Определить тепловые потери. Как самостоятельно сделать расчет теплопотерь здания

Многие, строя загородный дом, забывают о приближении зимних холодов, из-за чего расчет теплопотерь здания делают в спешке, и в итоге отопление не создает комфортный микроклимат в помещениях. А ведь сделать дом теплым не сложно, нужно лишь учесть ряд нюансов.

На чем основывается расчет теплопотерь здания

Таким свойством, как теплопроводность, обладает любой материал, различается лишь уровень термического сопротивления, то есть пропускная способность. Из любого дома, даже с устроенной по всем правилам термоизоляцией, тепло уходит через окна, двери, стены, пол, потолок (крышу), а также через вентиляцию . При разнице внешней и внутренней температур обязательно возникает так называемая «точка росы», со средним значением. И только от микроклимата в помещениях, материала и толщины стен, а также характеристик термоизоляции зависит, где окажется эта точка: внутри, снаружи или непосредственно в стене, а также какая в ней будет температура.

Если ответственно подходить к задаче и выполнять расчет теплопотерь здания по всем правилам, это займет у вас немало часов и придется составить множество формул, вычисления займут целую тетрадь. Поэтому определим интересующие нас показатели упрощенным методом, либо обратившись за помощью к СНиП и ГОСТам. И, поскольку решено делать подсчеты не слишком углубленно, оставим в стороне определение среднегодовых температуры и влажности по самой холодной пятидневке за несколько лет, как того требуется по СНиП 23-01-99. Просто отметим наиболее морозный день за последний зимний сезон, допустим, это будет -30 о С. Также не будем принимать во внимание среднесезонную скорость ветра, влажность в регионе и длительность отопительного периода.

Калькулятор теплопотерь здания

Укажите размеры и типы стен.
На улице
средняя температура за день
Выберите значение -40°C -30°C -20°C -15°C -10°C -5°C 0°C +5C +10C
Внутри
средняя температура за день
Стены
Только выходящие
на улицу стены!

Добавьте выходящие на улицу стены и укажите, из каких слоёв состоит стена

Комнаты

Добавьте все используемые помещения, даже коридоры, и укажите, из каких слоёв состоят перекрытия

Тепловые потери:
Через стены: - кВт Через окна: - кВт Через верх: - кВт Через низ: - кВт Через вентиляцию: - кВт Итого: -кВт Нажмите на кнопку для расчёта

Распечатать

Однако из чего же складывается микроклимат в жилой комнате? Комфортные условия для жильцов зависят от температуры воздуха t в, его влажности φ в и движения v в, возникающего при наличии вентиляции. И еще один фактор влияет на уровень тепла – радиационное излучение тепла или холода t р, свойственное нагреваемым (охлаждаемым) естественным путем предметам и поверхностям в обстановке. По нему определяется результирующая температура t п, с помощью формулы [t п = (t р + t в)/2]. Все эти показатели для разных помещений можно рассмотреть в приведенной ниже таблице.

Оптимальные параметры микроклимата жилых зданий по ГОСТ 30494-96

Период года Помещение

Температура внутреннего воздуха t в, °С

Результирующая температура t п, °С

Относит. влажность внутреннего воздуха φ в, %

Скорость движения воздуха v в, м/с

Холодный Жилая комната
То же, в районах с t 5 от -31 °С
Кухня
Туалет
Ванная, совмещенный санузел
Помещение для отдыха и учебных занятий
Межквартирный коридор
Вестибюль, лестничная клетка
Кладовая
Теплый Жилая комната

Буквами НН обозначаются ненормируемые параметры.

Делаем теплотехнический расчет стены с учетом всех слоев

Как уже было сказано, каждому материалу свойственно сопротивление теплопередаче, и чем толще стены или перекрытия, тем выше это значение . Однако не стоит забывать и про термоизоляцию, при наличии которой ограждающие помещение поверхности становятся многослойными и намного лучше препятствуют утечке тепла. У каждого слоя свое сопротивление прохождению тепла, и сумма всех этих величин обозначается в формулах как Σ R i (здесь буква i определяет номер слоя).

Поскольку составляющие ограждения помещений материалы с разными свойствами имеют некоторое возмущение температурного режима в своей структуре, высчитывается общее сопротивление теплопередаче. Формула у него следующая: , где R в и R н соответствуют сопротивлению на внутренней и наружной поверхностях ограждения, будь то стена или перекрытие . Однако утеплители вносят в теплотехнический расчет стены коррективы, которые базируются на коэффициенте теплотехнической однородности r , определяемом формулой .

Показатели с цифровыми индексами являются, соответственно, коэффициентами внутренних крепежей и соединения расчетного ограждения с любым другим. Первый, то есть r 1 , отвечает как раз за фиксацию утеплителей. Если коэффициент теплопроводности последних λ = 0,08 Вт/(м·°С), значение r 1 будет большим, если же теплопроводность термоизоляции оценивается как λ = 0,03 Вт/(м·°С), то меньшим.

Значение коэффициента внутренних крепежей уменьшается по мере возрастания толщины слоя утеплителя.

В целом, картина складывается следующая. Допустим, термоизоляция монтируется прямым анкерным креплением на трехслойной ячеистобетонной стене, снаружи облицованной кирпичом. Тогда при слое утеплителя в 100 миллиметров r 1 соответствует 0,78-0,91, толщина в 150 миллиметров дает коэффициент внутреннего крепежа 0,77-0,90, тот же показатель, но в 200 мм, определяет r 1 как 0,75-0,88. Если внутренний слой также из кирпича, то r 1 = 0,78-0,92, а если стены помещения железобетонные, то коэффициент смещается до 0,79-0,93. А вот оконные откосы и вентиляция дают значение r 2 = 0,90-0,95. Все эти данные следует учитывать в дальнейшем.

Некоторые сведения о том, как рассчитать толщину утеплителя

Для того чтобы приступить к расчету термоизоляции, нам необходимо, прежде всего, высчитать R o , затем узнать требуемое термическое сопротивление R req по следующей таблице (сокращенный вариант).

Требуемые значения сопротивления теплопередаче ограждающих конструкций

Здание / помещение

Градусо-сутки отопительного периода D d , °С·сут

Приведенное сопротивление теплопередаче ограждений R req , м 2 ·°С/Вт

стены

покрытия

чердачного перекрытия и перекрытия над холодными подвалами

окна и балконной двери, витрины и витража

1. Жилое, лечебно-профилактическое и детское учреждение, школа, интернат
а
b
2. Общественное, административное, бытовое и другие помещения с влажным или мокрым режимами
а
b

Коэффициенты a и b необходимы для тех случаев, когда значение D d , °С·сут отличается от приведенного в таблице, тогда R req , м 2 ·°С/Вт рассчитывается по формуле R req = a D d + b . Для колонки 6 первой группы зданий существуют поправки: если значение градусо-суток менее 6000 °С·сут, a = 0,000075, а b = 0,15, если тот же показатель в диапазоне 6000-8000 °С·сут, то a = 0,00005, b = 0,3, если же более 8000 °С·сут, то a = 0,000025, а b = 0,5. Когда все данные будут собраны, приступаем к расчету термоизоляции.

Теперь выясним, как рассчитать толщину утеплителя. Здесь придется обратиться к математике, поэтому будьте готовы поработать с формулами. Вот первая из них, по ней определяем требуемое условное сопротивление теплопередаче R o усл. тр = R req /r. Данный параметр нам нужен для определения требуемого сопротивления теплопередачи утеплителя R ут тр = R o усл. тр – (R в + Σ R т. изв + R н), здесь Σ R т. изв является суммой термического сопротивления слоев ограждения без учета теплоизоляции. Находим толщину утеплителя δ ут = R ут тр λ ут (м), причем λ ут берется из таблицы Д.1 СП 23-101-2004 , и округляем полученный результат в большую сторону до конструктивного значения с учетом номенклатуры производителя.

Расчет теплопотерь дома - основа отопительной системы . Он нужен, как минимум, чтобы правильно подобрать котёл. Также можно прикинуть, сколько денег будет уходить на отопление в планируемом доме, провести анализ финансовой эффективности утепления т.е. понять окупятся ли затраты на монтаж утепления экономией топлива за срок службы утеплителя. Очень часто подбирая мощность отопительной системы помещения, люди руководствуются средним значением в 100 Вт на 1 м 2 площади при стандартной высоте потолков до трех метров. Однако, не всегда эта мощность достаточна для полного восполнения теплопотерь. Здания различаются по составу строительных материалов, их объему, нахождению в разных климатических зонах и т.д. Для грамотного расчета теплоизоляции и подбора мощности отопительных систем необходимо знать о реальных теплопотерях дома. Как их рассчитать - расскажем в этой статье.

Основные параметры для расчета теплопотерь

Теплопотери любого помещения зависят от трех базовых параметров:

  • объем помещения – нас интересует объем воздуха, который необходимо отопить
  • разницу температуры внутри и снаружи помещения – чем больше разница тем быстрее происходит теплообмен и воздух теряет тепло
  • теплопроводность ограждающих конструкций – способность стен, окон удерживать тепло

Самый простой рассчет теплопотерь

Qт (кВт/час)=(100 Вт/м2 x S (м2) x K1 x K2 x K3 x K4 x K5 x K6 x K7)/1000

Данная формула расчета теплопотерь по укрупненным показателям, в основе которых лежат усредненные условия 100 Вт на 1кв метр. Где основными рассчетными показателями для расчета системы отопления являются следующие величины:

- тепловая мощность предполагаемого отопителя на отработанном масле, кВт/час.

100 Вт/м2 - удельная величина тепловых потерь (65-80 ватт/м2). В нее входят утечки тепловой энергии путем ее поглощения оконами, стенами, потолком полом; утечки через вентиляцию и негерметичности помещения и другие утечки.

S - площадь помещения;

K1 - коэффициент теплопотерь окон:

  • обычное остекление К1=1,27
  • двойной стеклопакет К1=1,0
  • тройной стеклопакет К1=0,85;

К2 - коэффициент теплопотерь стен:

  • плохая теплоизоляция К2=1,27
  • стена в 2 кирпича или утеплитель 150 мм толщиной К2=1,0
  • хорошая теплоизоляция К2=0,854

К3 коэффициент соотношения площадей окон и пола:

  • 10% К3=0,8
  • 20% К3=0,9
  • 30% К3=1,0
  • 40% К3=1,1
  • 50% К3=1,2;

K4 - коэффициент наружной температуры:

  • -10oC K4=0,7
  • -15oC K4=0,9
  • -20oC K4=1,1
  • -25oC K4=1,3
  • -35oC K4=1,5;

K5 - число стен, выходящих наружу:

  • одна - К5=1,1
  • две К5=1,2
  • три К5=1,3
  • четыре К5=1,4;

К6 - тип помещения, которое находится над расчитываемым:

K7 - высота помещения:

  • 2,5 м К7=1,0
  • 3,0 м К7=1,05
  • 3,5 м К7=1,1
  • 4,0 м К7=1,15
  • 4,5 м К7=1,2.

Упрощенный рассчет теплопотерь дома

Qт = (V x ∆t x k)/860; (кВт)

V - объем помещения (куб.м)
∆t - дельта температур (уличной и в помещении)
k - коэффициент рассеивания

  • k= 3,0-4,0 – без теплоизоляции. (Упрощенная деревянная конструкция или конструкция из гофрированного металлического листа).
  • k= 2,0-2,9 – небольшая теплоизоляция. (Упрощенная конструкция здания, одинарная кирпичная кладка, упрощенная конструкция окон и крыши).
  • k= 1,0-1,9 – средняя теплоизоляция. (Стандартная конструкция, двойная кирпичная кладка, небольшое число окон, крыша со стандартной кровлей).
  • k= 0,6-0,9 – высокая теплоизоляция. (Улучшенная конструкция, кирпичные стены с двойной теплоизоляцией, небольшое количество окон со сдвоенными рамами, толстое основание пола, крыша из высококачественного теплоизоляционного материала).

В данной формуле очень условно учитываются коэффициент рассеивания и не совсем понятно каким коэффициентами пользоваться. В классике редкое современное, выполненное из современных материалов с учетом действующих стандартов, помещение обладает ограждающими конструкциями с коэффициентом рассеивания более одного. Для более детального понимания методики расчёта предлагаем следующие более точные методики.

Сразу же акцентирую ваше внимание на то, что ограждающие конструкции в основном не являются однородными по структуре, а обычно состоят из нескольких слоёв. Пример: стена из ракушника = штукатурка + ракушник + наружная отделка. В эту конструкцию могут входить и замкнутые воздушные прослойки (пример: полости внутри кирпичей или блоков). Вышеперечисленные материалы имеют отличающиеся друг от друга теплотехнические характеристики. Основной такой характеристикой для слоя конструкции является его сопротивление теплопередачи R .

q – это количество тепла, которое теряет квадратный метр ограждающей поверхности (измеряется обычно в Вт/м.кв.)

ΔT - разница между температурой внутри рассчитываемого помещения и наружной температурой воздуха (температура наиболее холодной пятидневки °C для климатического района в котором находится рассчитываемое здание).

В основном внутренняя температура в помещениях принимается:

Когда речь идёт о многослойной конструкции, то сопротивления слоёв конструкции складываются. Отдельно хочу акцентировать ваше внимание на расчётном коэффициенте теплопроводности материала слоя λ Вт/(м°С) . Так как производители материалов чаще всего указывают его. Имея расчётный коэффициент теплопроводности материала слоя конструкции мы легко можем получить сопротивление теплопередачи слоя :

δ - толщина слоя, м;

λ - расчётный коэффициент теплопроводности материала слоя конструкции, с учетом условий эксплуатации ограждающих конструкций, Вт / (м2 оС).

Итак для расчёта тепловых потерь через ограждающие конструкции нам нужны:

1. Сопротивление теплопередачи конструкций (если конструкция многослойная то Σ R слоёв) R
2. Разница между температурой в расчётном помещении и на улице (температура наиболее холодной пятидневки °C.). ΔT
3. Площади ограждений F (Отдельно стены, окна, двери, потолок, пол)
4. Ориентация здания по отношению к сторонам света.

Формула для расчёта теплопотерь ограждением выглядит так:

Qогр=(ΔT / Rогр)* Fогр * n *(1+∑b)

Qогр - тепло потери через ограждающие конструкции, Вт
Rогр – сопротивление теплопередаче, м.кв.°C/Вт; (Если несколько слоёв то ∑ Rогр слоёв)
Fогр – площадь ограждающей конструкции, м;
n – коэффициент соприкосновения ограждающей конструкции с наружным воздухом.

Тип ограждающей конструкции

Коэффициент n

1. Наружные стены и покрытия (в том числе вентилируемые наружным воздухом), перекрытия чердачные (с кровлей из штучных материалов) и над проездами; перекрытия над холодными (без ограждающих стенок) подпольями в Северной строительно-климатической зоне

2. Перекрытия над холодными подвалами, сообщающимися с наружным воздухом; перекрытия чердачные (с кровлей из рулонных материалов); перекрытия над холодными (с ограждающими стенками) подпольями и холодными этажами в Северной строительно-климатической зоне

3. Перекрытия над не отапливаемыми подвалами со световыми проемами в стенах

4. Перекрытия над не отапливаемыми подвалами без световых проемов в стенах, расположенные выше уровня земли

5. Перекрытия над не отапливаемыми техническими подпольями, расположенными ниже уровня земли

(1+∑b) – добавочные потери теплоты в долях от основных потерь. Добавочные потери теплоты b через ограждающие конструкции следует принимать в долях от основных потерь:

а) в помещениях любого назначения через наружные вертикальные и наклонные (вертикальная проекция) стены, двери и окна, обращенные на север, восток, северо-восток и северо-запад - в размере 0,1, на юго-восток и запад - в размере 0,05; в угловых помещениях дополнительно - по 0,05 на каждую стену, дверь и окно, если одно из ограждений обращено на север, восток, северо-восток и северо-запад и 0,1 - в других случаях;

б) в помещениях, разрабатываемых для типового проектирования, через стены, двери и окна, обращенные на любую из сторон света, в размере 0,08 при одной наружной стене и 0,13 для угловых помещений (кроме жилых), а во всех жилых помещениях - 0,13;

в) через не обогреваемые полы первого этажа над холодными подпольями зданий в местностях с расчетной температурой наружного воздуха минус 40 °С и ниже (параметры Б) - в размере 0,05,

г) через наружные двери, не оборудованные воздушными или воздушно-тепловыми завесами, при высоте зданий Н, м, от средней планировочной отметки земли до верха карниза, центра вытяжных отверстий фонаря или устья шахты в размере: 0,2 Н - для тройных дверей с двумя тамбурами между ними; 0,27 H - для двойных дверей с тамбурами между ними; 0,34 H - для двойных дверей без тамбура; 0,22 H - для одинарных дверей;

д) через наружные ворота, не оборудованные воздушными и воздушно-тепловыми завесами, - в размере 3 при отсутствии тамбура и в размере 1 - при наличии тамбура у ворот.

Для летних и запасных наружных дверей и ворот добавочные потери теплоты по подпунктам “г” и “д” не следует учитывать.

Отдельно возьмём такой элемент как пол на грунте или на лагах. Здесь есть особенности. Пол или стена, не содержащие в своем составе утепляющих слоев из материалов с коэффициентом теплопроводности λ меньше либо равно 1,2 Вт/(м °С), называются не утепленными. Сопротивление теплопередаче такого пола принято обозначать Rн.п, (м2 оС) / Вт. Для каждой зоны не утепленного пола предусмотрены нормативные значения сопротивления теплопередаче:

  • зона I - RI = 2,1 (м2 оС) / Вт;
  • зона II - RII = 4,3 (м2 оС) / Вт;
  • зона III - RIII = 8,6 (м2 оС) / Вт;
  • зона IV - RIV = 14,2 (м2 оС) / Вт;

Первые три зоны представляют собой полосы, расположенные параллельно периметру наружных стен. Остальную площадь относят к четвертой зоне. Ширина каждой зоны равна 2 м. Начало первой зоны находится в месте примыкания пола к наружной стене. Если неутеплёный пол примыкает к стене заглублённой в грунт то начало переносится к к верхней границе заглубления стены. Если в конструкции пола, расположенного на грунте, имеются утепляющие слои, его называют утепленным, а его сопротивление теплопередаче Rу.п, (м2 оС) / Вт, определяется по формуле:

Rу.п. = Rн.п. + Σ (γу.с. / λу.с)

Rн.п - сопротивление теплопередаче рассматриваемой зоны неутепленного пола, (м2 оС) / Вт;
γу.с - толщина утепляющего слоя, м;
λу.с - коэффициент теплопроводности материала утепляющего слоя, Вт/(м·°С).

Для пола на лагах сопротивление теплопередаче Rл, (м2 оС) / Вт, рассчитывается по формуле:

Rл = 1,18 * Rу.п

Теплопотери каждой ограждающей конструкции считаются отдельно. Величина теплопотерь через ограждающие конструкции всего помещения будет сумма теплопотерь через каждую ограждающую конструкцию помещения. Важно не напутать в измерениях. Если вместо (Вт) появится (кВт) или вообще (ккал) получите неверный результат. Ещё можно по невнимательности указать Кельвины (K) вместо градусов Цельсия (°C).

Продвинутый рассчет теплопотерь дома

Отопление в гражданских и жилых зданиях теплопотери помещений состоят из теплопотерь через различные ограждающие конструкции, такие как окна, стены, перекрытия, полы а также теплорасходов на нагревание воздуха, который инфильтрируется сквозь неплотности в защитных сооружениях (ограждающих конструкциях) даного помещения. В промышленных зданиях существуют и другие виды теплопотерь. Расчет теплопотерь помещения производится для всех ограждающих конструкций всех отапливаемых помещений. Могут не учитываться теплопотери через внутренние конструкции, при разности температуры в них с температурой соседних помещений до 3С. Теплопотери через ограждающие конструкции расчитываются по следующей формуле, Вт:

Qогр = F (tвн – tнБ) (1 + Σ β) n / Rо

tнБ – темп-ра наружного воздуха, оС;
tвн – темп-ра в помещении, оС;
F – площадь защитного сооружения, м2;
n – коэффициент, который учитывает положение ограждения или защитного сооружения (его наружной поверхности) относительно наружного воздуха;
β – теплопотери добавочные, доли от основных;
– сопротивление теплопередаче, м2·оС / Вт, которое определяется по следующей формуле:

Rо = 1/ αв + Σ (δі / λі) + 1/ αн + Rв.п., где

αв – коэффициент тепловосприятия ограждения (его внутренней поверхности), Вт/ м2· о С;
λі и δі – расчетный коэффициент теплопроводности для материала данного слоя конструкции и толщина этого слоя;
αн – коэффициент теплоотдачи ограждения (его наружной поверхности), Вт/ м2· о С;
Rв.n – в случае наличия в конструкции замкнутой воздушной прослойки, ее термосопротивление, м2· о С / Вт (см. табл.2).
Коэф-ты αн и αв принимаются согласно СНиП а для некоторых случаев приведены в таблице 1;
δі – обычно назначается согласно заданию или определяется по чертежах ограждающих конструкций;
λі – принимается по справочникам.

Таблица 1. Коэффициенты тепловосприятия αв и теплоотдачи αн

Поверхность ограждающей конструкции

αв, Вт/ м2· о С

αн, Вт/ м2· о С

Поверхность внутренняя полов, стен, гладких потолков

Поверхность наружная стен, бесчердачных перекрытий

Перекрытия чердачные и перекрытия над подвалами неотапливаемыми со световыми проемами

Перекрытия над подвалами неотапливаемыми без световых проемов

Таблица 2. Сопротивление термическое замкнутых воздушных прослоек Rв.n, м2· о С / Вт

Толщина прослойки воздушной, мм

Горизонтальная и вертикальная прослойки при тепловом потоке снизу вверх

Прослойка горизонтальная при тепловом потоке сверху вниз

При температуре в пространстве воздушной прослойки

Для дверей и окон сопротивление теплопередаче рассчитывается очень редко, а чаще принимается в зависимости от их конструкции по справочным данным и СНиПам. Площади ограждений для расчетов определяются, как правило, согласно строительных чертежей. Температуру tвн для жилых зданий выбирают из приложения і, tнБ – из приложения 2 СНиП в зависимости от расположения строительного объекта. Добавочные теплопотери указаны в табл.3, коэф-ент n – в табл.4.

Таблица 3. Добавочные теплопотери

Ограждение, его тип

Условия

Добавочные теплопотери β

Окна, двери и н аружные вертикальные стены:

ориентация на северо-запад восток, север и северо-восток

запад и юго-восток

Наружные двери, двери с тамбурами 0,2 Н без воздушной завесы при высоте строения Н, м

двери тройные с двумя тамбурами

двери двойные с тамбуром

Угловые помещения дополнительно для окон, дверей и стен

одно из ограждений ориентировано на восток, север, северо-запад или северо-восток

другие случаи

Таблица 4. Величина коэффициента n, который учитывает положение ограждения (его наружной поверхности)

Расход тепла на нагревание наружного инфильтрующегося воздуха в общественных и жилых зданиях для всех типов помещений определяется двумя расчетами. Первый расчет определяет расход тепловой энергии Qі на нагревание наружного воздуха, который поступает в і-е помещение в результате действия естественной вытяжной вентиляции. Второй расчет определяет расход тепловой энергии Qі на подогревание наружного воздуха, который проникает в данное помещение сквозь неплотности ограждений в результате ветрового и (или) теплового давлений. Для расчета принимают наибольшую величину теплопотерь из определенных по следующим уравнениям (1) и (или) (2).

Qі = 0,28 L ρн с (tвн – tнБ) (1)

L, м3/ча с – расход удаляемого наружу из помещений воздуха, для жилых зданий принимают 3 м3/час на 1 м2 площади жилых помещений, в том числе и кухни;
с – удельная теплоемкость воздуха (1 кДж /(кг · оС));
ρн – плотность воздуха снаружи помещения, кг/м3.

Удельный вес воздуха γ, Н/м3, его плотность ρ, кг/м3, определяются согласно формул:

γ= 3463/ (273 +t) , ρ = γ / g , где g = 9,81 м/с2 , t , ° с– температура воздуха.

Расход теплоты на подогревание воздуха, который попадает в помещение через различные неплотности защитных сооружений (ограждений) в результате ветрового и теплового давлений, определяется согласно формулы:

Qі = 0,28 Gі с (tвн – tнБ) k, (2)

где k – коэф-ент, учитывающий встредчный тепловой поток, для раздельно-переплетных балконных дверей и окон принимается 0,8, для одинарных и парно-переплетных окон – 1,0;
Gі – расход воздуха, проникающего (инфильтрируещегося) через защитные сооружения (ограждающие конструкции), кг/ч.

Для балконных дверей и окон значение Gі определяется:

Gі = 0,216 Σ F Δ Рі 0,67 / Rи, кг/ч

где Δ Рі – разница давлений воздуха на внутренней Рвн и наружной Рн поверхностях дверей или окон, Па;
Σ F, м2 – расчетные площади всех ограждений здания;
Rи, м2· ч/кг – сопротивление воздухопроницанию даного ограждения, которое может приниматься согласно приложения 3 СНиП. В панельных зданиях, кроме этого определяется дополнительный расход воздуха, инфильтрующегося через неплотности стыков панелей.

Величина Δ Рі определяется из уравнения, Па:

Δ Рі= (H – hі) (γн – γвн) + 0,5 ρн V2 (се,n – се,р) k1 – ріnt,
где H, м – высота здания от нулевого уровня до устья вентшахты (в бесчердачных зданиях устье обычно располагается на 1 м выше крыши, а в зданиях, имеющих чердак - на 4–5м выше перекрытия чердака);
hі, м – высота от нулевого уровня до верха балконных дверей или окон, для которых проводится расчет расхода воздуха;
γн, γвн – веса удельные наружного и внутреннего воздуха;
се,рu се,n – аэродинамические коэф-ты для подветренной и наветренной поверхностей здания соответственно. Для прямоугольных зданий се,р = –0,6, се,n= 0,8;

V, м/с – скорость ветра, которую для расчета принимают согласно приложения 2;
k1 – коэффициент, который учитывает зависимость скоростного напора ветра и высоты здания;
ріnt, Па – условно-постоянное давление воздуха, которое возникает при работе вентиляции с принудительным побуждением, при расчете жилых зданий ріnt можно не учитывать, поскольку оно равно нолю.

Для ограждений высотой до 5,0м коэффициент k1равен 0,5, высотой до 10 м равен 0,65, при высоте до 20 м – 0,85, а для ограждений 20 м и выше принимается 1,1.

Общие расчетные теплопотери в помещении, Вт:

Qрасч = Σ Qогр + Quнф – Qбыт

где Σ Qогр – суммарные потери тепла через все защитные ограждения помещения;
Qинф – максимальный расход теплоты на нагревание воздуха, который инфильтрируется принятый из расчетов согласно формул (2) u (1);
Qбыт – все тепловыделения от бытовых электрических приборов, освещения, других возможных источников тепла, которые принимаются для кухонь и жилых помещений в размере 21 Вт на 1 м2 расчетной площади.

Владивосток -24.
Владимир -28.
Волгоград -25.
Вологда -31.
Воронеж -26.
Екатеринбург -35.
Иркутск -37.
Казань -32.
Калининград -18
Краснодар -19.
Красноярск -40.
Москва -28.
Мурманск -27.
Нижний Новгород -30.
Новгород -27.
Новороссийск -13.
Новосибирск -39.
Омск -37.
Оренбург -31.
Орел -26.
Пенза -29.
Пермь -35.
Псков -26.
Ростов -22.
Рязань -27.
Самара -30.
Санкт-Петербург -26.
Смоленск -26.
Тверь -29.
Тула -27.
Тюмень -37.
Ульяновск -31.

Расчет системы отполения, горячего водоснабжения и вентиляции

Пояснительная записка к курсовой работе по дисциплине

«Отопление, вентиляция и кондиционирование»

Выполнил:

студент группы 31 Е

Захарец А. В.

Руководитель

ст. преподаватель кафедры Т

Кокшаров М.В.

В соответствии вариантом необходимо:

1)Произвести расчёт тепловых потерь здания.

3)Произвести расчёт системы горячего водоснабжения.

4)Начертить изометрическую схему системы горячего водоснабжения, указать диаметры трубопроводов

5)Произвести расчёт системы вентиляции, определить количество тепла на нагрев вентилируемого воздуха.


УДК 621.313.333

Курсовая работа содержит 28 страниц, 7 рисунков, 4 таблиц, 5 источников, 2 приложения.

Тепловые потери, ограждающие конструкции, система отопления, радиатор, теплоноситель, инфильтрация, ГВС, стояк, лежак, трубопровод, вентиляция.

Объектом исследования является двухэтажное жилое здание.

Цель работы – освоение и закрепление методов расчета тепловых потерь здания, систем отопления, ГВС, вентиляции.

Методы исследования – расчётные и графические.

Курсовая работа выполнена в текстовом редакторе Microsoft Word 2007


Введение. 5

1 Исходные данные. 6

2 Расчёт тепловых потерь здания. 7

2.1 Заполнение таблицы.. 7

2.2 Расчет диаметров трубопроводов системы отопления. 20

3 Расчет системы ГВС.. 23

3.1 Определение расчетных расходов воды в системах ГВС.. 23

3.2 Определение диаметров трубопровода системы ГВС.. 23

4 Расчет системы вентиляции. 26

4.1 Расход приточного воздуха. 26

4.2 Определение расхода тепла на нагрев вентилируемого воздуха. 26

Заключение. 28

Библиографический список. 29

Приложение А

Приложение Б


Введение

Расчет теплопотерь является важнейшим этапом проектирования систем отопления, ГВС и вентиляции.



Для определения тепловой мощности, покрывающей максимальную нагрузку на систему отопления, необходимо знать теплопотери здания в самую суровую расчетную часть холодного периода года. Для решения вопроса о соответствии уровня теплопотребления системой отопления здания современным требованиям, особенно учитывая проблему энергосбережения, необходимо определить теплопотери здания за весь отопительный период.

Существуют различные подходы к выбору расчетных значений коэффициентов теплопроводности строительных материалов. При этом тщательность в выборе значения данного коэффициента крайне важна. Необходимо также правильно оценивать значения коэффициентов теплообмена на поверхностях ограждений, особенно коэффициента теплоотдачи на внутренней поверхности, т.к. при завышенном его значении будет завышена и расчетная температура на внутренней поверхности, например, окна. При определении теплопотерь здания важна правильная оценка коэффициентов теплопередачи ограждающих конструкций.

В работе представлены расчеты теплопотерь здания и потребности в теплоте на нагревание инфильтрационного воздуха, рассчитаны и спроектированы системы отопления, ГВС и вентиляции.

Целью данной работы является получение знаний, навыков расчета и проектирования систем отопления, ГВС и вентиляции.

Исходные данные

Рисунок 1.1 – План первого(второго) этажа здания

Таблица 1.1 – Исходные данные


Расчёт тепловых потерь здания

При тщательном подходе к устройству системы отопления дома необходимо начать с расчета теплопотерь здания. Потери тепла в доме происходят через стены, окна, входные двери, крышу и пол первого этажа. Тепло также уходит вместе с воздухом при инфильтрации через щели в конструкциях, окна и двери.

Для удобства расчёта и представления информации итогом второго раздела данной курсовой работы будет заполненная таблица. Для каждого помещения будет определено или посчитано 25 параметров. Расчёт производится в соответствии со СНиП 23-02-2003 «Тепловая защита зданий».

Заполнение таблицы

2.1.1 Наименование помещения

В данном столбце указывается номер помещения по плану здания. Обычно нумерация помещений начинается от входа и идёт по часовой стрелке. Первая цифра – номер этажа, остальные – номер помещения.

Рисунок 2.1 – План первого этажа задания

Рисунок 2.2 – План второго этажа задания.

2.1.2 Температура наружного воздуха.

В данном столбце в соответствии со СНиП 23-01-99 "Строительная климатология" указывается температура воздуха наиболее холодной пяти- дневки обеспеченностью 0,92 t н, °С для нужного города или региона.

Для Санкт-Петербурга t н = -26 °С

2.1.3 Расчётная температура воздуха внутри помещения

В данном столбце в соответствии с ГОСТ30494-2011 "Здания жилые и общественные" указывается оптимальная температура воздуха внутри помещения t в, °С в зависимости от его типа. Так, для жилых комнат

t в = 18 – 20 °С, для ванных комнат t в = 24 – 26 °С, для кухонь t в = 19 – 21 °С.

В расчётах для ванных комнат примем t в = 25 °С, для всех остальных помещений t в = 20 °С

2.1.4 Наименование поверхности.

Для обозначения ограждающих конструкций вводятся следующие сокращения:

НС – наружная стена

ДО – окно

ДН – дверь наружная

2.1.5 Ориентация поверхности

Указывается ориентация вертикальных ограждающих конструкций по сторонам света:

В - восток

2.1.6 Длина поверхности

Указывается длина или в случае вертикальной поверхности высота ограждающей конструкции в метрах.

2.1.7 Ширина поверхности

Указывается ширина поверхности в метрах.

2.1.8 Площадь поверхности

Площадь поверхности определяется как произведение длины(высоты) и ширины поверхности по формуле:

, (2.1)

a – длина(высота), м

b – ширина, м

При подсчете теплопотерь площадь отдельных ограждений A, м2, определяется с соблюдением следующих правил обмера:

1. Площадь окон, дверей и фонарей измеряют по наименьшему строительному проему.

2. Площадь потолка и пола измеряют между осями внутренних стен и внутренней поверхностью наружной стены. Площадь стен и пола, расположенных на грунте, в том числе на лагах, определяют с условной разбивкой их по зонам.

3. Площадь наружных стен измеряют

В плане - по наружному периметру между осями внутренних стен и наружным углом стены;

По высоте - на всех этажах, кроме нижнего: от уровня чистого пола до пола следующего этажа. На последнем этаже верх наружной стены совпадает с верхом покрытия или чердачного перекрытия. На нижнем этаже в зависимости от конструкции пола: а) от внутренней поверхности пола по грунту; б) от поверхности подготовки под конструкцию пола на лагах; в) от нижней грани перекрытия над неотапливаемым подпольем или подвалом.

4. При определении теплопотерь через внутренние стены их площади обмеряют по внутреннему периметру. Потери теплоты через внутренние ограждения помещений можно не учитывать, если разность температур воздуха в этих помещениях составляет 3°С и менее.

Передача теплоты из помещения через конструкцию пола или стены и толщу грунта, с которыми они соприкасаются, подчиняется сложным закономерностям. Для расчета сопротивления теплопередаче конструкций, расположенных на грунте, применяют упрощенную методику. Поверхность пола по грунту делится на полосы шириной 2 м, параллельные стыку наружной стены и поверхности земли. Отсчет зон начинается по стене от уровня земли, а если стен по грунту нет, то зоной I является полоса пола, ближайшая к наружной стене. Следующие две полосы будут иметь номера II и III, а остальная часть пола составит зону IV. (см рисунок 2.3)

Таким образом, общая площадь пола разбивается на зоны и площадь заносится в столбец для каждой зоны пола, причём для первой зоны площадь в углах здания считается дважды.

Рисунок 2.3 – Принцип разбиение пола здания на зоны

Рисунок 2.4 – Разбиение пола 1 этажа на зоны

2.1.9 Расчётная разность температур

,ºС определяется как разность температур внутреннего воздуха в помещении и температуры наружного воздуха наиболее холодной пятидневки по формуле:

(2.2)

2.1.10 Коэффициент n

Выбираем коэффициент n, учитывающий положение ограждающей конструкции по отношению к наружному воздуху:

n = 1. Наружные стены и покрытия (в том числе вентилируемые наружным воздухом), перекрытия чердачные (с кровлей из штучных материалов) и над проездами; перекрытия над холодными (без ограждающих стенок) подпольями в Северной строительно-климатической зоне.

n = 0,9. Перекрытия над холодными подвалами, сообщающимися с наружным воздухом; перекрытия чердачные (с кровлей из рулонных материалов); перекрытия над холодными (с ограждающими стенками) подпольями и холодными этажами в Северной строительно-климатической зоне.

n = 0,75. Перекрытия над неотапливаемыми подвалами со световыми проемами в стенах.

n = 0,6. Перекрытия над неотапливаемыми подвалами без световых проемов в стенах, расположенные выше уровня земли.

n = 0,4. Перекрытия над неотапливаемыми техническими подпольями, расположенными ниже уровня земли

2.1.11 Коэффициент теплопередачи ограждающей конструкции

Коэффициент теплопередачи ограждающей конструкции k, Вт/(м 2 ∙ °С) - величина, численно равная поверхностной плотности теплового потока, проходящего через ограждающую конструкцию при разности внутренней и наружной температур воздуха рассчитывается по формуле:

где R i - нормативное значение сопротивления теплопередаче i-ой зоны пола.

Для каждой зоны неутепленного пола предусмотрены нормативные значения сопротивления теплопередаче:

зона I - R I = 2,1 м 2 ·°С/Вт;

зона II - R II = 4,3 м 2 ·°С/Вт;

зона III - R III = 8,6 м 2 ·°С/Вт;

зона IV - R IV = 14,2 м 2 ·°С/Вт.

2.1.12 Основные теплопотери

Формула расчёта основных теплопотерь Q осн, Вт помещения через ограждающие конструкции:

(2.5)

где k – коэффициент теплопередачи ограждающей конструкции, Вт/(м 2 ∙ °С);

А – площадь поверхности, м 2

2.1.13 Коэффициент дополнительных потерь β 1

Добавка на ориентацию ограждения по сторонам света принимается для всех наружных вертикальных ограждений или проекций на вертикаль наружных наклонных ограждений:

· для северной, северо-восточной, северо-западной, восточной ориентации ß 1 = 0,1;

· юго-восточной и западной ß 1 = 0,05;

· южной и юго-западной ß 1 = 0.

Рисунок 2.5 – Значение коэффициента ß 1

2.1.14 Коэффициент дополнительных потерь β 2

Добавка на угловое помещение, имеющее две и более наружных стен, учитывает, что в таком помещении радиационная температура ниже, чем в рядовом. Поэтому в угловом помещении жилого дома температуру внутреннего воздуха принимают на 2°С выше, чем в рядовом помещении, а в зданиях другого назначения увеличенные теплопотери учитывают добавкой ß 2 = 0,05 к основным теплопотерям вертикальных наружных ограждений.

2.1.15 Коэффициент дополнительных потерь β 3

Добавка на врывание холодного воздуха через наружные двери в здание, не оборудованное воздушно-тепловой завесой, при их кратковременном открывании принимается к основным теплопотерям дверей. Так, в здании высотой Н для тройных дверей с двумя тамбурами , для двойных дверей с тамбуром , для двойных дверей без тамбура , для одинарных дверей . Для наружных ворот при отсутствии тамбура и воздушно-тепловой завесы теплопотери рассчитываются с добавкой , а при наличии тамбура у ворот - с добавкой . Указанные добавки не относятся к летним и запасным наружным дверям и воротам.

2.1.16 Суммарный коэффициент дополнительных потерь

Суммарный коэффициент дополнительных потерь определяется по формуле:

(2.6)

2.1.17 Теплопотери с учетом дополнительных потерь Q β

Для нахождения теплопотерь с учетом дополнительных потерь необходимо перемножить значения двенадцатого и шестнадцатого столбцов, т.е. учитывается влияние добавочных коэффициентов на основные теплопотери.

2.1.18 Нормируемая воздухопроницаемость

Нормируемая воздухопроницаемость G н - это максимальная разрешенная воздухопроницаемость конструкции при любых погодных условиях, принимаемая в соответствии со СНиП 23-02-2003, значения которой приведены в табл. 2.1

Таблица 2.1 – Занчения G н

Ограждение Воздухопроницаемость G н, кг/(м 2 ·ч)
1. Наружная стена, перекрытие и покрытие жилого, общественного, административного и бытового здания или помещения 0,5
2. Наружная стена, перекрытие и покрытие производственного здания или помещения 1,0
3. Стык между панелями наружных стен здания: жилого производственного 0,5* 1,0*
4. Входная дверь в квартиру 1,5
5. Входная дверь в жилое, общественное, бытовое здание 7,0
6. Окно и балконная дверь жилого, общественного, бытового здания или помещения в деревянном переплете; окно, фонарь производственного здания с кондиционированием воздуха 6,0
7. Окно и балконная дверь жилого, общественного, бытового здания или помещения в пластмассовом или алюминиевом переплете 5,0
8. Окно, дверь, ворота производственного здания 8,0
9. Фонарь производственного здания 10,0

2.1.19 Разность давлений воздуха

Расход наружного воздуха, поступающего в помещения в результате инфильтрации в расчетных условиях, зависит от объемно-планировочного решения здания, а также плотности окон, балконных дверей, витражей. Задача инженерного расчета сводится к определению расхода инфильтрационного воздуха G инф, кг/ч, через отдельные ограждения каждого помещения. Инфильтрация через стены и покрытия невелика, поэтому ею обычно пренебрегают и рассчитывают только через заполнение световых проемов, а также через закрытые двери и ворота, в том числе и те, которые при обычном эксплуатационном режиме не открываются. Затраты теплоты на врывание воздуха через открывающиеся двери и ворота в расчетном режиме учитываются добавками к основным теплопотерям через входные двери и ворота.

Расчет выявляет максимально возможную инфильтрацию, поэтому считается, что каждое окно или дверь находится на наветренной стороне здания.

Расчетная разность давлений Δр, Па для окна или двери каждого этажа определяется по формуле:

Для дверей:

(2.9)

R инф.ок R инф.дв - требуемое сопротивления воздухопроницанию окна и двери соответственно, м 2 ∙ ч/кг;

Δр – расчётная разность давлений, Па;

Δр 0 – 10 Па.

2.1.21 Коэффициент теплопередачи инфильтрации

Коэффициент учитывающий влияние трансмиссионного теплового потока:

к =0,7. Для стыковых панелей стен и для окон с тройным остеклением;

к = 0,8. Для окон и балконных дверей с раздельными переплётами;

к = 1. Для окон и балконных дверей со спаренными или смежными переплётами.

2.1.22 Расход тепла на инфильтрацию

Расход тепла на инфильтрацию Q инф, Вт рассчитывается по формуле:

2.1.24 Мощность единицы нагревательного прибора

В качестве отопительного прибора выбран чугунный радиатор М-140, который широко известен на территории СНГ. Чугунные секционные радиаторы являются традиционными для нашей страны приборами.

Основное их преимущество возможность использования в открытых системах. В отличие от других радиаторов, чугунные практически нечувствительны к опорожнениям системы, то есть позволяют сколь угодно часто сливать из нее воду. При разливке чугуна на его поверхности образуется особенно прочный слой с повышенным содержанием кремния, поэтому в необработанном виде чугун довольно стоек к коррозии, в том числе от воздействия твердых частиц, присутствующих в теплоносителе. Говоря об эксплуатационных свойствах чугунных радиаторов, следует отметить их высокую теплопроводность и большую тепловую инерционность.

Секции радиатора отливают из серого чугуна, их можно компоновать в приборы различной площади. Секции соединяют на ниппелях с прокладками из картона, резины или паронита.

Примем мощность одной секции радиатора M-140 равную 140 Вт.

В ванной комнате наличие стояка отопления не предполагается. Отопление комнаты осуществляется установкой полотенцесушителя на трубопровод ГВС. Примем мощность полотенцесушителя равную 260 Вт.

2.1.25 Количество приборов отопления

Для того, чтобы найти количество секций радиатора М-140 на одно помещение нужно полные теплопотери этого помещения поделить на мощность одной секции радиатора М-140.

Общая тепловая нагрузка первого этажа здания равна 25,152 кВт, второго этажа 23,514 кВт.

Все расчёты предыдущих пунктов выполняются для каждого этажа здания и сводятся в таблицу в приложении А (для первого этажа) и приложении Б (для второго этажа)

Можно заказать в специализированной фирме. Правда, стоит это недешево, да и проверить результаты будет невозможно. Совсем другое дело, если вы научитесь анализировать потери тепла в доме самостоятельно. Тогда и платить никому не придется, и вы будете на сто процентов уверены в своих расчетах.

Количество тепла, теряемое зданием за определенную единицу времени, и называется теплопотерями. Величина эта непостоянная. Зависит она от температуры, а также теплозащитных свойств ограждающих конструкций (к ним относятся стены, окна, перекрытия и т.п.). Существенные теплопотери происходят и из-за сквозняков - попадающий внутрь помещения воздух называют по-научному инфильтрацией. А прекрасный способ бороться с ними - установка современных стеклопакетов. Расчет теплопотерь обязательно должен учитывать все эти факторы.

Все строительные и отделочные материалы различаются по своим характеристикам и, следовательно, теплотехническим качествам. Их структура часто неоднородна, состоит из нескольких слоев, а иногда имеет замкнутые воздушные прослойки. Вычислить теплопотери всей этой конструкции можно, сложив показатели для каждого из слоев.

Основной характеристикой материалов в наших расчетах будет показатель Именно он покажет, сколько тепла потеряет конструкции (к примеру, 1 м 2) при определенном температурном перепаде.

Имеем следующую формулу: R=DT/Q

· DT - показатель разности температур;

· Q - количество Вт/м 2 тепла, которое теряет конструкция;

· R - коэффициент сопротивления теплопередачи.

Все эти показатели легко вычислить, пользуясь СНиП. В них прописана информация касательно большинства традиционных строительных материалов. Что же касается современных конструкций (стеклопакетов, гипсокартона и прочих), требуемые данные можно узнать у производителя.

Таким образом можно сделать расчет теплопотерь для каждой Особое внимание следует уделить наружным стенам, чердачным перекрытиям, участкам над холодными подвалами и неотапливаемыми этажами. Добавочные потери тепла происходят через двери и окна (в особенности выходящие на север и восток), а также наружные ворота при отсутствии тамбура.

Расчет теплопотерь здания производят в отношении самого неблагоприятного периода в году. Другими словами, берется самая морозная и ветреная неделя. Суммировав таким образом теплопотери, можно определить требуемую мощность всех отопительных приборов в помещении, необходимых для его комфортного обогрева. Эти расчеты помогут также определить «слабое звено» в системе теплоизоляции и принять дополнительные меры.

Сделать расчет можно и по общим, усредненным показателям. К примеру, для одно- и двухэтажных зданий при минимальной температуре воздуха -25°С тепла на один квадратный метр потребуется 213 Вт. Для зданий с качественным этот показатель снижается до 173 Вт, а то и меньше.

Исходя из всего вышесказанного, можно сказать, что экономить на качественной теплоизоляции не следует. В условиях постоянного повышения цен на энергоносители грамотное утепление и вентиляция конструкций приводят к значительной выгоде.

РАСЧЕТ ТЕПЛОВЫХ ПОТЕРЬ

НЕИЗОЛИРОВАННЫМИ ТРУБОПРОВОДАМИ

ПРИ НАДЗЕМНОЙ ПРОКЛАДКЕ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

Введение

В настоящем документе рассмотрены особенности расчета тепловых потерь неизолированными трубопроводами тепловых сетей при надземной прокладке и предложена практическая методика выполнения расчета.

Расчет тепловых потерь изолированными трубопроводами должен выполняться в соответствии с методиками, изложенными в действующих нормативных документах /1, 2/. Характерным для данной ситуации является то, что тепловой поток в основном определяется термическим сопротивлением тепловой изоляции. При этом коэффициент теплоотдачи на наружной поверхности покровного слоя мало влияет на величину тепловых потерь и поэтому может быть принят по средним значениям.

Работа трубопровода тепловой сети без тепловой изоляции является нетиповой ситуацией, так как, согласно нормам, все теплопроводы должны иметь тепловую изоляцию во избежание значительных тепловых потерь. Именно поэтому ни в каких нормативных документах не приводятся методики расчета теплопотерь трубопроводов для данного случая.

Тем не менее, при эксплуатации тепловых сетей могут возникать и возникают ситуации, когда отдельные участки трубопроводов лишены тепловой изоляции. Для обеспечения возможности расчета потерь тепла такими трубопроводами и разработано настоящая методика. Она базируется на наиболее общих теоретических зависимостях по теплоотдаче трубопровода в условиях вынужденной конвекции, которые приводятся в учебной и справочной литературе .

В соответствии с требованием заказчика все формулы и расчетные величины приводятся не в международной системе единиц, а применительно к измерению теплопотерь в ккал/час.

1. Теоретические основы расчета тепловых потерь

неизолированными трубопроводами

при надземной прокладке

Трубопровод тепловой сети представляет из себя горизонтально расположенную нагретую трубу, обдуваемую ветром или находящуюся в спокойном воздухе. Поэтому теплоотдачу такого трубопровода можно определять по известным зависимостям с использованием коэффициента теплопередачи через стенку трубы:

Q = Fп · (Tп – Tв) / К, (1.1)

К = 1 / (1/αп + δм/λм + 1/αw), (1.2)

Q

αп

Fп

Tп

К

αп

δм

λм

αw

Tп

теплоотдача трубопровода, ккал/час;

площадь наружной поверхности трубопровода, м2;

температура наружного воздуха, °С.

коэффициент теплопередачи через стенку рассматриваемого трубопровода, ккал/(час м2 °С);

коэффициент теплоотдачи на наружной поверхности трубопровода, ккал/(час м2 °С);

толщина металлической стенки трубы, м;

теплопроводность материала стенки трубы, ккал/(ч м °С);

коэффициент теплоотдачи на внутренней поверхности трубопровода, ккал/(час м2 °С);

температура наружной поверхности трубопровода, °С;

В качестве расчетных температур следует брать средние температуры за рассматриваемый период. При этом, температуру поверхности трубопровода можно принимать равной температуре воды в трубопроводе, так как термическое сопротивление стенки трубы δм/λм и сопротивление теплоотдаче на внутренней поверхности 1/αw для чистой трубы во много раз меньше, чем сопротивление теплоотдаче на наружной поверхности 1/αп . Такое допущение позволяет значительно упростить расчет и уменьшить число необходимых исходных данных, так как тогда не требуется знать скорость воды в трубе, толщину стенки трубы, степень загрязнения стенки на внутренней поверхности. Погрешность расчета, связанная с таким упрощением, невелика и значительно меньше погрешностей, связанных с неопределенностью других расчетных величин.

Площадь наружной поверхности трубопровода определяется его длиной и диаметром:

Fп = π Dп L, (1.3)

С учетом выше изложенного выражение (1) можно преобразовать к виду:

Q = αп π Dп L (Tп – Tв), (1.4)

Наиболее важным при расчете тепловых потерь является правильное определение коэффициентов теплоотдачи на наружной поверхности трубопровода. Вопрос теплоотдачи от одиночной трубы хорошо изучен, и расчетные зависимости приводятся в учебных пособиях и справочниках по теплообмену. Согласно теории, общий коэффициент теплоотдачи определяется как сумма коэффициентов конвективной и лучистой теплоотдачи:

αп = αк + αл (1.5)

Коэффициент конвективной теплоотдачи зависит от скорости воздуха и направления потока по отношению к оси трубопровода, диаметра трубопровода, теплофизических характеристик воздуха. В общем случае выражение для определения коэффициента теплоотдачи на наружной поверхности трубопровода при поперечном обдувании потоком воздуха будет:

при ламинарном режиме движения воздуха (критерий Рейнольдса Re меньше 1000)

αк = 0,43 βφ Re0,5 λв / Dn (1.6)

При переходном и турбулентном режиме движения воздуха (критерий Рейнольдса Re равен или больше 1000)

αк = 0,216 βφ Re0,6 λв / Dn , (1.7)

Re = U β u Dn / v в , (1.8)

U

βu

расчетная скорость движения воздуха;

поправочный коэффициент, учитывающий высоту расположения трубопровода над землей и характер рельефа местности.

7. Определяем коэффициент лучистой теплоотдачи:

αл = 4,97 εп (((Tп + 273)/100)4 – ((Tв + 273)/100) 4) / (Tп – Tв) (3.4)

8. Определяем полный коэффициент теплоотдачи:

αп = αк + αл (3.5)

9. Определяем часовые тепловые потери трубопроводом:

Q = αп π Dп L (Tп – Tв) / 1000 (3.6)

10. Определяем потери тепла, за расчетный период времени, Гкал/час:

QN = 24 Q N /1000000, (3.7)

где N - количество суток в расчетном периоде времени.

Дальнейшие действия следует выполнять, если есть опасения, что снижение температуры на участке велико и расчет следует выполнять по нелинейной зависимости. Для дальнейшего расчета должен быть известен расход теплоносителя на участке.

11. Определяем модуль показателя экспоненты А L :

А L = αп π Dп L / (106 Gw ) (3.8)

Если полученное значение незначительно отличается от 0, то погрешность расчета теплопотерь составляет примерно половину вычисленного значения. Так, если полученное значение равно 0,05, то можно считать, что теплопотери были определены с точностью порядка 2,5%. Если полученная точность расчета устраивает, то переходим к пункту 13. При необходимости можно откорректировать значение теплопотерь в соответствии с определенной погрешностью:

Q = Q (1 – АL / 2) (3.9)

12. Если значение модуля показателя экспоненты А L больше 0,05, или если требуется более высокая точность расчета, вычисляем снижение температуры теплоносителя на участке за счет теплопотерь по экспоненциальной зависимости:

Tw = ( Tw - T в ) (1 – е--А L )

13. Определяем конечную температуру теплоносителя, чтобы убедиться, что трубопровод не перемерзнет:

Twк = Tw - ∆Tw (3.10)

13. Определяем уточненное значение теплопотерь:

Q = 1000 Gw ∆Tw (3.11)

14. Определяем уточненные потери тепла за расчетный период времени в соответствии с п.10.

4. Пример расчета тепловых потерь трубопровода

Исходные данные:

Требуется определить потери теплоты подающим трубопроводом за февраль при следующих исходных данных:

Dп = 426 мм, L = 750 м, Tw = 78°С, T в = -21 °С, Uв = 6,4 м/с,

Gw = 460 т/час, N = 28 сут., местность пересеченная.

Расчет:

1.Определяем по таблицам приложения А при T в = -21 °С: λв = 1,953

vв = 11,69

2. По таблице 1 определяем для пересеченной местности: βu = 0,707

3. Принимаем по среднему значению: βφ , = 0,821

4. Вычисляем: Re = 1000 · 6,4 · 0,707 · 426 / 11,69 = 164890

5. Вычисляем: αк = 2,16 · 0,821·1625670,6 · 1,953 / 420 = 10,975

6. Принимаем по среднему значению: εп = 0,9

7. Вычисляем:

αл = 4,97·0,9 · (((78+273)/100)4 – ((-21+273)/100)4) / (78+21) = 4,348

8. Вычисляем: αп = 10,975 + 4,348 = 15,323

9. Вычисляем:

Q = 16,08 · 3.14 · 420 · 750 · (78+21) / 1000 = 1522392 ккал/час

11. Вычисляем: А L = 16,08 · 3.14 · 420 · 750 / (106 · 460) = 0,03343

Следовательно, теплопотери были определены с погрешностью около 0,03343 / 2 · 100 = 1,7%. Вычислений по нелинейной зависимости не требуется. Для коррекции значения теплопотерь вычисляем:

Q = 1522392 · (1 - 0,03343 / 2) = 1496945 ккал/час

12. Вычисляем: Tw = 1496945 /(103 · 460) = 3,254 °С

13. Вычисляем: Q N = 24 · 1496945 · 28 / 1000000 = 1005,95 Гкал

При вычислении по экспоненциальной зависимости получили бы следующие результаты:

Tw = (78 + 21) · (1 – ЕХР(0,03343)) = 3,255 °С

Q = 1000 · 460 · 3,255 = 1497300 ккал/час

Q N = 24 · 1497300 · 28 / 1000000 = 1006,2 Гкал

Приложение А

Теплофизические характеристики воздуха

Таблица А1 - Коэффициенты теплопроводности воздуха λв ·102

Tв,°С

Tв < 0

Tв > 0

Таблица А2 - Коэффициенты кинематической вязкости воздуха ·106

Тв,°С

Tв < 0

Tв > 0


Литература

1. Нащокин В. В. Техническая термодинамика и теплопередача. Учебное пособие для неэнергетических специальностей вузов - М.: Высшая школа, 1975 - 496 с. ил.

2. Внутренние санитарно-технические устройства. В 3 ч. Ч. I. Отопление / В. Н.Богословский, Б. А.Крупнов, А. Н.Сканави и др.: Под ред. И. Г.Ста-роверова и Ю. И.Шиллера. - 4-е изд., перераб. и доп. -М.: Стройиздат, 1990 - 344 с.: ил.- (Справочник проектировщика).

3. Нестеренко А. В. Основы термодинамических расчетов вентиляции и кондиционирования воздуха - 3-е изд, перераб. и доп. -М.: Высшая школа, 1971 - 460 с. ил.