расположена шестерня, которая передаёт вращение меньшей шестерне закрепленной на валу двигателя. Повышение оборотов двигателя имеет место и в промышленных ветряных электроустановках. Редуктора применяются повсеместно.

Однако в условиях самоделки изготовить редуктор становиться большой проблемой. Вы можете извлечь редуктор из электроинструмента, он там нужен чтобы понизить высокие обороты на валу коллекторного двигателя в нормальные обороты патрона на дрели, или диска болгарки:

В дрели установлен планетарный редуктор;

    В болгарке установлен угловой редуктор (станет полезным для монтажа некоторых установок и уменьшит нагрузку с хвоста ВЭУ);

    Редуктор от ручной дрели.

Такой вариант самодельного ветрогенератора уже может заряжать 12 В аккумуляторы, однако нужен преобразователь для формирования зарядного тока и напряжения. Эту задачу можно упростить применив автомобильный генератор.

Преимущество такого генератора - возможность использовать его для зарядки автомобильных аккумуляторов, в принципе он для этого и предназначен. Автогенераторы имеют встроенное реле-регулятор напряжения, что избавляет от необходимости покупать дополнительные стабилизаторы или преобразователи.

Однако автолюбители знают, что на низких холостых оборотах, примерно 500-1000 Об/мин мощность такого генератора мала, и он не обеспечивает должного тока для заряда аккумулятора. Это приводит к необходимости подключения к ветроколесу через редуктор или ременную передачу.

Отрегулировать количество оборотов при нормальной для ваших широт скорости ветра можно с помощью подбора передаточного числа либо с помощью правильно спроектированного ветроколеса.

Полезные советы


Пожалуй, самая удобная для повторения конструкция мачты для ветряка - изображена на картинке. Такая мачта растягивается на тросах, закрепленных на держателях в земле, что обеспечивает устойчивость.

Важно: Высота мачты должна быть как можно большей примерно 10 метров. На большей высоте ветер сильнее, потому что для него нет препятствий в виде наземных сооружений, холмов и деревьев. Ни в коем случае не устанавливайте ветрогенератор на крыше своего дома. Резонансные колебания крепежных конструкций могут вызвать разрушение его стен.

Позаботьтесь о надёжности несущей мачты, ведь конструкция ветряка на базе такого генератора значительно утяжеляется и представляет собой уже довольно серьезное решение, которое может осуществлять автономное электроснабжение дачи с минимальным набором электрических приборов. Устройства, которые работают от 220 Вольт можно запитать от инвертора 12-220 В. Самый распространённый вариант такого инвертора - .

Лучше использовать генераторы от дизельных, в т.ч. грузовых автомобилей, ведь они рассчитаны для работы на низких оборотах. В среднем дизельный двигатель крупного грузовика работает в диапазоне оборотов от 300 до 3500 об/мин.

Современные генераторы выдают 12 или 24 Вольт, а ток в 100 Ампер - уже давно стал нормальным. Проведя несложные вычисления можно определить, что такой генератор максимально выдаст вам до 1 кВт мощности, а генератор от жигулей (12 В 40-60 А) 350-500 Вт, что уже довольно приличная цифра.

Каким должно быть ветроколесо для самодельной ВЭУ?

Я упомянул в тексте о том, что ветроколесо должно быть большим и с большим количеством лопастей, на самом деле это не так. Это утверждение было справедливо для тех микро-генераторов, которые не претендуют на звание серьезных электрических машин, а скорее экземпляры для ознакомления и досуга.

На самом деле проектирование, расчёт и создание ветроколеса - это очень сложная задача. Энергия ветра будет использоваться рациональнее, если оно выполнено очень точно и идеально выведен «авиационный» профиль, при этом он должен быть установлен с минимальным углом к плоскости вращения колеса.

Реальная мощность ветроколес с одинаковым диаметром и разным количеством лопастей - одинаково, разница лишь в скорости их вращения. Чем меньше крыльев - тем больше оборотов в минуту, при том же ветре и диаметре. Если вы собираетесь добиться максимальных оборотов вы должны максимально точно смонтировать крылья с минимальным углом к плоскости их вращения.

Ознакомьтесь с таблицей из книги 1956 года «Самодельная ветроэлектростанция» изд. ДОСААФ Москва. На ней показана связь диаметра колеса, мощности и оборотов.

В домашних условиях эти теоретические выкладки дают мало толку, любители делают ветроколеса из подручных средств, в ход идёт:

  • Листы металла;

    Пластиковые канализационные трубы.

Собрать своими руками быстроходное 2-4 лопастное ветроколесо можно из канализационных труб, кроме них нужна ножовка или любой другой режущий инструмент. Использование этих труб обусловлено их формой, после обрезки они имеют вогнутую форму, что обеспечивает высокую отзывчивость к потокам воздуха.

После обрезки их закрепляют с помощью БОЛТОВ на металлической, текстолитовой или фанерной болванке. Если вы собрались делать её из фанеры - лучше переклейте и скрутите саморезами с обеих сторон несколько слоев фанеры, тогда у вас получится добиться жесткости.

Вот идея двух лопастной цельной крыльчатки для генератора из шагового двигателя.

Выводы

Вы можете сделать ветроэлектрическую установку начиная от малых мощностей - единиц Ватт, для питания отдельных светодиодных светильников, маячков и мелкой техники, до хороших значений мощности в единицах киловатт, накапливать энергию в аккумуляторе, использовать её в исходном виде или преобразовывать до 220 Вольт. Стоимость такого проекта будет зависеть от ваших потребностей, пожалуй, самым дороги элементом является мачта и аккумуляторы, может оказаться в пределах 300-500 долларов.

Сложно не заметить, насколько стабильность поставок электроэнергии загородным объектам отличается от обеспечения городских зданий и предприятий электроэнергией. Признайтесь, что вы как владелец частного дома или дачи не раз сталкивались с перебоями, связанными с ними неудобствами и порчей техники.

Перечисленные негативные ситуации вместе с последствиями перестанут осложнять жизнь любителей природных просторов. Причем с минимальными трудовыми и финансовыми затратами. Для этого нужно всего лишь сделать ветряной генератор электроэнергии, о чем мы детально рассказываем в статье.

Мы подробно описали варианты изготовления полезной в хозяйстве системы, избавляющей от энергетической зависимости. Согласно нашим советам соорудить ветрогенератор своими руками сможет неопытный домашний мастер. Практичное устройство поможет существенно сократить ежедневные расходы.

Альтернативные источники энергии – мечта любого дачника или домовладельца, участок которого находится вдали от центральных сетей. Впрочем, получая счета за электроэнергию, израсходованную в городской квартире, и глядя на возросшие тарифы, мы осознаём, что ветрогенератор, созданный для бытовых нужд, нам бы не помешал.

Прочитав эту статью, возможно, вы воплотите свою мечту в реальность.

Ветрогенератор – отличное решение для обеспечения загородного объекта электроэнергией. Причем в ряде случаев его установка является единственным возможным выходом

Чтобы не потратить зря деньги, силы и время, давайте определимся: есть ли какие-либо внешние обстоятельства, которые создадут нам препятствия в процессе эксплуатации ветрогенератора?

Для обеспечения электроэнергией дачи или небольшого коттеджа достаточно , мощность которой не превысит 1 кВт. Такие устройства в России приравнены к бытовым изделиям. Их установка не требует сертификатов, разрешений или каких-либо дополнительных согласований.

  1. Основные понятия
  2. Какой нужен генератор?
  3. Выбор по ветру
  4. О безопасности
  5. Ветер, аэродинамика, КИЭВ
  6. Чего ожидать от классики?
  7. Вертикалки
  8. Лопастники
  9. Мини и микро
  10. Парусники
  11. Самодельный генератор
  12. Вывод

Россия в отношении ветроэнергетических ресурсов занимает двоякое положение. С одной стороны, благодаря огромной общей площади и обилию равнинных местностей ветра в целом много, и он большей частью ровный. С другой – наши ветры преимущественно низкопотенциальные, медленные, см. рис. С третьей, в мало обжитых местностях ветры буйные. Исходя из этого, задача завести на хозяйстве ветрогенератор вполне актуальна. Но, чтобы решить – покупать достаточно дорогое устройство, или сделать его своими руками, нужно как следует подумать, какой тип (а их очень много) для какой цели выбрать.

Основные понятия

  1. КИЭВ – коэффициент использования энергии ветра. В случае применения для расчета механистической модели плоского ветра (см. далее) он равен КПД ротора ветросиловой установки (ВСУ).
  2. КПД – сквозной КПД ВСУ, от набегающего ветра до клемм электрогенератора, или до количества накачанной в бак воды.
  3. Минимальная рабочая скорость ветра (МРС) – скорость его, при которой ветряк начинает давать ток в нагрузку.
  4. Максимально допустимая скорость ветра (МДС) – его скорость, при которой выработка энергии прекращается: автоматика или отключает генератор, или ставит ротор во флюгер, или складывает его и прячет, или ротор сам останавливается, или ВСУ просто разрушается.
  5. Стартовая скорость ветра (ССВ) – при такой его скорости ротор способен провернуться без нагрузки, раскрутиться и войти в рабочий режим, после чего можно включать генератор.
  6. Отрицательная стартовая скорость (ОСС) – это значит, что ВСУ (или ВЭУ – ветроэнергетическая установка, или ВЭА, ветроэнергетический агрегат) для запуска при любой скорости ветра требует обязательной раскрутки от постороннего источника энергии.
  7. Стартовый (начальный) момент – способность ротора, принудительно заторможенного в потоке воздуха, создавать вращающий момент на валу.
  8. Ветродвигатель (ВД) – часть ВСУ от ротора до вала генератора или насоса, или другого потребителя энергии.
  9. Роторный ветрогенератор – ВСУ, в которой энергия ветра преобразуется во вращательный момент на валу отбора мощности посредством вращения ротора в потоке воздуха.
  10. Диапазон рабочих скоростей ротора – разность между МДС и МРС при работе на номинальную нагрузку.
  11. Тихоходный ветряк – в нем линейная скорость частей ротора в потоке существенно не превосходит скорость ветра или ниже ее. Динамический напор потока непосредственно преобразуется в тягу лопасти.
  12. Быстроходный ветряк – линейная скорость лопастей существенно (до 20 и более раз) выше скорости ветра, и ротор образует свою собственную циркуляцию воздуха. Цикл преобразования энергии потока в тягу сложный.

Примечания:

  1. Тихоходные ВСУ, как правило, имеют КИЭВ ниже, чем быстроходные, но имеют стартовый момент, достаточный для раскрутки генератора без отключения нагрузки и нулевую ССВ, т.е. абсолютно самозапускающиеся и применимы при самых слабых ветрах.
  2. Тихоходность и быстроходность – понятия относительные. Бытовой ветряк на 300 об/мин может быть тихоходным, а мощные ВСУ типа EuroWind, из которых набирают поля ветроэлектростанций, ВЭС (см. рис.) и роторы которых делают порядка 10 об/мин – быстроходные, т.к. при таком их диаметре линейная скорость лопастей и их аэродинамика на большей части размаха – вполне «самолетные», см. далее.

Какой нужен генератор?

Электрический генератор для ветряка бытового назначения должен вырабатывать электроэнергию в широком диапазоне скоростей вращения и обладать способностью самозапуска без автоматики и внешних источников питания. В случае использования ВСУ с ОСС (ветряки с раскруткой), обладающих, как правило, высокими КИЭВ и КПД, он должен быть и обратимым, т.е. уметь работать и как двигатель. При мощностях до 5 кВт этому условию удовлетворяют электрические машины с постоянными магнитами на основе ниобия (супермагнитами); на стальных или ферритовых магнитах можно рассчитывать не более чем на 0,5-0,7 кВт.

Примечание: асинхронные генераторы переменного тока или коллекторные с ненамагниченным статором не годятся совершенно. При уменьшении силы ветра они «погаснут» задолго до того, как его скорость упадет до МРС, и потом сами не запустятся.

Отличное «сердце» ВСУ мощностью от 0,3 до 1-2 кВт получается из автогенератора переменного тока со встроенным выпрямителем; таких сейчас большинство. Во-первых, они держат выходное напряжение 11,6-14,7 В в довольно широком диапазоне скоростей без внешних электронных стабилизаторов. Во-вторых, кремниевые вентили открываются, когда напряжение на обмотке достигнет примерно 1,4 В, а до этого генератор «не видит» нагрузки. Для этого генератор нужно уже довольно прилично раскрутить.

В большинстве случаев автогенератор можно непосредственно, без зубчатой или ременной передачи, соединить с валом быстроходного ВД, подобрав обороты выбором количества лопастей, см. ниже. «Быстроходки» имеют малый или нулевой стартовый момент, но ротор и без отключения нагрузки успеет достаточно раскрутиться, прежде чем вентили откроются и генератор даст ток.

Выбор по ветру

Прежде чем решать, какой сделать ветрогенератор, определимся с местной аэрологией. В серо-зеленоватых (безветренных) областях ветровой карты хоть какой-то толк будет лишь от парусного ветродвигателя (и них далее поговорим). Если необходимо постоянное энергоснабжение, то придется добавить бустер (выпрямитель со стабилизатором напряжения), зарядное устройство, мощную аккумуляторную батарею, инвертор 12/24/36/48 В постоянки в 220/380 В 50 Гц переменного тока. Обойдется такое хозяйство никак не менее $20.000, и снять долговременную мощность более 3-4 кВт вряд ли получится. В общем, при непреклонном стремлении к альтернативной энергетике лучше поискать другой ее источник.

В желто-зеленых , слабоветренных местах, при потребности в электричестве до 2-3 кВт самому можно взяться за тихоходный вертикальный ветрогенератор . Их разработано несть числа, и есть конструкции, по КИЭВ и КПД почти не уступающие «лопастникам» промышленного изготовления.

Если же ВЭУ для дома предполагается купить, то лучше ориентироваться на ветряк с парусным ротором. Споров и них много, и в теории пока еще не все ясно, но работают. В РФ «парусники» выпускают в Таганроге на мощность 1-100 кВт.

В красных , ветреных, регионах выбор зависит от потребной мощности. В диапазоне 0,5-1,5 кВт оправданы самодельные «вертикалки»; 1,5-5 кВт – покупные «парусники». «Вертикалка» тоже может быть покупной, но обойдется дороже ВСУ горизонтальной схемы. И, наконец, если требуется ветряк мощностью 5 кВт и более, то выбирать нужно между горизонтальными покупными «лопастниками» или «парусниками».

Примечание: многие производители, особенно второго эшелона, предлагают комплекты деталей, из которых можно собрать ветрогенератор мощностью до 10 кВт самостоятельно. Обойдется такой набор на 20-50% дешевле готового с установкой. Но прежде покупки нужно внимательно изучить аэрологию предполагаемого места установки, а затем по спецификациям подобрать подходящие тип и модель.

О безопасности

Детали ветродвигателя бытового назначения в работе могут иметь линейную скорость, превосходящую 120 и даже 150 м/с, а кусочек любого твердого материала весом в 20 г, летящий со скоростью 100 м/с, при «удачном» попадании убивает здорового мужика наповал. Стальная, или из жесткого пластика, пластина толщиной 2 мм, движущаяся со скоростью 20 м/с, рассекает его же напополам.

Кроме того, большинство ветряков мощностью более 100 Вт довольно сильно шумят. Многие порождают колебания давления воздуха сверхнизкой (менее 16 Гц) частоты – инфразвуки. Инфразвуки неслышимы, но губительны для здоровья, а распространяются очень далеко.

Примечание: в конце 80-х в США был скандал – пришлось закрыть крупнейшую на тот момент в стране ВЭС. Индейцы из резервации в 200 км от поля ее ВСУ доказали в суде, что резко участившиеся у них после ввода ВЭС в эксплуатацию расстройства здоровья обусловлены ее инфразвуками.

В силу указанных выше причин установка ВСУ допускается на расстоянии не менее 5 их высот от ближайших жилых строений. Во дворах частных домовладений можно устанавливать ветряки промышленного изготовления, соответствующим образом сертифицированные. На крышах ставить ВСУ вообще нельзя – при их работе, даже у маломощных, возникают знакопеременные механические нагрузки, способные вызвать резонанс строительной конструкции и ее разрушение.

Идея Жуковского была такова: вдоль верхней и нижней поверхностей крыла воздух проходит разный путь. Из условия непрерывности среды (пузыри вакуума сами по себе в воздухе не образуются) следует, что скорости верхнего и нижнего потоков, сходящих с задней кромки, должны отличаться. Вследствие пусть малой, но конечной вязкости воздуха там из-за разности скоростей должен образоваться вихрь.

Вихрь вращается, а закон сохранения количества движения, столь же непреложный, как и закон сохранения энергии, справедлив и для векторных величин, т.е. должен учитывать и направление движения. Поэтому тут же, на задней кромке, должен сформироваться противоположно вращающийся вихрь с таким же вращательным моментом. За счет чего? За счет энергии, вырабатываемой двигателем.

Для практики авиации это означало революцию: выбрав соответствующий профиль крыла, можно было присоединенный вихрь пустить вокруг крыла в виде циркуляции Г, увеличивающей его подъемную силу. Т.е., затратив часть, а для больших скоростей и нагрузок на крыло – большую часть, мощности мотора, можно создать вокруг аппарата воздушный поток, позволяющий добиться лучших летных качеств.

Это делало авиацию авиацией, а не частью воздухоплавания: теперь летательный аппарат мог сам создавать себе нужную для полета среду и не быть более игрушкой воздушных потоков. Нужен только двигатель помощнее, и еще и еще мощнее…

Снова КИЭВ

Но у ветряка мотора нет. Он, наоборот, должен отбирать энергию у ветра и давать ее потребителям. И здесь выходит – ноги вытащил, хвост увяз. Пустили слишком мало энергии ветра на собственную циркуляцию ротора – она будет слабой, тяга лопастей – малой, а КИЭВ и мощность – низкими. Отдадим на циркуляцию много – ротор при слабом ветре будет на холостом ходу крутиться как бешеный, но потребителям опять достается мало: чуть дали нагрузку, ротор затормозился, ветер сдул циркуляцию, и ротор стал.

Закон сохранения энергии «золотую середину» дает как раз посерединке: 50% энергии даем в нагрузку, а на остальные 50% подкручиваем поток до оптимума. Практика подтверждает предположения: если КПД хорошего тянущего пропеллера составляет 75-80%, то КИЭВ так же тщательно рассчитанного и продутого в аэродинамической трубе лопастного ротора доходит до 38-40%, т.е. до половины от того, чего можно добиться при избытке энергии.

Современность

Ныне аэродинамика, вооруженная современной математикой и компьютерами, все более уходит от неизбежно что-то да упрощающих моделей к точному описанию поведения реального тела в реальном потоке. И тут, кроме генеральной линии – мощность, мощность, и еще раз мощность! – обнаруживаются пути побочные, но многообещающие как раз при ограниченном количестве поступающей в систему энергии.

Известный авиатор-альтернативщик Пол Маккриди еще в 80-х создал самолет, с двумя моторчиками от бензопилы мощностью в 16 л.с. показавший 360 км/ч. Причем шасси его было трехопорным неубирающимся, а колеса – без обтекателей. Ни один из аппаратов Маккриди не вышел на линию и не встал на боевое дежурство, но два – один с поршневыми моторами и пропеллерами, а другой реактивный – впервые в истории облетели вокруг земного шара без посадки на одной заправке.

Парусов, породивших изначальное крыло, развитие теории тоже коснулось весьма существенно. «Живая» аэродинамика позволила яхтам при ветре в 8 узл. встать на подводные крылья (см. рис.); чтобы разогнать такую громадину до нужной скорости гребным винтом, требуется двигатель не менее 100 л.с. Гоночные катамараны при таком же ветре ходят со скоростью около 30 узл. (55 км/ч).

Есть и находки совершенно нетривиальные. Любители самого редкого и экстемального спорта – бейсджампинга – надев апециальный костюм-крыло, вингсьют, летают без мотора, маневрируя, на скорости более 200 км/ч (рис. справа), а затем плавно приземляются в заранее выбранном месте. В какой сказке люди летают сами по себе?

Разрешились и многие загадки природы; в частности – полет жука. По классической аэродинамике, он летать не способен. Точно так же, как и родоначальник «стелсов» F-117 с его крылом ромбовидного профиля тоже не способен подняться в воздух. А МИГ-29 и Су-27, которые некоторое время могут лететь хвостом вперед, и вовсе ни в какие представления не укладываются.

И почему тогда, занимаясь ветродвигателями, не забавой и не орудием уничтожения себе подобных, а источником жизненно важного ресурса, нужно плясать непременно от теории слабых потоков с ее моделью плоского ветра? Неужели не найдется возможности продвинуться дальше?

Чего ожидать от классики?

Однако от классики отказываться ни в коем случае не следует. Она дает основу, не оперевшись на которую нельзя подняться выше. Точно так же, как теория множеств не отменяет таблицу умножения, а от квантовой хромодинамики яблоки с деревьев вверх не улетят.

Итак, на что можно рассчитывать при классическом подходе? Посмотрим на рисунок. Слева – типы роторов; они изображены условно. 1 – вертикальный карусельный, 2 – вертикальный ортогональный (ветряная турбина); 2-5 – лопастные роторы с разным количеством лопастей с оптимизированными профилями.

Справа по горизонтальной оси отложена относительная скорость ротора, т.е., отношение линейной скорости лопасти к скорости ветра. По вертикальной вверх – КИЭВ. А вниз – опять же относительный крутящий момент. Единичным (100%) крутящим моментом считается такой, который создает насильно заторможенный в потоке ротор со 100% КИЭВ, т.е. когда вся энергия потока преобразуется во вращающее усилие.

Такой подход позволяет делать далеко идущие выводы. Скажем, количество лопастей нужно выбирать не только и не столько по желательной скорости вращения: 3- и 4-лопастники сразу много теряют по КИЭВ и вращательному моменту по сравнению с хорошо работающими примерно в том же диапазоне скорстей 2- и 6-лопастниками. А внешне похожие карусель и ортогонал обладают принципиально разными свойствами.

В целом же предпочтение следует отдавать лопастным роторам, кроме случаев, когда требуются предельная дешевизна, простота, необслуживаемый самозапуск без автоматики и невозможен подъем на мачту.

Примечание: о парусных роторах поговорим особо – они, похоже, в классику не укладываются.

Вертикалки

ВСУ с вертикальной осью вращения имеют неоспоримое для быта преимущество: их узлы, требующие обслуживания, сосредоточены внизу и не нужен подъем наверх. Там остается, и то не всегда, упорно-опорный самоустанавливающийся подшипник, но он прочен и долговечен. Поэтому, проектируя простой ветрогенератор, отбор вариантов нужно начинать с вертикалок. Основные их типы представлены на рис.

ВС

На первой позиции – самый простейший, чаще всего называемый ротором Савониуса. На самом деле его изобрели в 1924 г. в СССР Я. А. и А. А. Воронины, а финский промышленник Сигурд Савониус бессовестно присвоил себе изобретение, проигнорировав советское авторское свидетельство, и начал серийный выпуск. Но внедрение в судьбе изобретения значит очень много, поэтому мы, чтобы не ворошить прошлое и не тревожить прах усопших, назовем этот ветряк ротором Ворониных-Савониуса, или для краткости, ВС.

ВС для самодельщика всем хорош, кроме «паровозного» КИЭВ в 10-18%. Однако в СССР над ним работали много, и наработки есть. Ниже мы рассмотрим усовершенствованную конструкцию, не намного более сложную, но по КИЭВ дающую фору лопастникам.

Примечание: двухлопастный ВС не крутится, а дергается рывками; 4-лопастный лишь немного плавнее, но много теряет в КИЭВ. Для улучшения 4-«корытные» чаще всего разносят на два этажа – пара лопастей внизу, а другая пара, повернутая на 90 градусов по горизонтали, над ними. КИЭВ сохраняется, и боковые нагрузки на механику слабеют, но изгибные несколько возрастают, и при ветре более 25 м/с у такой ВСУ на древке, т.е. без растянутого вантами подшипника над ротором, «срывает башню».

Дарье

Следующий – ротор Дарье; КИЭВ – до 20%. Он еще проще: лопасти – из простой упругой ленты безо всякого профиля. Теория ротора Дарье еще недостаточно разработана. Ясно только, что начинает он раскручиваться за счет разности аэродинамического сопротивления горба и кармана ленты, а затем становится вроде как быстроходным, образуя собственную циркуляцию.

Вращательный момент мал, а в стартовых положениях ротора параллельно и перпендикулярно ветру вообще отсутствует, поэтому самораскрутка возможна только при нечетном количестве лопастей (крыльев?) В любом случае на время раскрутки нагрузку от генератора нужно отключать.

Есть у ротора Дарье еще два нехороших качества. Во-первых, при вращении вектор тяги лопасти описывает полный оборот относительно ее аэродинамического фокуса, и не плавно, а рывками. Поэтому ротор Дарье быстро разбивает свою механику даже при ровном ветре.

Во-вторых, Дарье не то что шумит, а вопит и визжит, вплоть до того, что лента рвется. Происходит это вследствие ее вибрации. И чем больше лопастей, тем сильнее рев. Так что Дарье если и делают, то двухлопастными, из дорогих высокопрочных звукопоглощающих материалов (карбона, майлара), а для раскрутки посередине мачты-древка приспосабливают небольшой ВС.

Ортогонал

На поз. 3 – ортогональный вертикальный ротор с профилированными лопастями. Ортогональный потому, что крылья торчат вертикально. Переход от ВС к ортогоналу иллюстрирует рис. слева.

Угол установки лопастей относительно касательной к окружности, касающейся аэродинамических фокусов крыльев, может быть как положительным (на рис.), так и отрицательным, сообразно силе ветра. Иногда лопасти делают поворотными и ставят на них флюгерки, автоматически держащие «альфу», но такие конструкции часто ломаются.

Центральное тело (голубое на рис.) позволяет довести КИЭВ почти до 50% В трехлопастном ортогонале оно должно в разрезе иметь форму треугольника со слегка выпуклыми сторонами и скругленными углами, а при большем количестве лопастей достаточно простого цилиндра. Но теория для ортогонала оптимальное количество лопастей дает однозначно: их должно быть ровно 3.

Ортогонал относится к быстроходным ветрякам с ОСС, т.е. обязательно требует раскрутки при вводе в эксплуатацию и после штиля. По ортогональной схеме выпускаются серийные необслуживаемые ВСУ мощностью до 20 кВт.

Геликоид

Геликоидный ротор, или ротор Горлова (поз. 4) – разновидность ортогонала, обеспечивающая равномерное вращение; ортогонал с прямыми крыльями «рвет» лишь немного слабее двухлопастного ВС. Изгиб лопастей по геликоиде позволяет избежать потерь КИЭВ из-за их кривизны. Хотя часть потока кривая лопасть и отбрасывает, не используя, но зато и загребает часть в зону наибольшей линейной скорости, компенсируя потери. Геликоиды используют реже прочих ветряков, т.к. они вследствие сложности изготовления оказываются дороже равных по качеству собратьев.

Бочка-загребушка

На 5 поз. – ротор типа ВС, окруженный направляющим аппаратом; его схема представлена на рис. справа. В промышленном исполнении встречается редко, т.к. дорогостоящий отвод земли не компенсирует прироста мощности, а материалоемкость и сложность производства велики. Но самодельщик, боящийся работы – уже не мастер, а потребитель, и, если нужно не более 0,5-1,5 кВт, то для него «бочка-загребушка» лакомый кусок:

  • Ротор такого типа абсолютно безопасен, бесшумен, не создает вибраций и может быть установлен где угодно, хоть на детской площадке.
  • Согнуть «корыта» из оцинковки и сварить каркас из труб – работа ерундовая.
  • Вращение – абсолютно равномерное, детали механики можно взять самые дешевые или из хлама.
  • Не боится ураганов – слишком сильный ветер не может протолкнуться в «бочку»; вокруг нее возникает обтекаемый вихревой кокон (мы с этим эффектом еще столкнемся).
  • А самое главное – поскольку поверхность «загребушки» в несколько раз больше таковой ротора внутри, КИЭВ может быть и сверхединичным, а вращательным момент уже при 3 м/с у «бочки» трехметрового диаметра такой, что генератору на 1 кВт с предельной нагрузкой, как говорится, лучше и не дергаться.

Видео: ветрогенератор Ленца

В 60-х в СССР Е. С. Бирюков запатентовал карусельную ВСУ с КИЭВ 46%. Немного позже В. Блинов добился от конструкции на том же принципе КИЭВ 58%, но данных о ее испытаниях нет. А натурные испытания ВСУ Бирюкова были проведены сотрудниками журнала «Изобретатель и рационализатор». Двухэтажный ротор диаметром 0,75 м и высотой 2 м при свежем ветре раскручивал на полную мощность асинхронный генератор 1,2 кВт и выдерживал без поломки 30 м/с. Чертежи ВСУ Бирюкова приведены на рис.

  1. ротор из кровельной оцинковки;
  2. самоустанавливающийся двухрядный шариковый подшипник;
  3. ванты – 5 мм стальной трос;
  4. ось-древко – стальная труба с толщиной стенок 1,5-2,5 мм;
  5. рычаги аэродинамического регулятора оборотов;
  6. лопасти регулятора оборотов – 3-4 мм фанера или листовой пластик;
  7. тяги регулятора оборотов;
  8. груз регулятора оборотов, его вес определяет частоту вращения;
  9. ведущий шкив – велосипедное колесо без шины с камерой;
  10. подпятник – упорно-опорный подшипник;
  11. ведомый шкив – штатный шкив генератора;
  12. генератор.

Бирюков на свою ВСУ получил сразу несколько авторских свидетельств. Во-первых, обратите внимание на разрез ротора. При разгоне он работает подобно ВС, создавая большой стартовый момент. По мере раскрутки во внешних карманах лопастей создается вихревая подушка. С точки зрения ветра, лопасти становятся профилированными, и ротор превращается в быстроходный ортогонал, причем виртуальный профиль меняется соответственно силе ветра.

Во-вторых, профилированный канал между лопастями в рабочем диапазоне скоростей работает как центральное тело. Если же ветер усиливается, то в нем также создается вихревая подушка, выходящая за пределы ротора. Возникает такой же вихревой кокон, как вокруг ВСУ с направляющим аппаратом. Энергия на его создание берется от ветра, и тому на поломку ветряка ее уже не хватает.

В-третьих, регулятор оборотов предназначен прежде всего для турбины. Он держит ее обороты оптимальными с точки зрения КИЭВ. А оптимум частоты вращения генератора обеспечивается выбором передаточного отношения механики.

Примечание: после публикаций в ИР за 1965 г. ВСУ Бирюкова канула в небытие. Ответа от инстанций автор так и не дождался. Судьба многих советских изобретений. Говорят, какой-то японец стал миллиардером, регулярно читая советские популярно-технические журналы и патентуя у себя все, заслуживающее внимания.

Лопастники

Как у сказано, по классике горизонтальный ветрогенератор с лопастным ротором – наилучший. Но, во-первых, ему нужен стабильный хотя бы средней силы ветер. Во-вторых, конструкция для самодельщика таит в себе немало подводных камней, из-за чего нередко плод долгих упорных трудов в лучшем случае освещает туалет, прихожую или крыльцо, а то и оказывается способен только раскрутить самого себя.

По схемам на рис. рассмотрим подробнее; позиции:

  • Фиг. А:
  1. лопасти ротора;
  2. генератор;
  3. станина генератора;
  4. защитный флюгер (ураганная лопата);
  5. токосъемник;
  6. шасси;
  7. поворотный узел;
  8. рабочий флюгер;
  9. мачта;
  10. хомут под ванты.
  • Фиг. Б, вид сверху:
  1. защитный флюгер;
  2. рабочий флюгер;
  3. регулятор натяжения пружины защитного флюгера.
  • Фиг. Г, токосъемник:
  1. коллектор с медными неразрезными кольцевыми шинами;
  2. подпружиненные меднографитовые щетки.

Примечание: ураганная защита для горизонтального лопастника диаметром более 1 м совершенно необходима, т.к. создать вокруг себя вихревой кокон он не способен. При меньших размерах можно добиться выносливости ротора до 30 м/с с лопастями из пропилена.

Итак, где нас ждут «спотыки»?

Лопасти

Рассчитывать добиться мощности на валу генератора более 150-200 Вт на лопастях любого размаха, вырезанных из толстостенной пластиковой трубы, как часто советуют – надежды беспросветного дилетанта. Лопасть из трубы (если только она не настолько толстая, что используется просто как заготовка) будет иметь сегментный профиль, т.е. его верхняя, или обе поверхности будут дугами окружности.

Сегментные профили пригодны для несжимаемой среды, скажем, для подводных крыльев или лопастей гребного винта. Для газов же нужна лопасть переменного профиля и шага, для примера см. рис.; размах – 2 м. Это будет сложное и трудоемкое изделие, требующее кропотливого расчета во всеоружии теории, продувок в трубе и натурных испытаний.

Генератор

При насадке ротора прямо на его вал штатный подшипник скоро разобьется – одинаковой нагрузки на все лопасти в ветряках не бывает. Нужен промежуточный вал со специальным опорным подшипником и механическая передача от него на генератор. Для больших ветряков опорный подшипник берут самоустанавливающийся двухрядный; в лучших моделях – трехъярусный, Фиг. Д на рис. выше. Такой позволяет валу ротора не только слегка изгибаться, но и немного смещаться из стороны в сторону или вверх-вниз.

Примечание: на разработку опорного подшипника для ВСУ типа EuroWind ушло около 30 лет.

Аварийный флюгер

Принцип его работы показывает Фиг. В. Ветер, усиливаясь, давит на лопату, пружина растягивается, ротор перекашивается, обороты его падают и в конце концов он становится параллельно потоку. Вроде бы все хорошо, но – гладко было на бумаге…

Попробуйте в ветреный день удержать за ручку параллельно ветру крышку от выварки или большой кастрюли. Только осторожно – вертлявая железяка может садануть по физиономbии так, что расквасит нос, рассечет губу, а то и выбьет глаз.

Плоский ветер бывает только в теоретических выкладках и, с достаточной для практики точностью, в аэродинамических трубах. Реально же ураган ветряки с ураганной лопатой корежит больше, чем вовсе беззащитные. Лучше все-таки менять исковерканные лопасти, чем делать заново все. В промышленных установках – другое дело. Там шаг лопастей, по каждой в отдельности, отслеживает и регулирует автоматика под управлением бортового компьютера. И делаются они из сверхпрочных композитов, а не из водопроводных труб.

Токосъемник

Это – регулярно обслуживаемый узел. Любой энергетик знает, что коллектор со щетками нужно чистить, смазывать, регулировать. А мачта – из водопроводной трубы. Не залезешь, раз в месяц-два придется весь ветряк валить на землю и потом опять поднимать. Сколько он протянет от такой «профилактики»?

Видео: лопастной ветрогенератор + солнечная панель для электроснабжения дачи

Мини и микро

Но с уменьшением размеров лопастника трудности падают по квадрату диаметра колеса. Изготовление горизонтальной лопастной ВСУ своими силами на мощность до 100 Вт уже возможно. Оптимальным будет 6-лопастный. При большем количестве лопастей диаметр ротора, рассчитанного на ту же мощность, будет меньше, но их окажется трудно прочно закрепить на ступице. Роторы о менее чем 6 лопастях можно не иметь в виду: 2-лопастнику на 100 Вт нужен ротор диаметром 6,34 м, а 4-лопастнику той же мощности – 4,5 м. Для 6-лопастного зависимость мощность – диаметр выражается следующим образом:

  • 10 Вт – 1,16 м.
  • 20 Вт – 1,64 м.
  • 30 Вт – 2 м.
  • 40 Вт – 2,32 м.
  • 50 Вт – 2,6 м.
  • 60 Вт – 2,84 м.
  • 70 Вт – 3,08 м.
  • 80 Вт – 3,28 м.
  • 90 Вт – 3,48 м.
  • 100 Вт – 3,68 м.
  • 300 Вт – 6,34 м.

Оптимальным будет рассчитывать на мощность 10-20 Вт. Во-первых, лопасть из пластика размахом более 0,8 м без дополнительных мер защиты не выдержит ветер более 20 м/с. Во-вторых, при размахе лопасти до тех же 0,8 м линейная скорость ее концов не превысит скорость ветра более чем втрое, и требования к профилировке с круткой снижаются на порядки; здесь уже вполне удовлетворительно будет работать «корытце» с сегментным профилем из трубы, поз. Б на рис. А 10-20 Вт обеспечат питание планшетки, подзарядку смартфона или засветят лампочку-экономку.

Далее, выбираем генератор. Отлично подойдет китайский моторчик – ступица колеса для электровелосипедов, поз. 1 на рис. Его мощность как мотора – 200-300 Вт, но в режиме генератора он даст примерно до 100 Вт. Но подойдет ли он нам по оборотам?

Показатель быстроходности z для 6 лопастей равен 3. Формула для расчета скорости вращения под нагрузкой – N = v/l*z*60, где N – частота вращения, 1/мин, v – скорость ветра, а l – длина окружности ротора. При размахе лопасти 0,8 м и ветре 5 м/с получаем 72 об/мин; при 20 м/с – 288 об/мин. Примерно с такой же скоростью вращается и велосипедное колесо, так что свои 10-20 Вт от генератора, способного дать 100, мы уж снимем. Можно ротор сажать прямо на его вал.

Но тут возникает следующая проблема: мы, потратив немало труда и денег, хотя бы на моторчик, получили… игрушку! Что такое 10-20, ну, 50 Вт? А лопастный ветряк, способный запитать хотя бы телевизор, дома не сделаешь. Нельзя ли купить готовый мини-ветрогенератор, и не обойдется ли он дешевле? Еще как можно, и еще как дешевле, см. поз. 4 и 5. Кроме того, он будет еще и мобильным. Поставил на пенек – и пользуйся.

Второй вариант – если где-то валяется шаговый двигатель от старого 5- или 8-дюймового дисковода, или от привода бумаги или каретки негодного струйного или матричного принтера. Он может работать как генератор, и приделать к нему карусельный ротор из консервных банок (поз. 6) проще, чем собирать конструкцию наподобие показанной на поз. 3.

В целом по «лопастникам» вывод однозначен: самодельные – скорее для того, чтобы помастерить всласть, но не для реальной долговременной энергоотдачи.

Видео: простейший ветрогенератор для освещения дачи

Парусники

Парусный ветрогенератор известен давно, но мягкие полотнища его лопастей (см. рис.) начали делать с появлением высокопрочных износостойких синтетических тканей и пленок. Многолопастные ветряки с жесткими парусами широко разошлись по миру как привод маломощных автоматических водокачек, но их техданные ниже даже чем у каруселей.

Однако мягкий парус как крыло ветряка, похоже, оказался не так-то прост. Дело не в ветроустойчивости (производители не ограничивают максимально допустимую скорость ветра): яхсменам-парусникам и так известно, что ветру разорвать полотнище бермудского паруса практически невозможно. Скорее шкот вырвет, или мачту сломает, или вся посудина сделает «поворот оверкиль». Дело в энергетике.

К сожалению, точных данных испытаний не удается найти. По отзывам пользователей удалось составить «синтетические» зависимости для установки ВЭУ-4.380/220.50 таганрогского производства с диаметром ветроколеса 5 м, массой ветроголовки 160 кг и частотой вращения до 40 1/мин; они представлены на рис.

Разумеется, ручательств за 100% достоверность быть не может, но и так видно, что плоско-механистической моделью тут и не пахнет. Никак не может 5-метровое колесо на плоском ветре в 3 м/с дать около 1 кВт, при 7 м/с выйти на плато по мощности и далее держать ее до жестокого шторма. Производители, кстати, заявляют, что номинальные 4 кВт можно получить и при 3 м/с, но при установке их силами по результатам исследований местной аэрологии.

Количественной теории также не обнаруживается; пояснения разработчиков маловразумительны. Однако, поскольку таганрогские ВЭУ народ покупает, и они работают, остается предположить, что заявленные коническая циркуляция и пропульсивный эффект – не фикция. Во всяком случае, возможны.

Тогда, выходит, ПЕРЕД ротором, по закону сохранения импульса, должен возникнуть тоже конический вихрь, но расширяющийся и медленный. И такая воронка будет сгонять ветер к ротору, его эффективная поверхность получится больше ометаемой, а КИЭВ – сверхединичным.

Пролить свет на этот вопрос могли бы натурные измерения поля давления перед ротором, хотя бы бытовым анероидом. Если оно окажется выше, чем с боков в стороне, то, действительно, парусные ВСУ работают, как жук летает.

Самодельный генератор

Из сказанного выше ясно, что самодельщикам лучше браться или за вертикалки, или за парусники. Но те и другие очень медленные, а передача на быстроходный генератор – лишняя работа, лишние затраты и потери. Можно ли сделать эффективный тихоходный электрогенератор самому?

Да, можно, на магнитах из ниобиевого сплава, т. наз. супермагнитах. Процесс изготовления основных деталей показан на рис. Катушки – каждая из 55 витков медного 1 мм провода в термостойкой высокопрочной эмалевой изоляции, ПЭММ, ПЭТВ и т.п. Высота обмоток – 9 мм.

Обратите внимание на пазы под шпонки в половинах ротора. Они должны быть расположены так, чтобы магниты (они приклеиваются к магнитопроводу эпоксидкой или акрилом) после сборки сошлись разноименными полюсами. «Блины» (магнитопроводы) должны быть изготовлены из магнитомягкого ферромагнетика; подойдет обычная конструкционная сталь. Толщина «блинов» - не менее 6 мм.

Вообще-то лучше купить магниты с осевым отверстием и притянуть их винтами; супермагниты притягиваются со страшной силой. По этой же причине на вал между «блинами» надевается цилиндрическая проставка высотой 12 мм.

Обмотки, составляющие секции статора, соединяются по схемам, также приведенным на рис. Спаянные концы не должны быть натянуты, но должны образовывать петли, иначе эпоксидка, которой будет залит статор, застывая, может порвать провода.

Заливают статор в изложнице до толщины 10 мм. Центрировать и балансировать не нужно, статор не вращается. Зазор между ротором и статором – по 1 мм с каждой стороны. Статор в корпусе генератора нужно надежно зафиксировать не только от смещения по оси, но и от проворачивания; сильное магнитное поле при токе в нагрузке будет тянуть его за собой.

Видео: генератор для ветряка своими руками

Вывод

И что же мы имеем напоследок? Интерес к «лопастникам» объясняется скорее их эффектным внешним видом, чем действительными эксплуатационными качествами в самодельном исполнении и на малых мощностях. Самодельная карусельная ВСУ даст «дежурную» мощность для зарядки автоаккумулятора или энергоснабжения небольшого дома.

А вот с парусными ВСУ стоит поэкспериментировать мастерам с творческой жилкой, особенно в мини-исполнении, с колесом 1-2 м диаметром. Если предположения разработчиков верны, то с такого можно будет снять, посредством описанного выше китайского движка-генератора, все его 200-300 Вт.

Сделать же каркас (рангоут) для парусного ротора несложно. Кроме того, парусные ВСУ безопасны, а звуков от них, инфра- и слышимых, не обнаруживается. И высоко понимать ротор не нужно, достаточно одного диаметра колеса.

Видео: технология производства ветрогенераторов