Выражение для закона фарадея имеет вид. Открытие Фарадея и Ленца: закон электромагнитной индукции — формула явления

Сегодня мы раскроем такой феномен физики, как «закон электромагнитной индукции». Расскажем, почему Фарадей провел опыты, приведем формулу и объясним важность явления для повседневной жизни.

Древние боги и физика

Древние люди поклонялись неведомому. И сейчас человека страшит пучина моря и даль космоса. Но наука может объяснить, почему. Субмарины снимают невероятную жизнь океанов на глубине свыше километра, космические телескопы изучают объекты, которые существовали всего лишь через считанные миллионы лет после большого взрыва.

Но тогда люди обожествляли все, что их завораживало и тревожило:

  • восход солнца;
  • пробуждение растений весной;
  • дождь;
  • рождение и смерть.

В каждом предмете и явлении жили неведомые силы, которые управляли миром. До сих пор дети склонны очеловечивать мебель и игрушки. Оставаясь без присмотра взрослых, они фантазируют: одеяло обнимет, табуретка подойдет, окно откроется само по себе.

Пожалуй, первым эволюционным шагом человечества стало умение поддерживать огонь. Антропологи предполагают, что самые ранние костры зажглись от дерева, в которое ударила молния.

Таким образом, электричество сыграло в жизни человечества огромную роль. Первая молния дала толчок к развитию культуры, основной закон электромагнитной индукции привел человечество к современному состоянию.

От уксуса до ядерного реактора

В пирамиде Хеопса были найдены странные керамические сосуды: горлышко запечатано воском, в глубине скрыт металлический цилиндр. На внутренней стороне стенок обнаружили остатки уксуса или кислого вина. Ученые пришли к сенсационному выводу: этот артефакт - батарейка, источник электричества.

Но до 1600 года изучать этот феномен никто не брался. До движущихся электронов исследовали природу статического электричества. О том, что янтарь дает разряды, если его потереть о мех, знали еще древние греки. Цвет этого камня напоминал им свет звезды Электры из Плеяд. А название минерала стало, в свою очередь, поводом окрестить физическое явление.

Первый примитивный источник постоянного тока был построен в 1800 году

Естественно, как только появился достаточно мощный конденсатор, ученые принялись изучать свойства подключенного к нему проводника. В 1820 году датский ученый Ханс Кристиан Эрстед обнаружил, что магнитная стрелка отклоняется рядом с включенным в сеть проводником. Данный факт дал толчок к открытию закона электромагнитной индукции Фарадеем (формула будет приведена чуть ниже), который позволил человечеству добывать электричество из воды, ветра и ядерного топлива.

Примитивное, но современное

Физическая основа опытов Макса Фарадея была заложена Эрстедом. Если включенный проводник влияет на магнит, то верно и обратное: намагниченный проводник должен вызывать ток.

Структура опыта, который помог вывести закон электромагнитной индукции (ЭДС как понятие мы рассмотрим чуть позже), была весьма проста. Смотанную в пружину проволоку подключили к прибору, который регистрирует ток. К виткам ученый поднес большой магнит. Пока магнит двигался рядом с контуром, прибор регистрировал поток электронов.

С тех пор техника усовершенствовалась, но основной принцип создания электричества на огромных станциях пока что тот же: движущийся магнит возбуждает ток в смотанном пружиной проводнике.

Развитие идеи

Самый первый опыт убедил Фарадея, что электрическое и магнитное поля взаимосвязаны. Но требовалось выяснить, как именно. Возникает ли вокруг проводника с током еще и магнитное поле или они просто способны влиять друг на друга? Поэтому ученый пошел дальше. Он смотал одну проволоку, подвел к ней ток, и эту катушку вдвинул в другую пружину. И тоже получил электричество. Этот опыт доказал, что движущиеся электроны создают не только электрическое, но и магнитное поле. Позже ученые выяснили, как они располагаются в пространстве относительно друг друга. Электромагнитное поле - это и та причина, по которой существует свет.

Экспериментируя с разными вариантами взаимодействия проводников под напряжением, Фарадей выяснил: ток передается лучше всего, если и первую, и вторую катушки намотать на один общий металлический сердечник. Формула, выражающая закон электромагнитной индукции, была выведена именно на этом приборе.

Формула и ее составляющие

Теперь, когда история изучения электричества доведена до эксперимента Фарадея, пора написать формулу:

Расшифруем:

ε - это электродвижущая сила (сокращенно ЭДС). В зависимости от величины ε электроны перемещаются в проводнике интенсивнее или слабее. На ЭДС влияет мощность источника, а на нее - напряженность электромагнитного поля.

Φ - величина магнитного потока, который проходит в данный момент через заданную площадь. Фарадей сворачивал проволоку в пружину, так как ему требовалась определенное пространство, сквозь которое проходил бы проводник. Конечно, можно было бы изготовить очень толстый проводник, но это было бы дорого. Форму круга ученый выбрал потому, что у этой плоской фигуры соотношение площади к длине поверхности наибольшее. Это самая энергетически эффективная форма. Поэтому капли воды на плоской поверхности становятся круглыми. К тому же пружину с круглым сечением гораздо проще получить: достаточно лишь намотать проволоку на какой-то круглый предмет.

t - время, за которое поток прошел сквозь контур.

Приставка d в формуле закона электромагнитной индукции означает, что величина дифференциальная. То есть маленький магнитный поток надо продифференцировать по небольшим отрезкам времени, чтобы получить конечный результат. Это математическое действие требует от людей некоторой подготовленности. Чтобы лучше понять формулу, мы настоятельно рекомендуем читателю вспомнить дифференцирование и интегрирование.

Следствия из закона

Сразу после открытия стали исследовать явление электромагнитной индукции. Закон Ленца, например, был выведен экспериментально российским ученым. Именно это правило добавило минус в конечную формулу.

Вид у него такой: направление индукционного тока не случайно; поток электронов во второй обмотке как бы стремится уменьшить действие тока в первой обмотке. То есть возникновение электромагнитной индукции - это фактически сопротивление второй пружины вмешательству в «личную жизнь».

Правило Ленца имеет и другое следствие.

  • если ток в первой катушке будет возрастать, то ток второй пружины тоже будет стремиться к увеличению;
  • если ток в индуцирующей обмотке будет падать, то уменьшится и ток во второй.

Согласно этому правилу, проводник, в котором возникает индуцированный ток, фактически стремится скомпенсировать действие изменяющегося магнитного потока.

Зерно и осел

Использовать простейшие механизмы себе на благо люди стремились давно. Помол муки - дело сложное. Некоторые племена растирают зерно вручную: кладут пшеницу на один камень, накрывают другим плоским и круглым камнем, и вертят жернов. Но если надо смолоть муку на целую деревню, то одним мускульным трудом не обойтись. Сначала люди догадались привязать к жернову тягловое животное. Ослик тянул за веревку - камень вращался. Потом, вероятно, люди подумали: «Река течет все время, она толкает всякие предметы вниз по течению. Почему бы нам не использовать это на благо?» Так появились водяные мельницы.

Колесо, вода, ветер

Конечно, первые инженеры, которые строили эти сооружения, ничего не знали ни о силе тяготения, из-за которой вода стремится всегда вниз, ни о силе трения или поверхностного натяжения. Но они видели: если поставить в ручей или речку колесо с лопастями на диаметре, то оно не только будет вращаться, но и сможет делать полезную работу.

Но и этот механизм был ограничен: не везде есть проточная вода с достаточно силой течения. Поэтому люди пошли дальше. Они построили мельницы, которые работали от ветра.

Уголь, мазут, бензин

Когда ученые поняли принцип возбуждения электричества, была поставлена техническая задача: получать его в промышленных масштабах. На тот момент (середина девятнадцатого века) мир был охвачен лихорадкой машин. Всю сложную работу стремились поручить расширяющемуся пару.

Но тогда нагреть большие объемы воды умели только ископаемым топливом - углем и мазутом. Поэтому те которые были богаты древними углеродами, сразу привлекли внимание инвесторов и рабочих. А перераспределение людей привело к промышленной революции.

Голландия и Техас

Однако такое положение вещей плохо отразилось на экологии. И ученые задумались: как получать энергию, не разрушая природу? Выручило хорошо забытое старое. Мельница использовала крутящий момент для совершения непосредственно грубой механической работы. Турбины гидроэлектростанций вращают магниты.

На данный момент самое чистое электричество получают из энергии ветра. Инженеры, которые строили первые генераторы Техаса, опирались на опыт ветряных мельниц Голландии.

Федун В.И. Конспект лекций по физике Электромагнетизи

Лекция 26.

Электромагнитная индукция. Открытие Фарадея .

В 1831 г. М. Фарадеем было сделано одно из важнейших фундаментальных открытий в электродинамике – обнаружено явлениеэлектромагнитной индукции .

В замкнутом проводящем контуре при изменении магнитного потока (потока вектора ), охватываемого этим контуром, возникает электрический ток .

Этот ток получил название индукционного .

Появление индукционного тока означает, что при изменении магнитного

потока в контуре возникает э.д.с. индукции (работа по перенесению единичного заряда по замкнутому контуру). Отметим, что значениесовершенно не зависит от того, каким образом осуществляется изменение магнитного потока, и определяется лишь скоростью его изменения, т.е. величиной
. Изменение знака производной
приводит к изменению знакаэ.д.с. индукции .

Рисунок 26.1.

Фарадей обнаружил, что индукционный ток можно вызвать двумя различными способами, которые удобно объяснить с помощью рисунка.

1-й способ: перемещение рамки в магнитном поле неподвижной катушки(см. рис.26.1).

2-й способ: изменение магнитного поля , создаваемого катушкой, за счет ее движения или вследствие изменения силы токав ней (или того и другого вместе). Рамкапри этом неподвижна.

В обоих этих случаях гальванометр будет показывать наличие индукционного тока в рамке.

Направление индукционного тока и, соответственно, знак э.д.с. индукции определяются правилом Ленца.

Правило Ленца.

Индукционный ток всегда направлен так, чтобы противодействовать причине, его вызывающей .

Правило Ленца выражает важное физическое свойство – стремление системы противодействовать изменению ее состояния. Это свойство называют электромагнитной инерцией .

Закон электромагнитной индукции (закон Фарадея).

Какова бы ни была причина изменения магнитного потока, охватываемого замкнутым проводящим контуром, возникающая в контуре э.д.с. индукции определяется формулой

Природа электромагнитной индукции .

С целью выяснения физических причин, которые приводят к возникновению э.д.с. индукции, последовательно рассмотрим два случая.

1. Контур движется в постоянном магнитном поле.

действовать сила

Электродвижущая сила, создаваемая этим полем, называется электродвижущей силой индукции . В нашем случае

.

Здесь знак «минус» поставлен потому, что стороннее поле направлено против положительного обхода контура, определяемого правилом правого винта. Произведениеесть скорость приращения площади контура (приращение площади в единицу времени), поэтому

,

где
- приращение магнитного потока сквозь контур.

.

Полученный результат можно обобщить на случай произвольной ориентации вектора индукции магнитного поля относительно плоскости контура и на любой контур, движущийся (и/или деформируемый) произвольным образом в постоянном неоднородном внешнем магнитном поле.

Итак, возбуждение э.д.с. индукции при движении контура в постоянном магнитном поле объясняется действием магнитной составляющей силы Лоренца, пропорциональной
, которая возникает при перемещении проводника.

2. Контур покоится в переменном магнитном поле.

Наблюдаемое на опыте возникновение индукционного тока свидетельствует о том, что и в этом случае в контуре появляются сторонние силы, которые теперь связаны с изменяющимся во времени магнитным полем. Какова же их природа? Ответ на этот принципиальный вопрос был дан Максвеллом.

Поскольку проводник покоится, то скорость упорядоченного движения электрических зарядов
и, следовательно, магнитная сила, пропорциональная
, также равна нулю и уже не может привести заряды в движение. Однако кроме магнитной силы на электрический заряд может действовать только сила со стороны электрического поля, равная. Поэтому остается заключить, чтоиндукционный ток обусловлен электрическим полем , возникающим при изменении во времени внешнего магнитного поля . Именно это электрическое поле и ответственно за появление э.д.с. индукции в неподвижном контуре. Согласно Максвеллу,изменяющееся во времени магнитное поле порождает в окружающем пространстве электрическое поле . Возникновение электрического поля не связано с наличием проводящего контура, который лишь позволяет обнаружить по возникновению в нем индукционного тока существование этого поля.

Формулировка закона электромагнитной индукции , данная Максвеллом, принадлежит к числу наиболее важных обобщений электродинамики.

Всякое изменение магнитного поля во времени возбуждает в окружающем пространстве электрическое поле .

Математическая формулировка закона электромагнитной индукции в понимании Максвелла имеет вид:

Циркуляция вектора напряженности этого поля по любому неподвижному замкнутому контуруопределяется выражением

,

где - магнитный поток, пронизывающий контур.

Используемый для обозначения скорости изменения магнитного потока знак частной производной указывает на то, что контур является неподвижным.

Поток вектора через поверхность, ограниченную контуром, равен
, поэтому выражение закона электромагнитной индукции можно переписать следующим образом:

Это одно из уравнений системы уравнений Максвелла.

Тот факт, что циркуляция электрического поля, возбуждаемого переменным во времени магнитным полем, отлична от нуля, означает, что рассматриваемое электрическое поле не потенциальное .Оно, как и магнитное поле, являетсявихревым .

В общем случае электрическое поле может быть представлено векторной суммой потенциального (поля статических электрических зарядов, циркуляция которого равна нулю) и вихревого (обусловленного изменяющимся во времени магнитным полем) электрических полей.

В основе рассмотренных нами явлений, объясняющих закон электромагнитной индукции, не просматривается общего принципа, позволяющего установить общность их физической природы. Поэтому эти явления следует рассматривать как независимые, а закон электромагнитной индукции - как результат их совместного действия. Тем более удивительным оказывается тот факт, что э.д.с. индукции в контуре всегда равна скорости изменения магнитного потока сквозь контур. В тех случаях, когда меняется и поле и расположение или конфигурация контура в магнитном поле, э.д.с. индукции следует рассчитывать по формуле

Выражение, стоящее в правой части этого равенства, представляет собой полную производную магнитного потока по времени: первое слагаемое связано с изменением магнитного поля во времени, второе – с движением контура.

Можно сказать, что во всех случаях индукционный ток вызывается полной силой Лоренца

.

Какая часть индукционного тока вызывается электрической, а какая магнитной составляющей силы Лоренца - зависит от выбора системы отсчета .

О работе сил Лоренца и Ампера .

Из самого определения работы следует, что сила, действующая в магнитном поле на электрический заряд и перпендикулярная его скорости, не может совершать работы. Однако при движении проводника с током, увлекающего за собой заряды, сила Ампера все же работу совершает. Наглядным подтверждением этого служат электромоторы.

Это противоречие исчезает, если принять во внимание, что движение проводника в магнитном поле неизбежно сопровождается явлением электромагнитной индукции. Поэтому наряду с силой Ампера работу над электрическими зарядами совершает и возникающая в проводнике электродвижущая сила индукции. Т.о., полная работа сил магнитного поля складывается из механической работы, обусловленной силой Ампера, и работы э.д.с., индуцируемой при движении проводника. Обе работы равны по модулю и противоположны по знаку, поэтому их сумма равна нулю. Действительно, работа амперовой силы при элементарном перемещении проводника с током в магнитном поле равна
, за это же время э.д.с. индукции совершает работу

,

тогда полная работа
.

Силы Ампера совершают работу не за счет энергии внешнего магнитного поля, которое может оставаться постоянным, а за счет источника э.д.с., поддерживающего ток в контуре.

Явление электромагнитной индукции было открыто Майклом Фарадеем в 1831 г. Он опытным путем установил, что при изменении магнитного по­ля внутри замкнутого контура в нем возникает элек­трический ток, который называютиндукционным током. Опыты Фарадея можно воспроизвести сле­дующим образом: при внесении или вынесении маг­нита в катушку, замкнутую на гальванометр, в ка­тушке возникает индукционный ток (рис. 24). Если рядом расположить две катушки (например, на об­щем сердечнике или одну катушку внутри другой) и одну катушку через ключ соединить с источником тока, то при замыкании или размыкании ключа в цепи первой катушки во второй катушке появится индукционный ток (рис. 25). Объяснение этого явле­ния было дано Максвеллом. Любое переменное маг­нитное поле всегда порождает переменное электриче­ское поле.

Для количественной характеристики процесса изменения магнитного поля через замкнутый контур вводится физическая величина под названием маг­нитный поток.Магнитным потоком через замкну­тый контур площадью S называют физическую вели­чину, равную произведению модуля вектора магнит­ной индукции В на площадь контура S и на косинус угла а между направлением вектора магнитной ин­дукции и нормалью к площади контура. Ф = BS cos α (рис. 26).

Опытным путем был установлен основной за­кон электромагнитной индукции:ЭДС индукции в замкнутом контуре равна по величине скорости из-менения магнитного потока через контур. ξ = ΔФ/t..

Если рассматривать катушку, содержащую п витков, то формула основного закона электромагнитной ин­дукции будет выглядеть так: ξ = n ΔФ/t.

Единица измерения магнитного потока Ф - вебер (Вб): 1В6 =1Β c.

Из основного закона ΔФ =ξ t следует смысл размерности: 1 вебер - это величина такого магнит­ного потока, который, уменьшаясь до нуля за одну секунду, через замкнутый контур наводит в нем ЭДС индукции 1 В.

Классической демонстрацией основного закона электромагнитной индукции является первый опыт Фарадея: чем быстрее перемещать магнит через вит­ки катушки, тем больше возникает индукционный ток в ней, а значит, и ЭДС индукции.

Зависимость направления индукционного тока от характера изменения магнитного поля через замкнутый контур в 1833 г. опытным путем устано­вил русский ученый Ленц. Он сформулировал прави­ло, носящее его имя. Индукционный ток имеет та­кое направление, при котором его магнитное поле стремится скомпенсировать изменение внешнего магнитного потока через контур. Ленцем был скон­струирован прибор, представляющий собой два алю­миниевых кольца, сплошное и разрезанное, укреп­ленные на алюминиевой перекладине и имеющие возможность вращаться вокруг оси, как коромысло. (рис. 27). При внесении магнита в сплошное кольцо оно начинало «убегать» от магнита, поворачивая со­ответственно коромысло. При вынесении магнита из кольца кольцо стремилось «догнать» магнит. При движении магнита внутри разрезанного кольца ни­какого эффекта не происходило. Ленц объяснял опыт тем, что магнитное поле индукционного тока стре­милось компенсировать изменение внешнего магнит­ного потока.

В 1831 году английский ученый физик в своих опытах М.Фарадей открыл явление электромагнитной индукции . Затем изучением этого явления занимались русские ученый Э.Х. Ленц и Б.С.Якоби.

В настоящее время, в основе многих устройств лежит явление электромагнитной индукции, например в двигателе или генераторе электрического тока тока, в трансформаторах, радиоприемниках, и многих других устройствах.

Электромагнитная индукция - это явление возникновения тока в замкнутом проводнике, при прохождении через него магнитного потока. То есть, благодаря этому явлению мы можем преобразовывать механическую энергию в электрическую - и это замечательно. Ведь до открытия этого явления люди не знали о методах получения электрического тока , кроме гальваники.

Когда проводник оказывается под действием магнитного поля, в нем возникает ЭДС, которую количественно можно выразить через закон электромагнитной индукции.

Закон электромагнитной индукции

Электродвижущая сила, индуцируемая в проводящем контуре, равна скорости изменения магнитного потока, сцепляющегося с этим контуром.

В катушке, которая имеет несколько витков, общая ЭДС зависит от количества витков n:

Но в общем случае, применяют формулу ЭДС с общим потокосцеплением:

ЭДС возбуждаемая в контуре, создает ток. Наиболее простым примером появления тока в проводнике является катушка, через которую проходит постоянный магнит . Направление индуцируемого тока можно определить с помощью правила Ленца .


Правило Ленца

Ток, индуцируемый при изменении магнитного поля проходящего через контур, своим магнитным полем препятствует этому изменению.

В том случае, когда мы вводим магнит в катушку, магнитный поток в контуре увеличивается, а значит магнитное поле, создаваемое индуцируемым током, по правилу Ленца, направлено против увеличения поля магнита. Чтобы определить направление тока, нужно посмотреть на магнит со стороны северного полюса. С этой позиции мы будем вкручивать буравчик по направлению магнитного поля тока, то есть навстречу северному полюсу. Ток будет двигаться по направлению вращения буравчика, то есть по часовой стрелке.

В том случае, когда мы выводим магнит из катушки, магнитный поток в контуре уменьшается, а значит магнитное поле, создаваемое индуцируемым током, направлено против уменьшения поля магнита. Чтобы определить направление тока, нужно выкручивать буравчик, направление вращения буравчика укажет направление тока в проводнике – против часовой стрелки.

Для описания процессов в физике и химии есть целый ряд законов и соотношений, полученных экспериментальным и расчетным путем. Ни единого исследования нельзя провести без предварительной оценки процессов по теоретическим соотношениям. Законы Фарадея применяются и в физике, и в химии, а в этой статье мы постараемся кратко и понятно рассказать о всех знаменитых открытиях этого великого ученого.

История открытия

Закон Фарадея в электродинамике был открыт двумя ученными: Майклом Фарадеем и Джозефом Генри, но Фарадей опубликовал результаты своих работ раньше – в 1831 году.

В своих демонстрационных экспериментах в августе 1831 г. он использовал железный тор, на противоположные концы которого был намотан провод (по одному проводу на стороны). На концы одного первого провода он подал питание от гальванической батареи, а на выводы второго подключил гальванометр. Конструкция была похожа на современный трансформатор. Периодически включая и выключая напряжение на первом проводе, он наблюдал всплески на гальванометре.

Гальванометр — это высокочувствительный прибор для измерения силы токов малой величины.

Таким образом было изображено влияние магнитного поля, образовавшегося в результате протекания тока в первом проводе, на состояние второго проводника. Это воздействие передавалось от первого ко второму через сердечник – металлический тор. В результате исследований было обнаружено и влияние постоянного магнита, который двигается в катушке, на её обмотку.

Тогда Фарадей объяснял явление электромагнитной индукции с точки зрения силовых линий. Еще одной была установка для генерирования постоянного тока: медный диск вращался вблизи магнита, а скользящий по нему провод был токосъёмником. Это изобретение так и называется — диск Фарадея.

Ученные того периода не признали идеи Фарадея, но Максвелл взял исследования для основы своей магнитной теории. В 1836 г. Майкл Фарадей установил соотношения для электрохимических процессов, которые назвали Законами электролиза Фарадея. Первый описывает соотношения выделенной на электроде массы вещества и протекающего тока, а второй соотношения массы вещества в растворе и выделенного на электроде, для определенного количества электричества.

Электродинамика

Первые работы применяются в физике, конкретно в описании работы электрических машин и аппаратов (трансформаторов, двигателей и пр.). Закон Фарадея гласит:

Для контура индуцированная ЭДС прямо пропорциональна величине скорости магнитного потока, который перемещается через этот контур со знаком минус.

Это можно сказать простыми словами: чем быстрее магнитный поток движется через контур, тем больше на его выводах генерируется ЭДС.

Формула выглядит следующим образом:

Здесь dФ – магнитный поток, а dt – единица времени. Известно, что первая производная по времени – это скорость. Т.е скорость перемещения магнитного потока в данном конкретном случае. Кстати перемещаться может, как и источник магнитного поля (катушка с током – электромагнит, или постоянный магнит), так и контур.

Здесь же поток можно выразить по такой формуле:

B – магнитное поле, а dS – площадь поверхности.

Если рассматривать катушку с плотнонамотанными витками, при этом в количестве витков N, то закон Фарадея выглядит следующим образом:

Магнитный поток в формуле на один виток, измеряется в Веберах. Ток, протекающий в контуре, называется индукционным.

Электромагнитная индукция – явление протекания тока в замкнутом контуре под воздействием внешнего магнитного поля.

В формулах выше вы могли заметить знаки модуля, без них она имеет слегка иной вид, такой как было сказано в первой формулировке, со знаком минус.

Знак минус объясняет правило Ленца. Ток, возникающий в контуре, создает магнитное поле, оно направлено противоположно. Это является следствием закона сохранения энергии.

Направление индукционного тока можно определить по правилу правой руки или , мы его рассматривали на нашем сайте подробно.

Как уже было сказано, благодаря явлению электромагнитной индукции работают электрические машины трансформаторы, генераторы и двигатели. На иллюстрации показано протекание тока в обмотке якоря под воздействием магнитного поля статора. В случае с генератором, при вращении его ротора внешними силами в обмотках ротора возникает ЭДС, ток порождает магнитное поле направленное противоположно (тот самый знак минус в формуле). Чем больше ток, потребляемый нагрузкой генератора, тем больше это магнитное поле, и тем больше затрудняется его вращение.

И наоборот — при протекании тока в роторе возникает поле, которое взаимодействует с полем статора и ротор начинает вращаться. При нагрузке на вал ток в статоре и в роторе повышается, при этом нужно обеспечить переключение обмоток, но это уже другая тема, связанная с устройством электрических машин.

В основе работы трансформатора источником движущегося магнитного потока является переменное магнитное поле, возникающее в следствие протекания в первичной обмотке переменного тока.

Если вы желаете более подробно изучить вопрос, рекомендуем просмотреть видео, на котором легко и доступно рассказывается Закон Фарадея для электромагнитной индукции:

Электролиз

Кроме исследований ЭДС и электромагнитной индукции ученный сделал большие открытия и в других дисциплинах, в том числе химии.

При протекании тока через электролит ионы (положительные и отрицательные) начинают устремляться к электродам. Отрицательные движутся к аноду, положительные к катоду. При этом на одном из электродов выделяется определенная масса вещества, которое содержится в электролите.

Фарадей проводил эксперименты, пропуская разный ток через электролит и измеряя массу вещества отложившегося на электродах, вывел закономерности.

m – масса вещества, q – заряд, а k – зависит от состава электролита.

А заряд можно выразить через ток за промежуток времени:

I=q/t , тогда q = i*t

Теперь можно определить массу вещества, которое выделится, зная ток и время, которое он протекал. Это называется Первый закон электролиза Фарадея.

Второй закон:

Масса химического элемента, который осядет на электроде, прямо пропорциональна эквивалентной массе элемента (молярной массе разделенной на число, которое зависит от химической реакции, в которой участвует вещество).

С учетом вышесказанного эти законы объединяются в формулу:

m – масса вещества, которое выделилось в граммах, n – количество переносимых электронов в электродном процессе, F=986485 Кл/моль – число Фарадея, t – время в секундах, M молярная масса вещества г/моль.

В реальности же из-за разных причин, масса выделяемого вещества меньше чем расчетная (при расчетах с учетом протекающего тока). Отношение теоретической и реальной масс называют выходом по току:

B т = 100% * m расч /m теор

Законы Фарадея внесли существенный вклад в развитие современной науки, благодаря его работам мы имеем электродвигатели и генераторы электроэнергии (а также работам его последователей). Работа ЭДС и явления электромагнитной индукции подарили нам большую часть современного электрооборудования, в том числе и громкоговорители и микрофоны, без которых невозможно прослушивание записей и голосовая связь. Процессы электролиза применяются в гальваническом методе покрытия материалов, что несет как декоративную ценность, так и практическую.

Похожие материалы:

Нравится(0 ) Не нравится(0 )