Из курса физики вам известно явление. Из школьного курса физики опыты Фарадея хорошо известны: катушка и

Определите, известные Вам из курса физики, характеристики движения, используемые в теоретической механике:

1. прямолинейное движение

2. криволинейное движение

3. скоростное движение

4. относительное движение

5. реактивное движение

6. железнодорожное движение

Вариант 8.

Задача №1. Раскрыть следующие понятия: 1. Виды деформаций тела. Коэффициент жёсткости 2. Определение механической работы. 3. Звуковые волны. Условия, необходимые для возникновения и существования звука.

Задача №2. Раскрыть следующее понятие: Инерциальная система отсчета.

Задача №3.

Определите, от какого особого свойства всякого тела, в соответствие с законами классической механики И. Ньютона, зависит ускорение, которое получает это тело при его взаимодействии с другим телом.

1. От его скорости

2. От его инертности

3. От его температуры

4. От его упругости

Вариант 9.

Задача №1. Раскрыть следующие понятия: 1. Понятие импульса. Закон сохранения импульса. 2. Мощность. Определение и физическая формула. 3. Основные понятия теории механических волн: Длина волны.

Задача №2. Раскрыть следующее понятие: Первый закон Ньютона – закон инерциальных систем.

Задача №3.

Полная механическая энергия, т.е. сумма потенциальной и кинетической энергии тела, остается постоянной при определенных физических условиях. При каких?

1. На тело действует сила упругости

2. На тело действует сила тяготения

3. На тело не действует сила трения (она отсутствует)

4. На тело не действует сила гравитации

5. На тело действует сила скольжения

6. На тело действует сила упрямости.

Вариант 10.

Задача №1. Раскрыть следующие понятия: 1. Реактивное движение. Формула Циолковского для определения максимальной скорости ракеты. 2. Кинетическая энергия. Физическая формула кинетической энергии. 3. Основные понятия теории механических волн. Луч волны.

Задача №2. Раскрыть следующее понятие: Принцип суперпозиции сил в теории И. Ньютона.

Задача №3.

Этой физической величиной (или единицей) измеряется электрический потенциал, разность потенциалов, электрического напряжения и электродвижущей силы.

При этом, разность потенциалов между двумя точками равна 1 вольту , если для перемещения заряда такой же величины из одной точки в другую над ним надо совершить работу такой же величины (по абсолютному значению).

В каких единицах измеряется энергия, выделяемая при совершении такой работы?

1. 1 Джоуль

5. 1 Ньютон

6. 1 Эйнштейн


Письменное Задание №4 (по итогам декабря)

Вариант 1.

Задача №1. Раскрыть следующие понятия: 1. Открытия Кулона и Гальвани.

2. Электромагнитная индукция. 3. Второй закон термодинамики.

Задача №2. Раскрыть следующее понятие: Отличительные признаки твердых тел, жидкостей и газов.

Интересоваться окружающим миром и закономерностями его функционирования и развития природно и правильно. Именно поэтому разумно обращать свое внимание на естественные науки, например, физику, которая объясняет саму сущность формирования и развития Вселенной. Основные физические законы несложно понять. Уже в очень юном возрасте школа знакомит детей с этими принципами.

Для многих начинается эта наука с учебника "Физика (7 класс)". Основные понятия и и термодинамики открываются перед школьниками, они знакомятся с ядром главных физических закономерностей. Но должно ли знание ограничиваться школьной скамьей? Какие физические законы должен знать каждый человек? Об этом и пойдет речь далее в статье.

Наука физика

Многие нюансы описываемой науки знакомы всем с раннего детства. А связано это с тем, что, в сущности, физика представляет собой одну из областей естествознания. Она повествует о законах природы, действие которых оказывает влияние на жизнь каждого, а во многом даже обеспечивает ее, об особенностях материи, ее структуре и закономерностях движения.

Термин «физика» был впервые зафиксирован Аристотелем еще в четвертом веке до нашей эры. Изначально он являлся синонимом понятия "философия". Ведь обе науки имели единую цель - правильным образом объяснить все механизмы функционирования Вселенной. Но уже в шестнадцатом веке вследствие научной революции физика стала самостоятельной.

Общий закон

Некоторые основные законы физики применяются в разнообразных отраслях науки. Кроме них существуют такие, которые принято считать общими для всей природы. Речь идет о

Он подразумевает, что энергия каждой замкнутой системы при протекании в ней любых явлений непременно сохраняется. Тем не менее она способна трансформироваться в другую форму и эффективно менять свое количественное содержание в различных частях названной системы. В то же время в незамкнутой системе энергия уменьшается при условии увеличения энергии любых тел и полей, которые вступают во взаимодействие с ней.

Помимо приведенного общего принципа, содержит физика основные понятия, формулы, законы, которые необходимы для толкования процессов, происходящих в окружающем мире. Их исследование может стать невероятно увлекательным занятием. Поэтому в этой статье будут рассмотрены основные законы физики кратко, а чтобы разобраться в них глубже, важно уделить им полноценное внимание.

Механика

Открывают юным ученым многие основные законы физики 7-9 классы школы, где более полно изучается такая отрасль науки, как механика. Ее базовые принципы описаны ниже.

  1. Закон относительности Галилея (также его называют механической закономерностью относительности, или базисом классической механики). Суть принципа заключается в том, что в аналогичных условиях механические процессы в любых инерциальных системах отсчета проходят совершенно идентично.
  2. Закон Гука. Его суть в том, что чем большим является воздействие на упругое тело (пружину, стержень, консоль, балку) со стороны, тем большей оказывается его деформация.

Законы Ньютона (представляют собой базис классической механики):

  1. Принцип инерции сообщает, что любое тело способно состоять в покое или двигаться равномерно и прямолинейно только в том случае, если никакие другие тела никаким образом на него не воздействуют, либо же если они каким-либо образом компенсируют действие друг друга. Чтобы изменить скорость движения, на тело необходимо воздействовать с какой-либо силой, и, конечно, результат воздействия одинаковой силы на разные по величине тела будет тоже различаться.
  2. Главная закономерность динамики утверждает, что чем больше равнодействующая сил, которые в текущий момент воздействуют на данное тело, тем больше полученное им ускорение. И, соответственно, чем больше масса тела, тем этот показатель меньше.
  3. Третий закон Ньютона сообщает, что любые два тела всегда взаимодействуют друг с другом по идентичной схеме: их силы имеют одну природу, являются эквивалентными по величине и обязательно имеют противоположное направление вдоль прямой, которая соединяет эти тела.
  4. Принцип относительности утверждает, что все явления, протекающие при одних и тех же условиях в инерциальных системах отсчета, проходят абсолютно идентичным образом.

Термодинамика

Школьный учебник, открывающий ученикам основные законы ("Физика. 7 класс"), знакомит их и с основами термодинамики. Ее принципы мы коротко рассмотрим далее.

Законы термодинамики, являющиеся базовыми в данной отрасли науки, имеют общий характер и не связаны с деталями строения конкретного вещества на уровне атомов. Кстати, эти принципы важны не только для физики, но и для химии, биологии, аэрокосмической техники и т. д.

Например, в названной отрасли существует не поддающееся логическому определению правило, что в замкнутой системе, внешние условия для которой неизменны, со временем устанавливается равновесное состояние. И процессы, продолжающиеся в ней, неизменно компенсируют друг друга.

Еще одно правило термодинамики подтверждает стремление системы, которая состоит из колоссального числа частиц, характеризующихся хаотическим движением, к самостоятельному переходу из менее вероятных для системы состояний в более вероятные.

А закон Гей-Люссака (его также называют утверждает, что для газа определенной массы в условиях стабильного давления результат деления его объема на абсолютную температуру непременно становится величиной постоянной.

Еще одно важное правило этой отрасли - первый закон термодинамики, который также принято называть принципом сохранения и превращения энергии для термодинамической системы. Согласно ему, любое количество теплоты, которое было сообщено системе, будет израсходовано исключительно на метаморфозу ее внутренней энергии и совершение ею работы по отношению к любым действующим внешним силам. Именно эта закономерность и стала базисом для формирования схемы работы тепловых машин.

Другая газовая закономерность - это закон Шарля. Он гласит, что чем больше давление определенной массы идеального газа в условиях сохранения постоянного объема, тем больше его температура.

Электричество

Открывает юным ученым интересные основные законы физики 10 класс школы. В это время изучаются главные принципы природы и закономерности действия электрического тока, а также другие нюансы.

Закон Ампера, например, утверждает, что проводники, соединенные параллельно, по которым течет ток в одинаковом направлении, неизбежно притягиваются, а в случае противоположного направления тока, соответственно, отталкиваются. Порой такое же название используют для физического закона, который определяет силу, действующую в существующем магнитном поле на небольшой участок проводника, в данный момент проводящего ток. Ее так и называют - сила Ампера. Это открытие было сделано ученым в первой половине девятнадцатого века (а именно в 1820 г.).

Закон сохранения заряда является одним из базовых принципов природы. Он гласит, что алгебраическая сумма всех электрических зарядов, возникающих в любой электрически изолированной системе, всегда сохраняется (становится постоянной). Несмотря на это, названный принцип не исключает и возникновения в таких системах новых заряженных частиц в результате протекания некоторых процессов. Тем не менее общий электрический заряд всех новообразованных частиц непременно должен равняться нулю.

Закон Кулона является одним из основных в электростатике. Он выражает принцип силы взаимодействия между неподвижными точечными зарядами и поясняет количественное исчисление расстояния между ними. Закон Кулона позволяет обосновать базовые принципы электродинамики экспериментальным образом. Он гласит, что неподвижные точечные заряды непременно взаимодействуют между собой с силой, которая тем выше, чем больше произведение их величин и, соответственно, тем меньше, чем меньше квадрат расстояния между рассматриваемыми зарядами и среды, в которой и происходит описываемое взаимодействие.

Закон Ома является одним из базовых принципов электричества. Он гласит, что чем больше сила постоянного электрического тока, действующего на определенном участке цепи, тем больше напряжение на ее концах.

Называют принцип, который позволяет определить направление в проводнике тока, движущегося в условиях воздействия магнитного поля определенным образом. Для этого необходимо расположить кисть правой руки так, чтобы линии магнитной индукции образно касались раскрытой ладони, а большой палец вытянуть по направлению движения проводника. В таком случае остальные четыре выпрямленных пальца определят направление движения индукционного тока.

Также этот принцип помогает выяснить точное расположение линий магнитной индукции прямолинейного проводника, проводящего ток в данный момент. Это происходит так: поместите большой палец правой руки таким образом, чтобы он указывал а остальными четырьмя пальцами образно обхватите проводник. Расположение этих пальцев и продемонстрирует точное направление линий магнитной индукции.

Принцип электромагнитной индукции представляет собой закономерность, которая объясняет процесс работы трансформаторов, генераторов, электродвигателей. Данный закон состоит в следующем: в замкнутом контуре генерируемая индукции тем больше, чем больше скорость изменения магнитного потока.

Оптика

Отрасль "Оптика" также отражает часть школьной программы (основные законы физики: 7-9 классы). Поэтому эти принципы не так сложны для понимания, как может показаться на первый взгляд. Их изучение приносит с собой не просто дополнительные знания, но лучшее понимание окружающей действительности. Основные законы физики, которые можно отнести к области изучения оптики, следующие:

  1. Принцип Гюйнеса. Он представляет собой метод, который позволяет эффективно определить в каждую конкретную долю секунды точное положение фронта волны. Суть его состоит в следующем: все точки, которые оказываются на пути у фронта волны в определенную долю секунды, в сущности, сами по себе становятся источниками сферических волн (вторичных), в то время как размещение фронта волны в ту же долю секунду является идентичным поверхности, которая огибает все сферические волны (вторичные). Данный принцип используется с целью объяснения существующих законов, связанных с преломлением света и его отражением.
  2. Принцип Гюйгенса-Френеля отражает эффективный метод разрешения вопросов, связанных с распространением волн. Он помогать объяснить элементарные задачи, связанные с дифракцией света.
  3. волн. Применяется в равной степени и для отражения в зеркале. Его суть состоит в том, что как ниспадающий луч, так и тот, который был отражен, а также перпендикуляр, построенный из точки падения луча, располагаются в единой плоскости. Важно также помнить, что при этом угол, под которым падает луч, всегда абсолютно равен углу преломления.
  4. Принцип преломления света. Это изменение траектории движения электромагнитной волны (света) в момент движения из одной однородной среды в другую, которая значительно отличается от первой по ряду показателей преломления. Скорость распространения света в них различна.
  5. Закон прямолинейного распространения света. По своей сути он является законом, относящимся к области геометрической оптики, и заключается в следующем: в любой однородной среде (вне зависимости от ее природы) свет распространяется строго прямолинейно, по кратчайшему расстоянию. Данный закон просто и доступно объясняет образование тени.

Атомная и ядерная физика

Основные законы квантовой физики, а также основы атомной и ядерной физики изучаются в старших классах средней школы и высших учебных заведениях.

Так, постулаты Бора представляют собой ряд базовых гипотез, которые стали основой теории. Ее суть состоит в том, что любая атомная система может оставаться устойчивой исключительно в стационарных состояниях. Любое излучение или поглощение энергии атомом непременно происходит с использованием принципа, суть которого следующая: излучение, связанное с транспортацией, становится монохроматическим.

Эти постулаты относятся к стандартной школьной программе, изучающей основные законы физики (11 класс). Их знание является обязательным для выпускника.

Основные законы физики, которые должен знать человек

Некоторые физические принципы, хоть и относятся к одной из отраслей данной науки, тем не менее носят общий характер и должны быть известны всем. Перечислим основные законы физики, которые должен знать человек:

  • Закон Архимеда (относится к областям гидро-, а также аэростатики). Он подразумевает, что на любое тело, которое было погружено в газообразное вещество или в жидкость, действует своего рода выталкивающая сила, которая непременно направлена вертикально вверх. Эта сила всегда численно равна весу вытесненной телом жидкости или газа.
  • Другая формулировка этого закона следующая: тело, погруженное в газ или жидкость, непременно теряет в весе столько же, сколько составила масса жидкости или газа, в который оно было погружено. Этот закон и стал базовым постулатом теории плавания тел.
  • Закон всемирного тяготения (открыт Ньютоном). Его суть состоит в том, что абсолютно все тела неизбежно притягиваются друг к другу с силой, которая тем больше, чем больше произведение масс данных тел и, соответственно, тем меньше, чем меньше квадрат расстояния между ними.

Это и есть 3 основных закона физики, которые должен знать каждый, желающий разобраться в механизме функционирования окружающего мира и особенностях протекания процессов, происходящих в нем. Понять принцип их действия достаточно просто.

Ценность подобных знаний

Основные законы физики обязаны быть в багаже знаний человека, независимо от его возраста и рода деятельности. Они отражают механизм существования всей сегодняшней действительности, и, в сущности, являются единственной константой в непрерывно изменяющемся мире.

Основные законы, понятия физики открывают новые возможности для изучения окружающего мира. Их знание помогает понимать механизм существования Вселенной и движения всех космических тел. Оно превращает нас не в просто соглядатаев ежедневных событий и процессов, а позволяет осознавать их. Когда человек ясно понимает основные законы физики, то есть все происходящие вокруг него процессы, он получает возможность управлять ими наиболее эффективным образом, совершая открытия и делая тем самым свою жизнь более комфортной.

Итоги

Некоторые вынуждены углубленно изучать основные законы физики для ЕГЭ, другие - по роду деятельности, а некоторые - из научного любопытства. Независимо от целей изучения данной науки, пользу полученных знаний трудно переоценить. Нет ничего более удовлетворяющего, чем понимание основных механизмов и закономерностей существования окружающего мира.

Не оставайтесь равнодушными - развивайтесь!

Явление диффузии заключается в том, что происходит самопроизвольное проникновение и перемешивание частиц двух соприкасающихся газов, жидкостей и даже твердых тел; диффузия сводится к обмену масс частиц этих тел, возникает и продолжается, пока существует градиент плотности.

Взаимное перемешивание веществ есть следствие непрерывного и беспорядочного движения атомов или молекул (или других частиц) вещества. С течением времени глубина проникновения молекул в «чужое» пространство увеличивается, причем эта глубина существенно зависит от температуры: чем температура выше, тем больше скорость движения частиц вещества и тем быстрее протекает диффузия.

Представим мысленно эксперимент.

Для наблюдения явления диффузии бросим несколько крупинок краски в высокий сосуд с водой. Они опустятся на дно, и вокруг них вскоре образуется облачко окрашенной воды. Оставим сосуд в покое на несколько недель в прохладной темной комнате. Наблюдая за сосудом всё это время, мы обнаружим постепенное распространение окраски по всей высоте сосуда. Говорят, что происходит диффузия краски в воду.

Как объясняется диффузия? Частицы веществ (например, краски и воды), беспорядочно двигаясь, проникают в промежутки друг между другом. А это и означает смешивание веществ.

Однако, в тёплой комнате диффузия протекает быстрее. Например, на солнечном подоконнике диффузия краски в воду завершается заметно раньше (см. рисунки). Кстати, при повышении температуры броуновское движение также ускоряется. Что является следствием повышения температуры тела и приводит к увеличению скорости движения составляющих его частиц.

Явление диффузии для химически однородного газа подчиняется закону Фика:

где j m - плотность потока массы - величина, определяемая массой вещества, диффундирующего в единицу времени через единичную площадку, перпендикулярную оси х; D - диффузия (коэффициент диффузии); - градиент плотности, равный скорости изменения плотности на единицу длины х в направлении нормали к этой площадке. Знак «-» показывает, что перенос массы происходит в направлении убывания плотности (поэтому знаки у j m и - противоположны).

Диффузия D численно равна плотности потока массы при градиенте плотности, равном единице.

Согласно кинетической теории газов,

Это явление наблюдается во всех состояниях веществ: в газах, жидкостях и твердых телах. Явление диффузии играет большую роль в природе и технике. Оно способствует поддержанию однородности состава атмосферного воздуха вблизи поверхности Земли. На явлении диффузии основано свойство тканей пищеварительной системы животных и человека «выбора» и извлечения из пищи веществ, необходимых организму. В технике диффузию используют для извлечения различных веществ, например сахара из сырой свеклы, и др. Явление диффузии имеет место при цементации железа (при поверхностном науглероживании железных изделий).



Внутреннее трение (вязкость)

Механизм возникновения внутреннего трения между параллельными слоями газа (жидкости), движущимися с различными скоростями, заключается в том, что из-за хаотического теплового движения происходит обмен молекулами между слоями, в результате чего импульс слоя, движущегося быстрее, уменьшается, движущегося медленнее - увеличивается, что приводит к торможению слоя, движущегося быстрее, и ускорению слоя, движущегося медленнее.

Сила внутреннего трения между двумя слоями газа (жидкости) подчиняется закону Ньютона:

где η - динамическая вязкость (вязкость); - градиент скорости, показывающий быстроту изменения скорости в направлении х, перпендикулярном направлению движения слоев; S - площадь, на которую действует сила F. Взаимодействие двух слоев согласно второму закону Ньютона можно рассматривать как процесс, при котором от одного слоя к другому в единицу времени передается импульс, по модулю равный действующей силе. Тогда выражение (5) можно представить в виде

где j р - плотность потока импульса - величина, определяемая полным импульсом, переносимым в единицу времени в положительном направлении оси х через единичную площадку, перпендикулярную оси х; - градиент скорости. Знак «-» указывает, что импульс переносится в направлении убывания скорости (поэтому знаки у j p и - противоположны).

Динамическая вязкость η численно равна плотности потока импульса при градиенте скорости, равном единице; она вычисляется по формуле

Из сопоставления формул (1), (3) и (6), описывающих явления переноса, следует, что закономерности всех явлений переноса сходны между собой. Эти законы были установлены задолго до того, как они были обоснованы и выведены из молекулярно-кинетической теории, позволившей установить, что внешнее сходство их математических выражений обусловлено общностью лежащего в основе явлений теплопроводности, диффузии и внутреннего трения молекулярного механизма перемешивания молекул в процессе их хаотического движения и столкновений друг с другом.

Формулы (2), (4) и (7) связывают коэффициенты переноса и характеристики теплового движения молекул. Из этих формул вытекают простые зависимости между λ, D и η:

Используя эти формулы, можно по найденным из опыта одним величинам определить другие.

Если и стоит знать хотя бы одну научную теорию, то пусть она объяснит, как вселенная достигла нынешнего своего состояния (или не достигла, ). На основании исследований, проведенных Эдвином Хабблом, Жоржем Леметром и Альбертом Эйнштейном, теория Большого Взрыва постулирует, что Вселенная началась 14 миллиардов лет назад с массивного расширения. В какой-то момент Вселенная была заключена в одной точке и охватывала всю материю нынешней вселенной. Это движение продолжается и по сей день, а сама вселенная постоянно расширяется.

Теория Большого Взрыва получила широкую поддержку в научных кругах после того, как Арно Пензиас и Роберт Уилсон обнаружили космический микроволновый фон в 1965 году. С помощью радиотелескопов два астронома обнаружили космический шум, или статику, которая не рассеивается со временем. В сотрудничестве с принстонским исследователем Робертом Дике, пара ученых подтвердила гипотезу Дике о том, что первоначальный Большой Взрыв оставил после себя излучение низкого уровня, которое можно обнаружить по всей Вселенной.

Закон космического расширения Хаббла

Давайте на секунду задержим Эдвина Хаббла. В то время как в 1920-х годах бушевала Великая депрессия, Хаббл выступал с новаторским астрономическим исследованием. Он не только доказал, что были и другие галактики помимо Млечного Пути, но также обнаружил, что эти галактики несутся прочь от нашей собственной, и это движение он назвал разбеганием.

Для того, чтобы количественно оценить скорость этого галактического движения, Хаббл предложил закон космического расширения, он же закон Хаббла. Уравнение выглядит так: скорость = H0 x расстояние. Скорость представляет собой скорость разбегания галактик; H0 - это постоянная Хаббла, или параметр, который показывает скорость расширения вселенной; расстояние - это расстояние одной галактики до той, с которой происходит сравнение.

Постоянная Хаббла рассчитывалась при разных значениях в течение достаточно долгого времени, однако в настоящее время она замерла на точке 70 км/с на мегапарсек. Для нас это не так важно. Важно то, что закон представляет собой удобный способ измерения скорости галактики относительно нашей собственной. И еще важно то, что закон установил, что Вселенная состоит из многих галактик, движение которых прослеживается до Большого Взрыва.

Законы планетарного движения Кеплера

На протяжении веков ученые сражались друг с другом и с религиозными лидерами за орбиты планет, особенно за то, вращаются ли они вокруг Солнца. В 16 веке Коперник выдвинул свою спорную концепцию гелиоцентрической Солнечной системы, в которой планеты вращаются вокруг Солнца, а не Земли. Однако только с Иоганном Кеплером, который опирался на работы Тихо Браге и других астрономов, появилась четкая научная основа для движения планет.

Три закона планетарного движения Кеплера, сложившиеся в начале 17 века, описывают движение планет вокруг Солнца. Первый закон, который иногда называют законом орбит, утверждает, что планеты вращаются вокруг Солнца по эллиптической орбите. Второй закон, закон площадей, говорит, что линия, соединяющая планету с солнцем, образует равные площади через равные промежутки времени. Другими словами, если вы измеряете площадь, созданную нарисованной линией от Земли от Солнца, и отслеживаете движение Земли на протяжении 30 дней, площадь будет одинаковой, вне зависимости от положения Земли касательно начала отсчета.

Третий закон, закон периодов, позволяет установить четкую взаимосвязь между орбитальным периодом планеты и расстоянием до Солнца. Благодаря этому закону, мы знаем, что планета, которая относительно близка к Солнцу, вроде Венеры, имеет гораздо более краткий орбитальный период, чем далекие планеты, вроде Нептуна.

Универсальный закон тяготения

Сегодня это может быть в порядке вещей, но более чем 300 лет назад сэр Исаак Ньютон предложил революционную идею: два любых объекта, независимо от их массы, оказывают гравитационное притяжение друг на друга. Этот закон представлен уравнением, с которым многие школьники сталкиваются в старших классах физико-математического профиля.

F = G × [(m1m2)/r²]

F - это гравитационная сила между двумя объектами, измеряемая в ньютонах. M1 и M2 - это массы двух объектов, в то время как r - это расстояние между ними. G - это гравитационная постоянная, в настоящее время рассчитанная как 6,67384(80)·10 −11 или Н·м²·кг −2 .

Преимущество универсального закона тяготения в том, что он позволяет вычислить гравитационное притяжение между двумя любыми объектами. Эта способность крайне полезна, когда ученые, например, запускают спутник на орбиту или определяют курс Луны.

Законы Ньютона

Раз уж мы заговорили об одном из величайших ученых, когда-либо живущих на Земле, давайте поговорим о других знаменитых законах Ньютона. Его три закона движения составляют существенную часть современной физики. И как и многие другие законы физики, они элегантны в своей простоте.

Первый из трех законов утверждает, что объект в движении остается в движении, если на него не действует внешняя сила. Для шарика, который катится по полу, внешней силой может быть трение между шаром и полом, или же мальчик, который бьет по шарику в другом направлении.

Второй закон устанавливает связь между массой объекта (m) и его ускорением (a) в виде уравнения F = m x a. F представляет собой силу, измеряемую в ньютонах. Также это вектор, то есть у него есть направленный компонент. Благодаря ускорению, мяч, который катится по полу, обладает особым вектором в направлении его движения, и это учитывается при расчете силы.

Третий закон довольно содержательный и должен быть вам знаком: для каждого действия есть равное противодействие. То есть для каждой силы, приложенной к объекту на поверхности, объект отталкивается с такой же силой.

Законы термодинамики

Британский физик и писатель Ч. П. Сноу однажды сказал, что неученый, который не знал второго закона термодинамики, был как ученый, который никогда не читал Шекспира. Нынче известное заявление Сноу подчеркивало важность термодинамики и необходимость даже людям, далеким от науки, знать его.

Термодинамика - это наука о том, как энергия работает в системе, будь то двигатель или ядро Земли. Ее можно свести к нескольким базовым законам, которые Сноу обозначил следующим образом:

  • Вы не можете выиграть.
  • Вы не избежите убытков.
  • Вы не можете выйти из игры.

Давайте немного разберемся с этим. Говоря, что вы не можете выиграть, Сноу имел в виду то, что поскольку материя и энергия сохраняются, вы не можете получить одно, не потеряв второе (то есть E=mc²). Также это означает, что для работы двигателя вам нужно поставлять тепло, однако в отсутствии идеально замкнутой системы некоторое количество тепла неизбежно будет уходить в открытый мир, что приведет ко второму закону.

Второй закон - убытки неизбежны - означает, что в связи с возрастающей энтропией, вы не можете вернуться к прежнему энергетическому состоянию. Энергия, сконцентрированная в одном месте, всегда будет стремиться к местам более низкой концентрации.

Наконец, третий закон - вы не можете выйти из игры - относится , самой низкой теоретически возможной температуре - минус 273,15 градуса Цельсия. Когда система достигает абсолютного нуля, движение молекул останавливается, а значит энтропия достигнет самого низкого значения и не будет даже кинетической энергии. Но в реальном мире достичь абсолютного нуля невозможно - только очень близко к нему подойти.

Сила Архимеда

После того как древний грек Архимед открыл свой принцип плавучести, он якобы крикнул «Эврика!» (Нашел!) и побежал голышом по Сиракузам. Так гласит легенда. Открытие было вот настолько важным. Также легенда гласит, что Архимед обнаружил принцип, когда заметил, что вода в ванной поднимается при погружении в него тела.

Согласно принципу плавучести Архимеда, сила, действующая на погруженный или частично погруженный объект, равна массе жидкости, которую смещает объект. Этот принцип имеет важнейшее значение в расчетах плотности, а также проектировании подлодок и других океанических судов.

Эвoлюция и естественный отбор

Теперь, когда мы установили некоторые из основных понятий о том, с чего началась Вселенная и как физические законы влияют на нашу повседневную жизнь, давайте обратим внимание на человеческую форму и выясним, как мы дошли до такого. По мнению большинства ученых, вся жизнь на Земле имеет общего предка. Но для того, чтобы образовалась такая огромная разница между всеми живыми организмами, некоторые из них должны были превратиться в отдельный вид.

В общем смысле, эта дифференциация произошла в процессе эволюции. Популяции организмов и их черты прошли через такие механизмы, как мутации. Те, у кого черты были более выгодными для выживания, вроде коричневых лягушек, которые отлично маскируются в болоте, были естественным образом избраны для выживания. Вот откуда взял начало термин естественный отбор.

Можно умножить две этих теории на много-много времени, и собственно это сделал Дарвин в 19 веке. Эволюция и естественный отбор объясняют огромное разнообразие жизни на Земле.

Общая теория относительности

Альберта Эйнштейна была и остается важнейшим открытием, которое навсегда изменила наш взгляд на вселенную. Главным прорывом Эйнштейна было заявление о том, что пространство и время не являются абсолютными, а гравитация - это не просто сила, приложенная к объекту или массе. Скорее гравитация связана с тем, что масса искривляет само пространство и время (пространство-время).

Чтобы осмыслить это, представьте, что вы едете через всю Землю по прямой линии в восточном направлении, скажем, из северного полушария. Через некоторое время, если кто-то захочет точно определить ваше местоположение вы будете гораздо южнее и восточнее своего исходного положения. Это потому что Земля изогнута. Чтобы ехать прямо на восток, вам нужно учитывать форму Земли и ехать под углом немного на север. Сравните круглый шарик и лист бумаги.

Пространство - это в значительной мере то же самое. К примеру, для пассажиров ракеты, летящей вокруг Земли, будет очевидно, что они летят по прямой в пространстве. Но на самом деле, пространство-время вокруг них изгибается под действием силы тяжести Земли, заставляя их одновременно двигаться вперед и оставаться на орбите Земли.

Теория Эйнштейна оказала огромное влияние на будущее астрофизики и космологии. Она объяснила небольшую и неожиданную аномалию орбиты Меркурия, показала, как изгибается свет звезд и заложила теоретические основы для черных дыр.

Принцип неопределенности Гейзенберга

Расширение теории относительности Эйнштейна рассказало нам больше о том, как работает Вселенная, и помогло заложить основу для квантовой физики, что привело к совершенно неожиданному конфузу теоретической науки. В 1927 году осознание того, что все законы вселенной в определенном контексте являются гибкими, привело к ошеломительному открытию немецкого ученого Вернера Гейзенберга.

Постулируя свой принцип неопределенности, Гейзенберг понял, что невозможно одновременно знать с высоким уровнем точности два свойства частицы. Вы можете знать положение электрона с высокой степенью точности, но не его импульс, и наоборот.

Позже Нильс Бор сделал открытие, которое помогло объяснить принцип Гейзенберга. Бор выяснил, что электрон обладает качествами как частицы, так и волны. Концепция стала известна как корпускулярно-волновой дуализм и легла в основу квантовой физики. Поэтому, когда мы измеряем положение электрона, мы определяем его как частицу в определенной точке пространства с неопределенной длиной волны. Когда мы измеряем импульс, мы рассматриваем электрон как волну, а значит можем знать амплитуду ее длины, но не положение.

Ежедневно мы проводим на кухне 1−2 часа. Кто-то меньше, кто-то больше. При этом мы редко задумываемся о физических явлениях, когда готовим завтрак, обед или ужин. А ведь большей их концентрации в бытовых условиях, чем на кухне, в квартире и быть не может.

Тим Скоренко


1. Диффузия . С этим явлением на кухне мы сталкиваемся постоянно. Его название образовано от латинского diffusio — взаимодействие, рассеивание, распространение. Это процесс взаимного проникновения молекул или атомов двух граничащих веществ. Скорость диффузии пропорциональна площади поперечного сечения тела (объему), и разности концентраций, температур смешиваемых веществ. Если есть разница температуры, то она задает направление распространения (градиент) — от горячего к холодному. В итоге происходит самопроизвольное выравнивание концентраций молекул или атомов.

Это явление на кухне можно наблюдать при распространении запахов. Благодаря диффузии газов, сидя в другой комнате, можно понять, что готовится. Как известно, природный газ не имеет запаха, и к нему примешивают добавку, чтобы легче было обнаружить утечку бытового газа. Резкий неприятный запах добавляет одорант, например, этилмеркаптан. Если с первого раза конфорка не загорелась, то мы можем чувствовать специфический запах, который с детства мы знаем, как запах бытового газа.

А если бросить в кипяток крупинки чая или заварной пакетик и не размешивать, то можно увидеть, как распространяется чайный настой в объеме чистой воды. Это диффузия жидкостей. Примером диффузии в твердом теле может быть засолка помидор, огурцов, грибов или капусты. Кристаллы соли в воде распадаются на ионы Na и Cl, которые, хаотически двигаясь, проникают между молекулами веществ в составе овощей или грибов.


2. Смена агрегатного состояния. Мало кто из нас замечал, что в оставленном стакане с водой через несколько дней испаряется такая же часть воды при комнатной температуре, как и при кипячении в течение 1−2 минут. А замораживая продукты или воду для кубиков льда в холодильнике, мы не задумываемся, как это происходит. Между тем, эти самые обыденные и частые кухонные явления легко объясняются. Жидкость обладает промежуточным состоянием между твердыми веществами и газами. При температурах, отличных от кипения или замерзания, силы притяжения между молекулами в жидкости не так сильны или слабы, как в твердых веществах и в газах. Поэтому, например, только получая энергию (от солнечных лучей, молекул воздуха комнатной температуры) молекулы жидкости с открытой поверхности постепенно переходят в газовую фазу, создавая над поверхностью жидкости давление пара. Скорость испарения растет при увеличении площади поверхности жидкости, повышении температуры, уменьшении внешнего давления. Если температуру повышать, то давление пара этой жидкости достигает внешнего давления. Температуру, при которой это происходит, называют температурой кипения. Температура кипения снижается при уменьшении внешнего давления. Поэтому в горной местности вода закипает быстрее.

И наоборот, молекулы воды при понижении температуры теряют кинетическую энергию до уровня сил притяжения между собой. Они уже не двигаются хаотично, что позволяет образоваться кристаллической решетке как у твердых тел. Температура 0 °C, при которой это происходит, называется температурой замерзания воды. При заморозке вода расширяется. Многие могли познакомиться с таким явлением, когда помещали пластиковую бутылку с напитком в морозилку для быстрого охлаждения и забывали об этом, а после бутылку распирало. При охлаждении до температуры 4 °C сначала наблюдается увеличение плотности воды, при которой достигается ее максимальная плотность и минимальный объем. Затем при температуре от 4 до 0 °C происходит перестройка связей в молекуле воды, и ее структура становится менее плотной. При температуре 0 °C жидкая фаза воды меняется на твердую. После полного замерзания воды и превращения в лед ее объем вырастает на 8,4%, что и приводит к распиранию пластиковой бутылки. Содержание жидкости во многих продуктах мало, поэтому они при заморозке не так заметно увеличиваются в объеме.


3. Абсорбция и адсорбция. Эти два почти неразделимых явления, получивших название от латинского sorbeo (поглощать), наблюдаются, например, при нагревании воды в чайнике или кастрюле. Газ, не действующий химически на жидкость, может, тем не менее, поглощаться ею при соприкосновении с ней. Такое явление называется абсорбцией. При поглощении газов твердыми мелкозернистыми или пористыми телами большая их часть плотно скапливается и удерживается на поверхности пор или зерен и не распределяется по всему объему. В этом случае процесс называют адсорбцией. Эти явления можно наблюдать при кипячении воды — со стенок кастрюли или чайника при нагревании отделяются пузырьки. Воздух, выделяемый из воды, содержит 63% азота и 36% кислорода. А в целом атмосферный воздух содержит 78% азота и 21% кислорода.

Поваренная соль в незакрытой емкости может стать влажной из-за своих гигроскопических свойств — поглощения из воздуха водяного пара. А сода выступает в качестве адсорбента, когда ее ставят в холодильник для удаления запаха.


4. Проявление закона Архимеда. Приготовившись сварить курицу, мы наполняем кастрюлю водой примерно наполовину или на ¾ в зависимости от размера курицы. Погружая тушку в кастрюлю с водой, мы замечаем, что вес курицы в воде заметно уменьшается, а вода поднимается к краям кастрюли.

Это явление объясняется выталкивающей силой или законом Архимеда. В этом случае на тело, погружённое в жидкость, действует выталкивающая сила, равная весу жидкости в объеме погруженной части тела. Эта сила называется силой Архимеда, как и сам закон, объясняющий это явление.


5. Поверхностное натяжение. Многие помнят опыты с пленками жидкостей, которые показывали на уроках физики в школе. Небольшую проволочную рамку с одной подвижной стороной опускали в мыльную воду, а затем вытаскивали. Силы поверхностного натяжения в образовавшейся по периметру пленке поднимали нижнюю подвижную часть рамки. Чтобы сохранить ее неподвижной, к ней подвешивали грузик при повторном проведении опыта. Это явление можно наблюдать в дуршлаге — после использования в дырочках дна этой кухонной посуды остается вода. Такое же явление можно наблюдать после мойки вилок — на внутренней поверхности между некоторыми зубьями также есть полоски воды.

Физика жидкостей объясняет это явление так: молекулы жидкости настолько близки друг к другу, что силы притяжения между ними создают поверхностное натяжение в плоскости свободной поверхности. Если сила притяжения молекул воды пленки жидкости слабее силы притяжения к поверхности дуршлага, то водная пленка разрывается. Также силы поверхностного натяжения заметны, когда мы будем сыпать в кастрюлю с водой крупу или горох, бобы, или добавлять круглые крупинки перца. Некоторые зерна останутся на поверхности воды, тогда как большинство под весом остальных опустятся на дно. Если кончиком пальца или ложкой слегка надавить на плавающие крупинки, то они преодолеют силу поверхностного натяжения воды и опустятся на дно.


6. Смачивание и растекание. На кухонной плите с жировой пленкой пролитая жидкость может образовать маленькие пятна, а на столе — одну лужицу. Все дело в том, что молекулы жидкости в первом случае сильнее притягиваются друг к другу, чем к поверхности плиты, где есть несмачиваемая водой жировая пленка, а на чистом столе притяжение молекул воды к молекулам поверхности стола выше, чем притяжение молекул воды между собой. В результате лужица растекается.

Это явление также относится к физике жидкостей и связано с поверхностным натяжением. Как известно, мыльный пузырь или капли жидкости имеют шарообразную форму из-за сил поверхностного натяжения. В капле молекулы жидкости притягиваются друг к другу сильней, чем к молекулам газа, и стремятся внутрь капли жидкости, уменьшая площадь ее поверхности. Но, если есть твердая смачиваемая поверхность, то часть капли при соприкосновении растягивается по ней, потому что молекулы твердого тела притягивают молекулы жидкости, и эта сила превосходит силу притяжения между молекулами жидкости. Степень смачивания и растекание по твердой поверхности будет зависеть от того, какая сила больше — сила притяжения молекул жидкости и молекул твердого тела между собой или сила притяжения молекул внутри жидкости.

Это физическое явление с 1938 года широко стали использовать в промышленности, в производстве бытовых товаров, когда в лаборатории компании DuPont был синтезирован материал Teflon (политетрафлуороэтилен). Его свойства используются не только в изготовлении посуды с антипригарным покрытием, но и в производстве непромокаемых, водоотталкивающих тканей и покрытий для одежды и обуви. Teflon отмечен в «Книге рекордов Гинесса» как самая скользкая субстанция в мире. Он имеет очень низкие поверхностное натяжение и адгезию (прилипание), не смачивается ни водой, ни жирами, ни многими органическими растворителями.


7. Теплопроводность. Одно из самых частых явлений на кухне, которое мы можем наблюдать — это нагрев чайника или воды в кастрюле. Теплопроводность — это передача теплоты через движение частиц, когда есть разница (градиент) температуры. Среди видов теплопроводности есть и конвекция. В случае одинаковых веществ, у жидкостей теплопроводность меньше, чем у твердых тел, и больше по сравнению с газами. Теплопроводность газов и металлов возрастает с повышением температуры, а жидкостей — уменьшается. С конвекцией мы сталкиваемся постоянно, помешиваем ли мы ложкой суп или чай, или открываем окно, или включаем вентиляцию для проветривания кухни. Конвекция — от латинского convectiō (перенесение) — вид теплообмена, когда внутренняя энергия газа или жидкости передается струями и потоками. Различают естественную конвекцию и принудительную. В первом случае слои жидкости или воздуха сами перемешиваются при нагревании или остывании. А во втором случае — происходит механическое перемешивание жидкости или газа — ложкой, вентилятором или иным способом.


8. Электромагнитное излучение. Микроволновку иногда называют сверхвысокочастотной печью, или СВЧ-печью. Основной элемент каждой микроволновки — магнетрон, который преобразует электрическую энергию в сверхвысокочастотное электромагнитное излучение частотой до 2,45 гигагерц (ГГц). Излучение разогревает еду, взаимодействуя с ее молекулами. В продуктах есть дипольные молекулы, содержащие на противоположных своих частях положительные электрические и отрицательные заряды. Это молекулы жиров, сахара, но больше всего дипольных молекул в воде, которая содержится почти в любом продукте. СВЧ-поле, постоянно меняя свое направление, заставляет с высокой частотой колебаться молекулы, которые выстраиваются вдоль силовых линий так, что все положительные заряженные части молекул «смотрят», то в одну, то в другую сторону. Возникает молекулярное трение, выделяется энергия, что и нагревает пищу.


9. Индукция. На кухне все чаще можно встретить индукционные плиты, в основе работы которых заложено это явление. Английский физик Майкл Фарадей открыл электромагнитную индукцию в 1831 году и с тех пор без нее невозможно представить нашу жизнь. Фарадей обнаружил возникновение электрического тока в замкнутом контуре из-за изменения магнитного потока, проходящего через этот контур. Известен школьный опыт, когда плоский магнит перемещается внутри спиралеобразного контура из проволоки (соленоида), и в ней появляется электрический ток. Есть и обратный процесс — переменный электроток в соленоиде (катушке) создает переменное магнитное поле.

По такому же принципу работает и современная индукционная плита. Под стеклокерамической нагревательной панелью (нейтральна к электромагнитным колебаниям) такой плиты находится индукционная катушка, по которой течет электроток с частотой 20−60 кГц, создавая переменное магнитное поле, наводящее вихревые токи в тонком слое (скин-слое) дна металлической посуды. Из-за электрического сопротивления посуда нагревается. Эти токи не более опасны, чем раскаленная посуда на обычных плитах. Посуда должна быть стальной или чугунной, обладающей ферромагнитными свойствами (притягивать магнит).


10. Преломление света. Угол падения света равен углу отражения, а распространение естественного света или света от ламп объясняется двойственной, корпускулярно-волновой природой: с одной стороны — это электромагнитные волны, а с другой — частицы-фотоны, которые двигаются с максимально возможной во Вселенной скоростью. На кухне можно наблюдать такое оптическое явление, как преломление света. Например, когда на кухонном столе стоит прозрачная ваза с цветами, то стебли в воде как бы смещаются на границе поверхности воды относительно своего продолжения вне жидкости. Дело в том, что вода, как линза, преломляет лучи света, отраженные от стеблей в вазе. Подобное наблюдается и прозрачном стакане с чаем, в который опущена ложка. Также можно видеть искаженное и увеличенное изображение фасоли или крупы на дне глубокой кастрюли с прозрачной водой.