Водогрейные газовые котлы: проблемы, ошибки. Водогрейные котлы типа квг

На сегодняшний день многие объекты жилищной инфраструктуры используют для жизнеобеспечения автономное газовое отопление. Если для городских квартир такая возможность ограничена техническими рамками, то для частного сектора автономное отопление является одним из ключевых аспектов комфортности жилья.

Обеспечить качественный и эффективный обогрев жилых помещений в автономном режиме может газо-нагревательное оборудование. Водогрейные газовые котлы являются именно тем типом отопительной техники, благодаря которой можно создать необходимый комфорт и уют не только в частном доме, но и в мини-отелях, в загородных домах и в коттеджах.

Технические возможности оборудования данного типа способны полностью удовлетворить потребности в отоплении и горячем водоснабжении.

Газовый водогрейный котел - общее представление

Водонагревательный газовый котел, представляет собой вид бытового котельного оборудования большой мощности, рассчитанный на одновременное решение двух задач - отопления внутренних помещений большой площади и обеспечения в нормальном объеме ГВС (горячим водоснабжением). Данный вид отопительной техники применяется в , в которых циркуляция воды осуществляется принудительно.

На заметку: для работы котла используется природный или сжиженный газ с количеством теплоты при сгорании 33 МДж/м 3 при температуре окружающей среды 20 0 С и атмосферном давлении в 745-765 мм рт. ст.

В процессе работы бытовой котел способен нагревать теплоноситель до температуры 95 град. по Цельсию, создавая рабочее давление в системе 0,6 МПа. Водогрейный автономный газовый котел или обладает высокой мощностью, которую принято измерять в мегаваттах. Модели, представленные сегодня на рынке, имеют различную мощность. Котлы для частного дома обычно имеют мощность в диапазоне 0,4 – 1 МВт. Промышленные агрегаты способны обогревать большие площади, до 30-40 тыс. кв. м., обладая мощностью, в 1,5-4 МВт. Благодаря своей конструкции и принципу действия водонагревательные котлы имеют один из самых высоких КПД, — до 92%.

Основные преимущества водогрейных газовых агрегатов следующие:

  • быстрый выход на оптимальные режимы работы – 2-4 часа;
  • компактность;
  • легкость монтажа;
  • простота эксплуатации и обслуживания;
  • экологичность.

Главное преимущество котлов этого типа - низкая себестоимость тепловой энергии, на порядок ниже, чем у других отопительных приборов. Основная сфера применения -обеспечение ГВС и отопление жилых объектов, находящихся вдали от теплоцентрали. Обычно водогрейные котлы устанавливают на объектах, где монтаж автономной котельной нецелесообразен с технической стороны и экономически невыгоден.

Другими словами, водогрейные котлы представляют собой высокотехнологичные устройства, в которых посредством сжигания голубого топлива вырабатывается большой объем тепловой энергии. Полученное тепло используется для нагрева воды – теплоносителя, который циркулирует в отопительном контуре. Циркулируя в трубопроводе отопительного контура, вода нагревает радиаторы отопления, отдающие затем тепло воздуху помещения. Давление, создаваемое в системе, обеспечивает необходимое поступление теплоносителя в самые дальние участки отопительного контура и обогрев помещений до комфортной температуры.

Основной момент, на который надо обращать внимание перед установкой водогрейного котла – бесперебойная подача воды. Хорошее техническое состояние водопровода является ключевым аспектом нормальной работы газо-нагревательного оборудования.

Типы водогрейных котлов, используемые в различных сферах

Классификация отопительного оборудования этого вида построена на следующих критериях:

  • вид используемого топлива;
  • тип размещения;
  • основное предназначение.

По виду используемого топлива котлы делятся на газовые приборы, жидкотопливные, твердотопливные и комбинированные агрегаты. Из перечисленного оборудования именно газовые котлы обладают самыми высокими техническими характеристиками.

По назначению водогрейные агрегаты делятся на промышленные и бытовые.

Первый тип используется для обогрева промышленных зданий, эксплуатация подобной техники требует специальных знаний и опыта, эксплуатация промышленных котлов четко регламентируется режимными картами и инструкциями.

На заметку. Как правило, мощность промышленных котлов исчисляется десятками мегаватт (10-50 МВт), в качестве теплоносителя в промышленных отопительных системах используется пар, поэтому такое оборудование чаще называют паровыми котлами.

Второй тип - бытовые водогрейные котлы, представляющие собой отопительное оборудование ограниченной мощности. Такие котлы используются для обогрева бытовых и жилых помещений небольших размеров, ограниченной площади. В качестве теплоносителя в них используется обычная вода.

По типу исполнения или размещения газовые водогрейные агрегаты делятся на настенные (навесные) и напольные модели. Навесной вариант газового котла подразумевает устройство небольшой мощности. Такие приборы устанавливаются в квартирах или небольших частных домах. Напольные котлы обладают большей мощностью и, следовательно, большими габаритами. Для монтажа напольного водогрейного агрегата требуется специальное помещение — котельная, которая в обязательном порядке должна быть оборудована вентиляцией.

Основное предназначение водогрейного устройства обусловлено способом нагрева котельной воды. Котлы с проточным способом подогрева обеспечивают заданную температуру воды посредством подогрева нагревательного контура, находящегося в камере сгорания. Другие модели оснащаются накопительными емкостями, в которых происходит косвенный нагрев воды. Приборы, оборудованные накопительными баками, имеют меньший ресурс и в основном используются для ГВС и отопления квартир и загородных домов небольшой площади. Количество точек забора воды в данном случае также ограничено. Поэтому, чем больше расход горячей воды из системы ГВС, тем большую емкость и мощность должен иметь , используемый в случае, если газовый котёл – одноконтурный.

Важно! В бытовых котлах, которые работают на отопление и на обеспечение жилья горячей водой, большая часть мощности расходуется на подогрев воды. Поэтому при выборе модели котла необходимо учитывать резервный запас мощности, благодаря которой горячая вода в доме будет в достаточном количестве, а домашнее отопление станет максимально эффективным в любую погоду.

На данный момент значительная часть моделей, представленных на рынке – это двухконтурные водогрейные котлы (не путать с двухтрубной разводкой системы отопления). Реже встречаются одноконтурные агрегаты.

Популярность моделей газовых котлов с двухконтурной системой подачи теплоносителя заключается в их высокой эффективности и равномерном распределении теплоносителя по всей отапливаемой площади здания. Способность одновременно обеспечить в доме ГВС и отопление, расходуя при этом минимальное количество топлива - основное преимущество двухконтурных газовых водонагревательных котлов, современные модели которых оснащаются циркуляторами – устройствами, улучшающими циркуляцию теплоносителя в системе трубопроводов.

Конструкция водогрейных котлов

На сегодняшний день рынок отопительного оборудования насыщен различными моделями водогрейных котлов, которые имеют схожую конструкцию и отличаются только мощностью нагревательных элементов и, соответственно, производительностью. Модельный ряд представлен изделиями как отечественных, так и зарубежных производителей.

В плане конструкционных особенностей - ничего нового. Обычно газовый водонагревательный котел имеет прочный стальной или чугунный корпус, отделанный теплоизоляционными материалами. Основу конструкции составляют газовая горелка и теплообменник, используемые для подогрева воды, поступающей затем в систему.

Оснащение современных моделей

В водогрейных приборах устанавливаются газовые горелки двух типов:

  • атмосферные;
  • наддувные.

От типа горелки и качества ее работы зависит производительность, и, соответственно, функциональность котла. Причина того, что газовый котел недостаточно греет воду, заключается в том, что в системе газоснабжения упало давления газа, в результате чего не обеспечивается необходимое его поступление в камеру сгорания. Как следствие, слабая интенсивность горения газообразной топливной массы и низкая температура нагрева теплообменника.

Атмосферные горелки естественным образом смешивают бытовой газ с воздухом, тогда как наддувные оборудованы для этих целей вентиляторами – нагнетателями. Смешивание газа с воздухом происходит под давлением. Топливная масса поступает в топку под высоким давлением, вследствие чего улучшается интенсивность её горения и эффективность нагрева теплоносителя. Топливо в данном случае сжигается полностью, повышая коэффициент полезного действия отопительного прибора.

Кроме того, наддувные горелки, обеспечивающие необходимое давление газа в системе, более надёжны в эксплуатации.

Конструкция водогрейного котла состоит из следующих элементов:

  • опорная рама (для напольного типа);
  • блок конвективной, радиационной поверхности нагрева;
  • блок с ЗИП (запорная арматура, клапана и вентили).

Водогрейный котел устанавливается на опорную раму или монтируется на стену, после чего производится подключение воздуховода, воды и газа. Завершается монтаж установкой контрольно-измерительных приборов, запорной арматуры и установкой предохранительных клапанов. Как правило, все водогрейные котлы оснащаются взрывным клапаном, который устанавливается с тыльной стороны прибора. Основная задача этого приспособления — предотвратить разрушение нагревательного контура вследствие перегрева и превышения рабочего давления в камере сгорания.

Важным компонентом котла является насосное оборудование, необходимая производительность которого определяется расчётным путём с привязкой к отапливаемой площади и мощности котла.

В процессе установки котла необходимо также оборудовать дымосос, через который из камеры сгорания будут удаляться продукты сгорания топлива. Параметры дымососа определяются также расчётным путём на стадии разработки проекта системы отопления. Неверный расчёт характеристик дымососа чреват не только наслоениями сажи на его стенках и снижением эффективности работы котла, но и опасным ухудшением функционирования вентиляции и высокой концентрацией в помещении угарного газа.

В заключение несколько слов о том, на что дополнительно следует обратить внимание при выборе агрегата. Определившись с потребной мощностью и имея представление об условиях его будущей эксплуатации, необходимо также изучить возможности и степень надёжности автоматики, от работы которой зависит не только эффективность функционирования систем отопления и ГВС, но и безопасность обитателей жилых помещений.

Предшественниками котлов КВГ-34К были котлы КВГ-25 и КВГ- 25К(корректированного проекта) паропроизводительностью 25 т/ч и выра- батывающие пар тех же параметров. Эти котлы устанавливались на большой серии (24 единицы) отечественных сухогрузных судов типа «Ленинский комсомол» с паротурбинной установкой 9550 кВт, строящихся в конце 50-х - начале 60-х годов. Котлы судов типа «Ленинский комсомол» и танкеров типа «София» имеют аналогичные компоновку и поверхности нагрева, выполненные из труб одинаковых размеров. Примерно равны и их экономические показатели, КПД 93%. Основное отличие котлов в паропроиэводительности, незначительных отличиях общих размеров хвостовых поверхностей нагрева и числе и типе форсунок.

После замены у котлов КВГ-34К газового воздухоподогревателя на паровой была устранена коррозия его труб, а после замены шести механических центро­бежных форсунок на четыре паро­механические упростилась конструкция и эксплуатация агрегата. На 10.2 для сравнения приведены компоновок котлов КВГ-25 и КВГ-34К.

Наиболее современные и экономичные главные пароэнергетические установки выполняют с промежуточным перегревом пара. Перегретый пар от основного пароперегревателя направляется в турбину, частично со­вершает в ней работу (температура его при этом понижается), возвра­щается в промежуточный пароперег- реватель, приобретает первоначальную температуру и поступает в последующие ступени турбины, что позволяет общий процесс расширения пара в ней приблизить к наиболее экономичному - изотермическому. Для осуществления промежуточного, перегрева пара потребовались существенные изменения в конструкции и компоновке котлов, которые стали называть агрегатами шахтного типа. Обычно такие котлы входят в состав так называемой полутора- котельной установки, в которой котел шахтного типа используется как главный, а другой (однопроточный обычного типа) - в качестве вспомо­гательного для обеспечения судна па­ром на стоянке, а также для работы главной турбины на ходу в случае выхода из строя главного котла. Кот­лы шахтного типа оборудуют паро­образующими элементами только радиационного типа, которые обра­зуют полностью экранированную топку. Средними экранными стенка­ми, образованными из испаритель­ных труб, котлы делятся на две час­ти: топочную камеру и камеру в виде шахты, где размещаются конвектив­ные поверхности нагрева пароперег­ревателей (основного и промежуточ­ного) и экономайзера. Подобная ус­тановка применена на серии крупно­тоннажных танкеров типа «Крым», где установлены в качестве главного котел КВГ-80/80 паропроизводительностью 80 т/ч при давлении перегре­того пара 8 МПа и температуре 515 0 С, имеющий КПД 96%, в качетве вспомогательного - котел КВ-35/25-1 паропроизводительностью 35 т/ч,

Котел показан на рис. 10.3 и 10.4 (номера позиций на рисунках совпа­дают) . Правая часть агрегата, пред­ставляющая топочную камеру 12, об­разована экранами 11, 13, 15. Трубы торцевых экранов закреплены в кол­лекторах 5 и 14. Топочная камера оборудована четырьмя паромеханическими форсунками 7, расположен­ными в верхней части топки. Опуск­ными являются трубы 10, соединяю­щие паровой коллектор 2 с водяным коллектором 16. Образующиеся в топке продукты сгорания топлива проходят через разреженный участок труб 15, называемый фестоном, и поступают в шахту 18, где размещены конвективные змеевиковые поверхности нагрева основного пароперегревателя 19, промежуточного пароперегревателя 25, экономайзера 29 и трубчатые поверхности нагрева воздухоподогревателя 1 .

Пар из парового коллектора паропроводу 8 поступает в основной

Рис 10 3. Схема компоновки котла КВГ-80/80

пароперегреватель 19, состоящий из двух секций. Часть пара после пер­вой секции может быть направле­на по паропроводу 17 в главный пароохладитель 5 для возможности регулирования температуры перегре­того пара. Из основного пароперег­ревателя (после второй секции) пар но паропроводу 21 поступает к глав­ной паровой турбине. Предусмотре­ны также частичный отвод пара по паропроводу 20 во вспомогательный пароохладитель 4 и подача его в магистраль охлажденного пара 3. Частично отработавший в главной ТВД пар по паропроводу 27 посту­пает в

промежуточный пароперегре­ватель 25, откуда вновь перегретый по паропроводу 23 снова направля­ется в главную турбину. На схеме также обозначено: 6, 22,24, 26,28 - трубопроводы; 30 - подогреватель.

Регулирование температуры пе­регретого пара в промежуточном па­роперегревателе осуществляется с помощью перепускного паропровода 24, который предназначен для пода­чи насыщенного пара в Промежуточ­ный пароперегреватель (для защиты от пережога) и сброса его по паро­проводу 26 в систему охлажденного пара.

Питательная вода подается в эко­номайзер 29 по трубопроводу 28, а в котел - по трубопроводу 6. Воз­духоподогреватель трехходовой по газу и одноходовой по воздуху. По­следний пучок труб (третьего хода), где температура уходящих газов наи­более низкая, с газовой стороны име­ет защитное покрытие фторопластом против химической (низкотемпера­турной) коррозии. На режимах ма­лых нагрузок также для защиты воз­духоподогревателя от химической (низкотемпературной) коррозии предусмотрен предварительный по­догрев воздуха питательной водой в подогревателе 30.

На судах зарубежной постройки в качестве главных применяют котлы, конструктивно и по характеристикам мало отличающиеся от рассмотрен­ных котлов отечественной постройки.

Это тоже, как правило, вертикальные водотрубные однопроточные котлы с естественной циркуляцией, развитыми хвостовыми поверхностями нагрева и часто с полностью экранированной топкой. Секционные котлы, являющиеся единственными представителями горизонтальных водотрубных котлов, в свое время пришедшие на смену газотрубным (огнетрубным) оборотным как более совершенные и экономичные, в настоящее время как главные не применяются.


Котлы

Безо всякого сомнения, обеспечение надёжной (длительной и безотказной) работы котлотурбинной ГЭУ "Кузнецова" является первостепенной задачей среднего ремонта корабля. Силовая установка авианосца состоит из четырёх машинно-котельных (турбокотельных) групп (эшелонов), расположенных попарно в двух машинно-котельных отделениях (МКО) − носовом и кормовом, каждая из которых работает на свой гребной винт и включает в себя два высоконапорных котла КВГ-4 с турбонаддувочными агрегатами ТНА-4 и один главный турбозубчатый агрегат (паровую турбину с редуктором) ТВ-12-4. Нареканий в адрес ГТЗА лично мне слышать не приходилось (хотя, конечно, и им понадобится основательное восстановление технической готовности), поэтому всё внимание уделим котлам.

В настоящее время на боевых кораблях ВМФ России используется три типа высоконапорных паровых котлов − КВГ-2 (в составе резервной ЭУ ТАРКР пр. 11442), КВГ-3 (ЭМ пр. 956) и КВГ-4 (ТАВКР пр. 11435). В отличие от КВГ-3, принцип действия и особенности конструкции которых описаны в открытых учебных пособиях для студентов вузов , о КВГ-4 известно очень мало − в основном то, что при тех же параметрах пара (давление 66 атм = 6,5 МПа и температуре 470 град. Цельсия), его паропроизводительность увеличена с 98 и 100 (КВН 98/64-2 и КВГ-3) до 115 т/час , а агрегатная мощность ГТЗА по сравнению с предыдущими 1143 (с котлами КВН 98/64-2) возросла с 45 000 до 50 000 л. с. (как и у 956).

Об испытаниях, выпавших на долю адмирала В. Селиванова (начальника ГШ ВМФ, старшего на борту) и личного состава дивизиона движения БЧ-5 во время первого похода "Кузнецова" в Средиземное море (23.12.1995-22.03.1996), хорошо известно из книги Н. Черкашина (ссылка 3 ), однако ни о каких других серьёзных неприятностях, связанных с котлами, с тех пор не сообщалось. Возможно, об инцидентах тщательно умалчивалось (что маловероятно), возможно, к котлам авианосца было особое (предельно тщательное) отношение, возможно, конструкция КВГ-4, доведённая до ума после "авантюры" 1995-1996 г.г., заметно отличается от КВГ-3 в лучшую сторону, но, как бы то ни было, факт остаётся фактом − со своими КВГ-4 "Кузнецов" регулярно ходит в дальние воды, в то время как два из трёх оставшихся из 17 эсминцев пр. 956 с КВГ-3 исполняют обязанности кораблей ОВРа, а поход "Быстрого" в Индию воспринимается как полёт на Луну.

Однако, несмотря на регулярные выходы на боевую службу, КОН авианосца на сегодняшний день весьма невысок (коэффициент оперативного напряжения равен отношению суммарного времени выполнения задач по предназначению к общему сроку службы). "Кузнецов" выходил на БС восемь раз: 1) 23.12.1995-22.03.1996 (СЗМ); 2) 27.09-24.10.2004 (Сев.-вост. Атлантика); 3) 23.08-14.09.2005 (Сев.-вост. Атлантика); 4) 05.12.2007-03.02.2008 (СЗМ); 5) 05.12.2008-27.02.2009 (СЗМ); 6) 06.12.2011-17.02.2012 (СЗМ); 7) 17.12.2013-17.05.2014 (СЗМ); 8) 15.10.2016-08.02.2017 (СЗМ). Если посчитать КОН с момента передачи корабля ВМФ (25.12.1990), получится 623/9612=0,06 (исходные данные − в сутках). При этом следует иметь в виду, что вторая БС состоялась только через девять лет (8,76) после первой (на дворе стояли "смутные времена"), после чего молитвами ВВП ситуация стала меняться в лучшую сторону. Пересчитав КОН с 01.01.2007, мы получим 484/3761=0,13 (! ), что, впрочем, тоже далеко от идеала. Необходимо добиться того, чтобы котлы "Кузнецова" позволили увеличить КОН в 2 2,5 раза.

При этом, ещё в июньском номере журнала "Национальная оборона" за 2011 год (почти шесть лет назад) рассказывалось о новой разработке питерского Специального конструкторского бюро котлостроения (СКБК) − высоконапорном автоматизированном корабельном котлоагрегате нового поколения КВГ 6М (так в оригинале − без дефиса), способном, по утверждению разработчика, стать основой КТУ, конкурентоспособной с газотурбинными и дизельными ГЭУ. Перспективный котёл СКБК отличается от предшественников экономичностью, надёжностью , малыми массогабаритными характеристиками и высокой степенью автоматизации, его параметры пара впечатляют − 8,0 МПа (около 82 атм) и 515 град. Цельсия, автоматизированная система управления, выполненная на современной элементной базе , позволяет обеспечить безвахтенное обслуживание, а суммарный расход топлива КТУ уменьшается где-то на 20%.

В то же время, перспективность применения котлотурбинных установок на боевых кораблях и судах обеспечения ВМФ находится под большим вопросом (недаром с 2011 г. публикаций на данную тему практически не было), а мелкосерийное (в количестве 8 единиц) производство принципиально нового котла вряд ли будет воспринято с восторгом на предприятии- изготовителе. Однако, у СКБК есть и другие, более практические, предложения. Так, в частности, при проведении модернизационных работ на кораблях, находящихся в эксплуатации, предлагается модификация КВГ 6М-1 с традиционными параметрами пара (6,0 МПа и 470 град.) и возможностью работы на дизельном топливе , увеличивающим дальность плавания примерно на 10% − такой котлоагрегат полностью взаимозаменяем с КВГ-3 (ссылка 4 ).

В целом, для улучшения эксплуатационных качеств КТУ "Кузнецова" у нас есть всё необходимое: 1) осознание потребности сделать это; 2) готовность профинансировать работы из средств гособоронзаказа; 3) наличие действующего профильного КБ, специализирующегося в частности на корабельных высоконапорных котлоагрегатах (ссылка 5 ) и располагающего соответствующими наработками; 4) наличие судостроительного предприятия с развитым котельным производством − Балтийского завода, СПб (ссылка 6 ), не столь давно (уже в новейшей истории России) изготовившего девять новых котлов КВГ-3Д (один учебный) для индийского авианосца "Викрамадитья" (ссылка 7 ).

С учётом того, что котлы КВГ-4 были разработаны не менее 30 лет назад и в известной степени являются анахронизмом, очень не хотелось бы, чтобы они в первозданном виде оставались на обновлённом авианосце. Наиболее рациональным представляется вариант с заменой всех восьми котлоагрегатов на новые − по типу КВГ 6М-1, но взаимозаменяемые с КВГ-4 (назовём их КВГ 6М-2), отличающиеся суперсовременной автоматикой, которая свела бы к минимуму пресловутый человеческий фактор. Согласно заявлению анонимного источника в ОПК, сделанному, как ни странно, ещё до проведения дефектации (либо выборочная дефектация была проведена в опережающем режиме), "на авианосце отремонтируют четыре из восьми имеющихся у него котлов силовой установки, еще четыре заменят" ( ссылка 8 ), что имеет смысл только в том случае, если отремонтированные котлы доведут до современного уровня, как это принято в авиа- и танкостроении.

Авиагруппа

Рассматривать авианосец в отрыве от авиагруппы бессмысленно − если авиагруппа ещё может решать какие-то задачи без своего носителя (например, обеспечивать ПВО объектов, расположенных в районе аэродрома её берегового базирования), то сам носитель, лишённый авиагруппы, становится практически бесполезным в военном отношении плавучим сооружением, пригодным разве что для переброски армейских самолётов и вертолётов с тыловых авиабаз на ТВД или с одного ТВД на другой. Поэтому есть смысл попытаться представить , что хорошего можно сделать с ЛА, базирующимися на "Кузнецове", пока он проходит средний ремонт.

Если довести до ума (поставить на крыло) самолёт РЛДН на базе Як-44 (о чём говорилось в 1-й части трилогии) за это время не смогут или не захотят, "Кузнецову" придётся довольствоваться его эконом-вариантом (РЛДН для бедных) − вертолётом Ка-31, который на кораблях ВМФ штатно никогда не применялся (насколько известно, два борта − 90 и 91, переданные МА в 2012 г., находятся в опытной эксплуатации). И Ка-31, и Ка-27М (поставляются с конца 2016 г.), и МиГ-29К(УБ) − машины новые, им предстоит длительный процесс "обкатки" строевыми лётчиками, устранения замечаний и усовершенствования в рабочем порядке, поэтому говорить о какой-либо модернизации тут пока рано. Другое дело Су-33.

Прежде всего следует сказать, что отказываться от этих замечательных (лучших в мире) палубных истребителей в пользу одних только МиГ-29К(УБ) было бы неразумно, и, судя по всему, делать этого не собираются − два года назад об этом заявил командующий МА ВМФ И. Кожин ("Су-33 будут... эксплуатироваться вместе с МиГ-29К": дальнюю зону ПВО закроют Су-33, среднюю − МиГ-29К, ближнюю − корабельное ПВО − ссылка 9 ), а недавно подтвердил процитированный выше источник в ОПК ("самолётный состав смешанного авиакрыла на "Кузнецове" пока менять не планируется" − ссылка 8 ). Более того, в 2015 г. был дан "зелёный свет" процессу модернизации парка Су-33 с продлением срока эксплуатации как минимум до 2025 г. (ссылка 7). В явном виде детали проекта не разглашаются, поэтому рискну порассуждать об этом.

1. То, о чём я мечтал задолго до выхода "Кузнецова" на БС ( ссылка 10 ), получило подтверждение от источников, близких к официальным − часть Су-33 была оснащена специализированной вычислительной подсистемой СВП-24, позволяющей довести точность попадания свободнопадающих бомб почти до уровня высокоточного оружия (путём сбора и обработки массива информации, касающейся местонахождения носителя и цели, параметров движения носителя и атмосферных условий). Сначала, за полтора месяца до похода, об этом сообщили"Известия" со ссылкой на Минобороны (ссылка 11 ), а уже после него − телеканал Т24 − ссылка 12 , 10:01). Следует оборудовать чудо-системой все борта 279 окиап.

2. Другим достоверным фактом является возобновление производства двигателей для Су-33 в Уфимском мотостроительном объединении (УМПО), входящим в ОДК. Речь идёт о ТРД АЛ-31Ф серии 3 (АЛ-31Ф3), который мощнее базового на 300 кгс (12 800 против 12 500) и отличается от него дополнительным "особым режимом", используемым при взлёте с трамплина с полной боевой нагрузкой или при экстренном уходе на второй круг в случае неудачной посадки. Согласно сообщению пресс-службы ОДК, "новые двигатели... будут выпускаться с внедрением доработок, которые уже применены на двигателях семейства АЛ-31Ф современного серийного облика" (ссылка 13 ). Остаётся надеяться, что в сообщении говорится всё-таки о серии 42 (АЛ-31Ф-М1) с тягой 13 500 кгс ( ссылка 14 ), либо решение будет пересмотрено в пользу этой модели. Лишние 700 кгс будут очень кстати для увеличения боевой нагрузки Су-33 при коротком взлёте со стартовых позиций №1 и №2.

3. В комментариях к предыдущим записям не раз и не два приходилось слышать о превосходстве "Супер Хорнета" над Су-33, главным образом − из-за оснащённости первого суперсовременной бортовой РЛС с АФАР и ракетами "воздух-воздух" средней дальности AIM -120 AMRAAM с активной радиолокационной ГСН (АРГСН). Сравнение F/A-18E/F с Су-33 (точнее − доказательство обратного) в этом блоге было начато (ссылка 15 , ссылка 16 ), но прервано в связи с моим отъездом в Донбасс, а затем по причине утраты данных сразу на двух жёстких дисках (основном и резервном) − бывает и такое. Надеюсь, оно будет продолжено, но не сейчас.

Скажу лишь, что по РЛС AN/APG-79 и по AIM -120 достоверных данных как не было, так и нет − ВПК и ВМС США заняли глухую оборону и секретят всё подряд, известно лишь, что: 1) AN/APG-79 гораздо слабее AN/APG-77 F -22 (раза в два), что и понятно, учитывая разницу в тяговооружённости; 2) дальность обнаружения типовых воздушных целей по аналогии с F-15E оценивается в 150-180 км ( ссылка 17 ); 3) БРЛС с АФАР "Супер Хорнета" очень хороша для работы по наземным целям и постановки помех (на что, собственно, он и был заточен), однако её достоинства в воздушном бою с сильным и умелым противником вызывают сомнения; 4) 8 (!) одновременно обстреливаемых активно маневрирующих целей с учётом необходимости активно маневрировать самому − это вообще за гранью реальности (сюжет для компьютерной игры для вундеркиндов).

Поэтому, не задаваясь пока вопросом "а зачем всё это надо?", просто рассмотрим возможные варианты улучшения БРЭО (БРЛС в составе СУВ − системы управления вооружением ) Су-33, которые можно было бы реализовать в разумно короткие сроки, сопоставимые со сроком среднего ремонта "Кузнецова". Теоретически, на "тридцать третьи" можно установить любую из трёх новых РЛС с ФАР, применяемых на машинах семейства Су-27 и МиГ-29: 1) Н010? "Жук-А" с АФАР, одна из родоначальниц которой ("Жук-М" со щелевой антенной решёткой) по имеющимся данным установлена на единственном двухместном Су-33УБ (Су-27КУБ) (ссылка 18 ), разработчик − "Фазотрон-НИИР" (КРЭТ); 2) Н011М "Барс" с пассивной ФАР (ПФАР) разработки НИИ приборостроения (НИИП) и производства Рязанского приборного завода (ГРПЗ), которая, судя по всему, устанавливается на Су-30СМ (ссылка 19 , текст после фото 18); 3) Н035 "Ирбис (ПФАР, Су-35, НИИП, ГРПЗ).

Все указанные РЛС являются основой СУВ, позволяющих использовать новейшие ракеты класса "воздух-воздух" (РВВ-СД, РВВ-БД − ссылка 20 ) и "воздух-поверхность" (Х-31АД и пр.), не должны уступать в дальности обнаружения и пуска перехваленному "Супер Хорнету" и, в случае внедрения одной из них на Су-33, многократно увеличат его боевые возможности, сделав настоящим королём воздуха над просторами Мирового океана до появления Т-50К.

В качестве эконом-экспресс-варианта может быть предложена усовершенствованная старая-добрая СУВ "Меч" с РЛС Н001 (Н001М?), предлагавшаяся НИИП ещё в 2011 г. (разумеется, в экспортном исполнении) и предполагавшая увеличение дальности обнаружения воздушной цели типа истребитель (ЭПР=3 кв.м, с вероятностью 0,5) в переднюю полусферу со 100 до 150 км, количества одновременно атакуемых целей − с одной до двух (уверен, что атаковать сразу большее количество целей у лётчика попросту не будет возможности), применение ракет "воздух-воздух" средней дальности Р-77 (РВВ-АЕ), ПКР Х-31А(Д) и пр. ( ссылка 21 ). Конечно, не предел мечтаний, но хоть что-то.

4. Как известно, Су-33 оборудован системой дозаправки топливом в полёте по схеме "шланг-конус". Дозаправка может производиться от однотипных машин, оборудованных унифицированным подвесным агрегатом заправки УПАЗ-1 с темпом до 2000 л/мин (по другим данным, до 1100 л/мин − ссылка 22 ). Выдвижная штанга-топливоприёмник с головкой ГПТ-1 расположена перед кабиной пилота на левой стороне фюзеляжа, УПАЗ-1 подвешивается на 1-ю точку подвески между гондолами двигателей заправщика .

В 1-й части трёхсерийного выпуска "Военной приёмки" о походе "Кузнецова" (22:57) известный лётчик-испытатель С. Богдан так описал тактику использования Су-33 с дозаправкой в воздухе (с правками автора блога): с авианосца взлетает группа дозаправщиков (несколько танкеров), следом − группа, которая будет выполнять боевую задачу, доходит до района заправки (истратив, к примеру, треть или половину запаса топлива) и дозаправляется от танкеров, в результате чего дальность её полёта увеличивается на пройденную величину (не считая топлива, потраченного на взлёт).

При этом, на мой взгляд, эффективность самолётов-заправщиков можно было бы увеличить, применив подвесные топливные баки, которые штатно на Су-33 не предусмотрены ("не устанавливаются" − ссылка 23 ). При взлёте со стартовой позиции №3 (195-метровый "длинный" разбег) самолёт может взлететь с полным запасом топлива во внутренних баках (9 500 кг) и максимальным по точкам подвески запасом УР "воздух-воздух" (8 Р-27 и 4 Р-73), взлётная масса при этом будет (по разным данным) 32 200 − 32 450 кг (ссылка 24 ). Однако для "танкера" такая боевая нагрузка представляется избыточной − наверное, было бы достаточно 2 Р-27 и 2-Р73, а вместо остальных можно подвесить два подвесных топливных бака ПТБ-1500 ёмкостью по 1500 л (1170 кг) авиакеросина ТС-1, за счёт чего запас топлива заправщика увеличится на 25% .

Ударный комплекс

Если критика по поводу размещения противокорабельных ракетных комплексов (ПКРК) на первых четырёх отечественных ТАВКР вполне уместна (они занимали всю носовую часть верхней палубы, в значительной степени девальвируя авианесущую функцию крейсеров), то "Кузнецова" критикуют скорее по инерции, нежели по справедливости − 12 его УВП ПКРК "Гранит" убраны под палубу, занимают не слишком большой объём, расположены между треками стартовых позиций №1 и №2 (трек 3-й позиции совпадает со 2-й, если я правильно понимаю её номер) и совершенно не мешают взлёту палубных самолётов с трамплина. Размеры ракетного отсека, занимаемого УВП, равны примерно 25,5х9,5х10,5 м (L х B х H , длина − посередине высоты отсека, высота − с межпалубным "двойным дном"), площадь 240 кв.м, объём 2540 куб.м.

Указанного объёма не хватает даже для минимально целесообразного удлинения ангара на 4 МиГ-29К (26х20х7,2=3740 куб.м), не считая того, что перекомпоновка помещений будет связана со значительными проектными и технологическими трудностями. Демонтаж ПКРК может быть полезен разве что для размещения в освободившемся объёме дополнительного авиационного боезапаса, но есть подозрение, что особой необходимости в этом нет. ТАВКР пр. 11435 проектировался в расчёте на базирование на нём большого количества противолодочных вертолётов (порядка 18 машин), и поскольку функция ПЛО в ближайшее время вряд ли будет для него приоритетной, погреба авиационных торпед, глубинных бомб и гидроакустических буёв могут быть использованы для свободнопадаюших авиабомб и высокоточного оружия (плюс ещё какие-то неведомые скрытые резервы).

Нежелание отказываться от ударного комплекса (точнее, "необходимость восстановления системы ударного вооружения") озвучил недавно и Д. Рогозин (ссылка 25 ). С этим трудно не согласиться − на месте одной УВП "Гранита" может быть размещено четыре ячейки УКСК (3С14) высотой 9,58 м (при высоте ракетного отсека 11435 около 10,5 м), т. е. суммарный боезапас тех же самых КРБД 3М14 может достигнуть 48 ракет (втрое больше, нежели на 22350), что в случае необходимости будет весьма солидным вкладом в залп любой корабельной группировки во главе с ТАВКР.

Заключение

По большому счёту, даже если в разумные сроки (за 2-3 года) модернизировать на "Кузнецове" одну только ГЭУ, дав авианосцу возможность ходить на БС ежегодно (а не раз в два года, как было раньше) и укомплектовать авиагруппу по предполагаемому новому штату (8 Су-33, 16 МиГ-29К, 4 Ка-31, 4 Ка-27, итого 32 ЛА в ангаре плюс, по возможности, ещё 14 на полётной палубе − ссылка 26 ), это уже будет великое счастье для ВМФ России и всех, кто болеет за него душой. Если же получится сделать что-то ещё, будем считать это бонусом или подарком судьбы.

Использованная литература (в некоторых случаях через дефис может быть указан номер страницы)

1. В. Заблоцкий "Тяжёлый авианесущий крейсер "Адмирал Кузнецов", "Морская коллекция" №7/2005.
2. В. Заблоцкий "Тяжёлые авианесущие крейсера "Минск", "Новороссийск", "Баку", "Морская коллекция" №4/2004.
3. В. Заблоцкий "Тяжёлый авианесущий крейсер "Киев", "Морская коллекция" №7/2003.
4. В. Кузин, В. Никольский "Военно-морской флот СССР 1945-1991", Историческое морское общество, СПб, 1996.
5. А. Гусаров "Особенности устройства и эксплуатации паровых котлов корабельных КТЭУ", ДВГТИ, Владивосток, 2006.
6. А. Гусаров "Особенности устройства и эксплуатации вспомогательных механизмов корабельных КТЭУ", ДВГТИ, Владив., 2004.
7. А. Фомин "Су-33. Корабельная эпопея", РА Интервестник, М., 2003

2. Схема КТУ ТАВКР пр. 1143 (из книги В. Кузина и В. Никольского "Военно-морской флот СССР 1945-1991" )


3. Схемы котлов КВГ-3 (слева) и КВГ 6М (КВГ 6М-1, ТНА не показан, СКБК, Национальная оборона №6/2011)

4. ТРД АЛ-31Ф-М1 (АЛ-31Ф серии 42) тягой 13 500 кгс (фото с сайта НПЦ газотурбостроения "Салют")

5. Штатная РЛС Су-33 Н001, входящая в состав СУВ "Меч" (фото с сайта НИИП)

6. РЛС со щелевой антенной "Жук-М", установленная на Су-27КУБ (фото А. Карпенко)

7. РЛС с АФАР "Жук-А" (фото А. Карпенко)

8. Агрегат заправки УПАЗ-1, вид спереди (фото из книги А. Фомина , стр. 207)

9. УПАЗ-1, вид сзади: заправочный конус и сигнализатор заправки (источник тот же)

10. Штанга дозаправки в выпущенном положении (фото из книги А. Фомина , стр. 206)

11. УВП ПКРК "Гранит" ТАВКР пр. 11435, 1991 (фото из работы В. Заблоцкого от Петрович-2 с forums.airbase.ru)

12. Фрагмент продольного разреза ТАВКР пр. 11435 (схема С. Балакина из выпуска "Морской коллекции" №7/2005 )

13. Фрагмент вида сверху ТАВКР пр. 11435 (схема из книги Ю. Апалькова "Корабли ВМФ СССР", том II , часть 1). Размеры (L х B ) ракетного отсека по люкам на полётной палубе − 22,5х7,0 м

14. Ракетный отсек (зелёный) и ангар (жёлтый) ТАВКР пр. 11435, вписанные в теоретический чертёж ТАВКР пр. 11434 (из книги А. Павлова), отличающегося меньшим развалом бортов (шпангоутов) в носовой оконечности (по длине ракетный отсек находится примерно между 2 и 4 плюс 1/3 теоретическими шпангоутами)

15. Ракетный отсек (зелёный) и ангар (жёлтый) ТАВКР пр. 11435, вписанные в вид спереди ТАВКР пр. 11436 (из книги Ю. Апалькова "Корабли ВМФ СССР", том II , часть 1)

), факт остаётся фактом - из 17 единиц, построенных для отечественного ВМФ, в настоящий момент боеспособны только три (18% ), причём боеспособны ограниченно. Об этом говорит тот факт, что их предпочитают не выпускать за пределы "домашних" морей - Баренцева, Японского, Балтийского. В то же самое время, аналогичный "показатель выживаемости" газотурбинных ровесников "Сарычей" - БПК пр. 1155, составляет 62% (8 из13) - в 3,5 раза выше. И это при том, что "Фрегаты" почти не бывают дома, неустанно демонстрируя Андреевский флаг по всему земному шару.


Эсминец пр. 956 "Настойчивый" в Гдыне, 14.07.2008 (фото Tomasz с shipspotting.com, 3010 пикс.). Причинами чёрного дыма - явления досадного, но поправимого, могут быть : недостаток воздуха в топке, неправильная работа топочных устройств (форсунок), низкие температура и давление подаваемого топлива, неисправность системы автоматического регулирования.

Бытуют две распространённых точки зрения на причины неприятностей кораблей 956-го проекта: "виновата ГЭУ" и "виноват личный состав". Попробуем разобраться, какая из них ближе к действительности.


Вариант 1: виновата ГЭУ

Мнение об ущербности ГЭУ, наверное, лучше всего обосновал один из участников Морского форума Авиабазы : "напряжение топочного объёма котлов конструкторы увеличили, а там мучайтесь как хотите. На пр. 56 напряжение было в 2,5 раза ниже, и трубки летели гораздо меньше, хотя сталь трубок была проще и дешевле" (процитировано в вольном изложении, ссылка 2 ). Для справки: тепловое напряжение топочного объёма характеризует степень совершенства парового котла и представляет собой количество тепла (в Ккал), выделяющегося в одном кубическом метре топочного объёма в единицу времени (в час) при сжигании подаваемого в топку топлива [ 1 -14].

С эсминцами пр. 56 сравнивают "Сарычей" и Кузин с Никольским : "Решение [применить КТУ] было обоснованным, но реализовано оно было без учёта многих особенностей эксплуатации КТУ с ещё более напряжёнными котлами, чем на пр. 56 ... Установка требовала квалифицированного ухода при эксплуатации и дефицитных расходных материалов, которых на флотах не всегда было в достатке. В результате при нарушении правил эксплуатации... начались аварии и стало складываться явное предубеждение к установкам такого типа. В своё время, внедрив высокие параметры пара на пр. 56, была "закрыта" подача воздуха в котлы, теперь... [был сделан] следующий шаг по повышению напряжённости котлов..." [ 2 -150].

Если не дочитать монографию КиН до конца (по крайней мере, до стр. 415-421), может сложиться впечатление, что в течение без малого 20 лет, прошедших между вступлением в строй последнего ЭМ пр. 57-бис (развития пр. 56) и головного ЭМ пр. 956, боевые корабли с котлотурбинными установками в СССР вообще не строились, а ГЭУ "Сарыча" стала едва ли не технической авантюрой. Чтобы убедиться в обратном, придётся заглянуть в историю, начав издалека.

На первых послевоенных советских эсминцах пр. 30-бис стояли котлы с низкими параметрами пара (28 атм, 370 ° C ) и вентиляторным дутьём воздуха в котельное отделение (они были аналогичны тем, что применялись на довоенных пр. 7 и 7У). Высокие параметры пара (64 атм, 470 ° C ) были впервые применены в котлах 2-го поколения на ЭМ пр. 41 (прототипе пр. 56 и 57). Достигались они, в числе прочего, за счёт закрытого дутья непосредственно в топку котла (того самого "закрытия" подачи воздуха, о котором говорилось выше).

В высоконапорных котлах 3-го поколения, впервые установленных на РКР пр. 58, помимо высоких параметров пара были применены турбонаддувочные агрегаты (ТНА), которые позволили увеличить теплонапряжение топочного объёма по одним данным - в два [ 3 ], по другим - в три [ 2 -419] раза. И параметры пара, и теплонапряжение повышались главным образом ради увеличения агрегатной мощности ГТЗА (в конечном итоге - для поддержания заданной скорости хода при растущем водоизмещении) при сохранении приемлемых массогабаритных характеристик и экономичности (за счёт снижения удельной массы котлов и удельного расхода топлива).

Краткая история послевоенного отечественного котлостроения представлена в таблице :

Как видно из таблицы, в КТУ эсминцев пр. 956 нет ничего принципиально нового - это всего лишь усовершенствованный вариант силовой установки, созданной 18 годами ранее. От своей предшественницы - КТУ БПК пр. 1134А и ТАВКР пр. 1143, она отличается форсированием до 50000 л.с. (возможность которого определилась ещё при создании ГЭУ РКР пр. 58 [ 3 ]) и более экономичным ТНА. Конструкция котла КВН 98/64 аналогична конструкции КВН 95/64 [ 2 -419] - самого первого высоконапорного котла обр. 1962 г., а КВГ-3 отличается от КВН 98/64 лишь количеством трубок, их диаметром (30 мм вместо 25 мм), толщиной их стенок и слегка изменённой конструкцией экономайзера (ссылка 3 ).

Никакого " возврата к высоконапорным агрегатам, к которому отечественный ВМФ оказался технически и организационно неподготовленным" (о чём, противореча сами себе, пишут Кузин и Никольский [ 2 -418]), на самом деле не было - была ярко выраженная преемственность. К моменту передачи флоту "Современного" (25.12.1980) в состав ВМФ входили и активно эксплуатировались 23 корабля с высоконапорными котлами КВН 95/64 и 98/64 : 4 РКР пр. 58 (списаны в 1990-2002 г.г.), 2 ПКР пр. 1123 (1991-1996), 4 РКР пр. 1134 (1989-1994), 10 БПК пр. 1134А (1991-1993), последний из которых вступил в строй всего на три года раньше головного "Сарыча" и, наконец, 3 ТАВКР пр. 1143 (1993).

Ко дню распада СССР (26.12.1991) в составе ВМФ (с учётом списания) было уже 33 корабля 1-го ранга с высоконапорными котлами - почти столько же, сколько с газовыми турбинами (35 ). Учитывая многолетний опыт массовой эксплуатации котлов КВН 98/64, отработанную технологию их ремонта, действующую производственную базу и доступный ЗИП, можно утверждать, что по крайней мере в 1980-1990 г.г. эсминцы пр. 956 не испытывали серьёзных проблем с ГЭУ, что подтверждается их высокой наплаванностью в этот период времени. По этой причине версия о врождённой ущербности КТУ с высоконапорными котлами представляется несостоятельной.

Вариант 2: виноват личный состав

Данная точка зрения на причины бед пр. 956 является самой распространённой. Вот лишь некоторые высказывания : 1) "Все наши проблемы... - это неумение эксплуатировать технику... Лень экипажа может доконать любую установку... По своему опыту знаю, до какого состояния некоторые экипажи доводят корабли и технику отсутствием предусмотренных ППО и ППР... А [китайские] кораблики ходят и не ломаются, потому что существует такое понятие "культура обслуживания"; 2) "для идеальной эксплуатации [КТУ пр. 956] нужна идеальная водоподготовка и идеальные матросы... это то, что китайский ВМФ смог обеспечить, в отличии от нас"; 3) "на... ЭМ "Безбоязненный" котлы губили сами моряки, причин этому масса... "Сарычи" ходили бы и ходили, если бы матчасть эксплуатировали специалисты и по регламенту".

Ругают в основном матросов (за невнимательность, непонимание автоматики и т. д.), хотя плохая подготовка котельных машинистов автоматически подразумевает вину командиров КГ и БЧ-5, которые вряд ли станут заниматься самобичеванием (лично я таких откровений не слышал). Ругают наших матросов и хвалят китайских, хотя о том, что на самом деле творится в ВМС НОАК никто не знает - судят исключительно по фотографиям, сделанным неизвестно где и когда (о дальних походах китайских 956-х, кроме переходов с Балтики к местам базирования, также ничего не известно). Наконец, есть очень большие сомнения в том, что падение уровня подготовки личного состава при переходе от ВМФ СССР к ВМФ РФ было столь катастрофическим, что привело к почти полному исчезновению целого подкласса боевых кораблей.

Вместо того, чтобы возлагать всю вину на котельных машинистов - чернорабочих флота, следовало бы ответить на вопрос : почему при одинаково низком уровне подготовки флотских специалистов корабли с газотурбинными силовыми установками понесли гораздо меньшие потери на переходе к рыночной экономике? Тезис о простоте эксплуатации ГТУ по причине "высокой автоматизации процессов управления и малой трудоёмкости технического обслуживания" [ 5 ] здесь не подходит - системные непрофессионализм и халатность личного состава не могли быть узконаправленными, они должны были в равной степени сказаться и на КТУ, и на ГТУ. По мнению автора, ответ надо искать в другом .

Высоконапорный водотрубный паровой котёл КВГ-3: общий вид и принципиальная схема (илл. с официального сайта СКБК - Специального конструкторского бюро котлостроения). Обозначения: 1 - опускные трубы, 2 - топочное устройство, 3 - турбонаддувочный агрегат, 4 - газоочистное устройство, 5 - экономайзер, 6 - пароперегреватель, 7 - парообразущие трубы.

Вариант 3: виноват дефицит ЗИПа

Любой корабль, даже с самыми надёжными и неприхотливыми механизмами, не может эксплуатироваться бесконечно долго без аварий и поломок - ему необходимо регулярное сервисное обслуживание (СО) и запасные части (буква "З" в аббревиатуре ЗИП) для замены исчерпавших ресурс и вышедших из строя агрегатов, узлов и деталей. Агрегатный ресурс КТУ очень велик - 100 000 час. (11 лет непрерывной работы), что в разы больше по сравнению с ГТУ и среднеоборотными ДЭУ (30 000 - 40 000 час. = 3,5-4,5 года) [ 6 ], однако ресурс водогрейных трубок котлов составляет всего 8 000 час. ( ссылка 3 ). Замена трубок считается заурядной типовой операцией - когда они есть . В постперестроечные годы котельные трубки стали настоящей ахиллесовой пятой корабельных КТУ, о чём (в числе прочих) говорят два следующих факта.

1. На госиспытаниях ТАВКР "Адмирал Кузнецов" в 1992-1994 г.г. паропроизводительность котлов КВГ-4 (в основном, той же конструкции, что и КВГ-3) не превышала 1/3 от номинальной, а скорость хода - 18 уз (полная проектная - 29 уз), причиной чего являлось низкое давление пара (45 вместо 66 атм) - то и дело "летели трубки". Трубки прогорали из-за того, что их поставляли ржавыми, а потом и вовсе перестали поставлять. Узнав о том, что на Урале есть необходимый ЗИП, начальник ГШ ВМФ адмирал В. Селиванов послал туда самолёт , после чего самолётом же трубки отправили в Николаев на гибку. В результате предпринятых экстраординарных мер на авианосце удалось привести в порядок сначала первый эшелон котлов, а зимой 1994-1995 г.г. - и второй эшелон, сделав корабль более-менее боеспособным (ссылка 4 ).

2. С момента вступления в строй (26.03.1988 [ 7 ]) эсминец "Окрылённый" нёс службу всего 6 лет - к 09.03.1994, когда он был выведен в резерв 2-й категории, на корабле было заглушено максимальное количество лопнувших трубок в котлах (при числе заглушенных трубок, превышающем значения, указанные в нормативных документах, должна производиться полная замена трубок пучка - ссылка 5 , ссылка 6 ). Запасные трубки на эсминце были, однако по распоряжению командования их передали на ТАВКР "Баку", что и предопределило судьбу "Окрылённого" (исключён из состава ВМФ в 1998 г.) (ссылка 7 ).

Таким образом, в условиях острого дефицита запчастей и в отсутствие надлежащего сервисного обслуживания выдающийся 100-тысячный ресурс КТУ сводился к 8000 часов (1 году непрерывной работы) водогрейных трубок - её самого слабого звена. После заглушения нормативного количества трубок и вывода корабля в резерв, он автоматически становился "донором" для тех, кто ещё оставался на ходу (включая ТАВКР) и быстро терял последние шансы вернуться в строй. Здесь же кроется и причина лучшей "выживаемости" газотурбинных БПК пр. 1155 - при минимум 2,5-кратном преимуществе в агрегатном ресурсе КТУ эсминцев пр. 956 имела фактический ресурс (по трубкам) в 5 раз ниже . Как это ни прискорбно сознавать, но один из самых мощных и красивых проектов боевых кораблей второй половины XX века погубил низкотехнологичный металлопрокат .

Источники (через дефис может быть указан номер страницы).

1. А. Гусаров "Особенности устройства и эксплуатации паровых котлов корабельных КТЭУ", ДВГТИ, Владивосток, 2006 ().
2. В. Кузин, В. Никольский "Военно-морской флот СССР 1945-1991", Историческое морское общество, СПб, 1996.
3. В. Кузин "Ракетные крейсера проекта 58", военно-технический альманах "Tайфун", выпуск №1, стр. 2-9, СПб, 1996.
4. Интернет-справочник RussianShips . ).
7. А. Павлов "Эсминцы первого ранга", Якутск, 2000.

Водогрейные водотрубные котлы типа КВГ теплопроизводительностью 7,56 МВт работают на газовом топливе.

Котлы рассчитаны на подогрев воды от 70 до 150 C. Газовые котлы КВГ представляют собой стальную трубную систему, скомпонованную в одном транспортабельном блоке.

Рассматриваемые газовые котлы имеют горизонтальную компоновку, единый поперечный профиль и различаются лишь глубиной топочной камеры и конвективной шахты.

Радиационные поверхности нагрева газовых котлов КВГ-7,56 образуются левым и правым боковыми экранами, двумя двухсветными экранами и потолочным экраном.

Для заданного направления движения воды по топочным экранам верхние коллекторы имеют глухую перегородку. Экраны соединены между собой в верхней части аппарата перепускными трубами D 102×6 мм.

Конвективная часть нагрева состоит из двух секций – правой и левой, вваренных одними концами в верхние, а другими – в нижние коллекторы, т.е. представляют собой нижние и боковые части поверхности нагрева.

В боковые поверхности нагрева вварены четыре пакета, набранных из П-образных ширм, выполненных из труб D 28×3 мм. Для направления движения воды в змеевиках ширм в боковых трубах установлены глухие перегородки.

Ширмы пакетов расположены таким образом, что их трубы образуют шахматный пучок. Для разделения конвективной шахты и топки крайние ширмы, обращенные в сторону топки, выполнены в виде газоплотной сварной панели с мембранами.

Газовые водогрейные котлы КВГ-7,56 используют три подовые горелки, которые размещены между секциями вертикальных топочных экранов. Горелка имеет два ряда отверстий диаметром 1,5 мм, расположенных в шахматном порядке.

Работают газовые агрегаты данного типа по принципу противотока. Обратная вода из тепловой сети поступает во входной коллектор конвективной части нагрева.

Из коллектора вода двумя потоками, вправо и влево, проходит по стоякам и змеевикам и попадает в выходные коллекторы (правый и левый).

ВВода из этих коллекторов по перепускным трубам попадает в крайние задние коллекторы потолочного экрана, из которых по одиннадцати крайним трубам проходит по потолку, переходя во фронтовой экран и по нему в передний коллектор.

В коллекторе потоки смешиваются и по одиннадцати средним трубам вода попадает в задний (средний) коллектор потолочного экрана. Из этого коллектора вода двумя перепускными трубами подается в заднюю часть верхнего коллектора левого топочного экрана.

Затем по задним трубам вода опускается вниз и попадает в нижний коллектор. По нему вода проходит вперед и по передним трубам поднимается в переднюю часть верхнего коллектора.

Вода, двигаясь последовательно по всем экранам, нагревается и из задней части верхнего коллектора правого экрана поступает в выходной коллектор котла. Из коллектора вода поступает в тепловую сеть.

Рис.1. Схема водотрубного тракта котла КВГ-7,56

Технические характеристики КВГ-7,56-150

Теплопроизводительность, МВт - 7,56

Температура воды, С:

На входе - 70
- на выходе - 150

Расход воды, м3/ч - 80,2

Давление воды, МПа

На входе - 1,6
- на выходе - 1,0

Расчетное топливо - газ

Расход топлива, нм3/ч - 822,6

Давление газа в горелках, МПа:

Минимальное - 0,00085
- максимальное - 0,015

Присоединительное давление газа - среднее

КПД, % - 91

Масса, трубной системы/общая масса поставки, т - 6,1/7,44

Габаритные размеры котла КВГ-7,56 в обмуровке, мм:

Длина - 5520
- ширина - 4190
- высота - 4110

Габаритные размеры трубной системы, мм

Длина - 4380
- ширина - 2910
- высота - 3090

Уровень шума в зоне обслуживания, ДБл - 80

Температура уходящих газов, °С - 140

Удельные выбросы, мг/м³ СО - 130

Разрежение в топке, Па - 20

Гидравлическое сопротивление, МПа - 0,245

Аэродинамическое сопротивление, мм. вод. ст. - 75

Рис.2. Водогрейные котлы КВГ

Водогрейные котлы КВГ-7,56-150 комплектуются горелками подовыми (3 шт), клапанами взрывными (2 шт), арматурой (задвижки, клапаны, краны), и приборами контроля (манометры, термометры) в пределах котла, воздуховодами, лестницей и др.

Трубная система котлоагрегата поставляется в собранном виде с последующей обмуровкой на месте монтажа.

Тягодутьевые устройства, применяемые на водогрейных котлах КВГ-7,56 (в комплект заводской поставки не входят):

Дымосос ДН-11,2 П = 16 606 м3/ч Н = 91 кгс/м² приведенным к 200 °С.

Электродвигатель 4А200М6, N = 22 КВт, n = 1 000 об/мин.

Вентилятор ВДН-9 П = 11 155 м³/ч Н = 43 кгс/м2 приведенным к 30 °С.

Электродвигатель 4А160S6, N = 11 КВт, n = 1 000 об/мин.