Обмен углеводов и особенности энергетического обеспечения мозга. Глюкозолактатный цикл или цикл Кори

Углеводы, обширная группа органических соединений, входящих в состав всех живых организмов. Углеводы считаются основным источником снабжения организма энергией. Кроме того, они необходимы для нормального функционирования нервной системы, главным образом головного мозга. Доказано, что при интенсивной умственной деятельности расходы углеводов повышаются. Углеводы также играют важную роль в обмене белков, окислении жиров, но их избыток в организме создает жировые отложения.

Углеводы поступают с пищей в виде моносахаридов (фруктозы, галактозы), дисахаридов (сахарозы, лактозы) и полисахаридов (крахмала, клетчатки, гликогена, пектина), превращаясь в результате биохимических реакций в глюкозу. Потребность организма в углеводах составляет примерно 1 г на килограмм массы. Излишнее употребление углеводов, особенно сахара, чрезвычайно вредно.

Главными источниками углеводов из пищи являются: хлеб, картофель, макароны, крупы, сладости. Чистым углеводом является сахар. Мёд, в зависимости от своего происхождения, содержит 70-80 % глюкозы и фруктозы. Помимо того, употребление углеводов в виде рафинированного сахара, конфет способствует развитию кариеса зубов. Поэтому рекомендуется в качестве источников углеводов больше использовать продукты, содержащие полисахариды (каши, картофель), фрукты и ягоды.

Средняя суточная потребность человека в углеводах составляет 4-5 г на килограмм массы. Углеводы в виде сахарного песка, меда, варенья рекомендуется вводить 35%, а остальное количество желательно восполнять за счет хлеба, картофеля, круп, яблок

Нервная регуляция

Возбуждение симпатических нервных волокон приводит к освобождению адреналина из надпочечников, который стимулирует расщепление гликогена в процессе гликогенолиза. Поэтому при раздражении симпатической нервной системы наблюдается гипергликемический эффект. Наоборот, раздражение парасимпатических нервных волокон сопровождается усилением выделения инсулина поджелудочной железой, поступлением глюкозы в клетку и гипогликемическим эффектом.

Гормональная регуляция

Инсулин, катехоламины, глюкагон, соматотропный и стероидные гормоны оказывают различное, но очень выраженное влияние на разные процессы углеводного обмена. Так, например, инсулин способствует накоплению в печени и мышцах гликогена, активируя фермент гликогенсинтетазу, и подавляет гликогенолиз и глюконеогенез.

Антагонист инсулина - глюкагон - стимулирует гликогенолиз. Адреналин, стимулируя действие аденилатциклазы, оказывает влияние на весь каскад реакций фосфоролиза. Гонадотропные гормоны активируют гликогенолиз в плаценте. Глюкокортикоидные гормоны стимулируют процесс глюконеогенеза. Соматотропный гормон оказывает влияние на активность ферментов пентозофосфатного пути и снижает утилизацию глюкозы периферическими тканями.



Углеводный обмен оценивают по содержанию в крови сахара (глюкозы), молочной (лактат) и других кислот .

Молочная кислота в норме составляет 0,33-0,78 ммоль/л. После тренировки (соревнования) лактат возрастает до 20 ммоль/л и даже более. Молочная кислота - это конечный продукт гликолиза, ее уровень в крови позволяет судить о соотношении процессов аэробного окисления и анаэробного гликолиза. Гипоксия при физической нагрузке приводит к увеличению содержания молочной кислоты в крови, образовавшийся лактат действует неблагоприятно на сократительные процессы в мышцах. Kроме того, уменьшение внутриклеточного pH может снизить ферментативную активность и тем самым затормозить физико- химические механизмы мышечного сокращения, что в итоге отрицательно влияет на спортивные результаты.

Kонцентрация глюкозы в крови в норме - 4,4-6,6 ммоль/л. При длительных физических нагрузках наличие сахара в крови снижается, особенно у слаботренированных спортсменов, во время участия в соревнованиях, проводимых в жарком и влажном климате.

По уровню глюкозы и молочной кислоты в крови можно судить о соотношении аэробного и анаэробного процессов в работающих мышцах.

Kреатин до тренировки составляет 2,6-3,3 мг%, а после тренировки повышается до 6,4 мг%. С ростом тренированности содержание креатина в крови после нагрузки уменьшается. Адаптированный к физическим нагрузкам организм спортсмена реагирует повышением уровня креатина в крови в меньшей степени, чем слабо тренированный. Длительное сохранение повышенного уровня креатина в крови свидетельствует о неполном восстановлении.



Потребность ребенка в углеводах значительна: грудной ребенок должен получать 10-15 г на 1 кг массы тела, примерно такое же количество углеводов требуется детям в возрасте до одного года и старше, а у детей школьного возраста количество углеводов в пищевом рационе может увеличиваться до 15 г/кг массы тела.

При определении оптимального количества углеводов в пищевом рационе должны быть учтены калорийность и определенное соотношение других компонентов пищи, жиров, белков и углеводов. Наиболее физиологичным следует считать соотношение Б:Ж:У: 1: 1: 4 (то есть 100 гр белков: 100 гр жиров:400 гр углеводов)

В первые месяцы жизни основным углеводом пищи является дисахарид лактоза (молочный сахар). Содержание лактозы в женском молоке составляет в среднем 70 г/л, а в коровьем - 48 г/л. Лактоза в желудочно-кишечном тракте гидролизуется на глюкозу и галактозу под действием фермента лактазы. Интенсивность ферментативного гидролиза лактозы в кишечнике у детей разного возраста неодинакова: она несколько снижена у новорожденных и максимальна в грудном возрасте.

Моносахариды всасываются, поступают в кровь и разносятся к разным органам тканям, вступая на путь внутриклеточного обмена. Большая часть галактозы в печени превращается в глюкозу, частично она используется на синтез ганглиозидов и цереброзидов. Глюкоза печени, мышц депонируется в виде гликогена.

По мере роста ребенка в питании лактоза уступает место сахарозе, крахмалу, гликогену и у школьников 7-9 лет половину всех углеводов составляют полисахариды; метаболизм лактозы снижается. В процесс пищеварения включаются новые ферментные системы. Однако ферменты, которые у детей старшего возраста обеспечивают полостное пищеварение, у детей раннего возраста малоактивны и даже отсутствуют совсем. Для детей раннего возраста характерно мембранное пищеварение.

Функции мозга в большой степени зависят от глюкозы. Если в крови, поступающей в мозговую ткань, концентрация глюкозы снижается в два раза в сравнении с нормой, то наступает потеря сознания и через несколько минут смерть. Основной путь использования глюкозы – аэробное окисление. С этим связана высокая чувствительность мозга к гипоксии. АТФ образуется в основном в окислительном фосфорилировании и используется в электрохимических и синтетических процессах. ПФЦ осуществляется с меньшей интенсивностью, чем аэробное окисление. Часть промежуточных продуктов окисления глюкозы используется для образования медиаторов (ацетилхолина, ГАМК), а также для резервирования ацетильного остатка в виде ацетиласпартата.

Нарушения углеводного обмена

Нарушения гидролиза и всасывания углеводов

Всасывание углеводов нарушается при недостаточности амилолитических ферментов желудочно-кишечного тракта (амилаза панкреатического сока и др.). При этом поступающие с пищей углеводы не расщепляются до моносахаридов и не всасываются. Развивается углеводное голодание.

Всасывание углеводов страдает также при нарушении фосфорилирования глюкозы в кишечной стенке, возникающем при воспалении кишечника, при отравлении ядами, блокирующими фермент гексокиназу (флоридзин, монойодацетат). Не происходит фосфорилирования глюкозы в кишечной стенке и она не поступает в кровь.

Всасывание углеводов особенно легко нарушается у детей грудного возраста, у которых еще не вполне сформировались пищеварительные ферменты и ферменты, обеспечивающие фосфорилирование и дефосфорилирование.

Гликогеновые болезни

- группа наследственных нарушений, в основе которых лежит снижение или отсутствие активности ферментов, катализирующих реакции синтеза или распада гликогена, либо нарушение регуляции этих ферментов.

1. Гликогенозы - заболевания, обусловленные дефектом ферментов, участвующих в распаде гликогена. Они проявляются или необычной структурой гликогена, или его избыточным накоплением в печени, сердечной или скелетных мышцах, почках, лёгких и других органах. В таблице 7-3 описаны некоторые типы гликогенозов, различающихся характером и локализацией ферментного дефекта.



Болезнь Гирке (тип I) отмечают наиболее часто. Описание основных симптомов этого типа гликогеноза и их причин может служить основанием для понимания симптомов всех остальных типов. Причина этого заболевания - наследственный дефект глюкозо-6-фосфатазы - фермента, обеспечивающего выход глюкозы в кровоток после её высвобождения из гликогена клеток печени. Болезнь Гирке проявляется гипогликемией, гипертриацилглицеролемией (повышением содержания триацилглицеролов), гиперурикемией (повышением содержания мочевой кислоты).

Гипогликемия - следствие нарушения реакции образования свободной глюкозы из глюкозо-6-фосфата. Кроме того, вследствие дефекта глюкозо-6-фосфатазы происходит

накопление в клетках печени субстрата - глюкозо-6-фосфата, который вовлекается в процесс катаболизма, где он превращается в пируват и лактат. В крови повышается количество лактата, поэтому возможен ацидоз. В тяжёлых случаях результатом гипогликемии могут быть судороги. Гипогликемия сопровождается уменьшением содержания инсулина и снижением отношения инсулин/глюкагон, что, в свою очередь, ведёт к ускорению липолиза жировой ткани в результате действия глюкагона и выходу в кровь жирных кислот.

Гипертриацилглицеролемия возникает в результате снижения активности ЛП-липазы жировой ткани - фермента, активируемого инсулином и обеспечивающего усвоение ТАГ клетками жировой ткани.

Гиперурикемия возникает в результате следующих событий:

увеличиваются содержание в клетках глюкозо-6-фосфата и его использование в пентозофосфатном пути с образованием рибозо-5-фосфата - субстрата для синтеза пуриновых нуклеотидов;

увеличивается образование мочевой кислоты вследствие избыточного синтеза, а следовательно, и катаболизма пуриновых нуклеотидов, конечным продуктом которого является мочевая кислота.

снижается выведение мочевой кислоты вследствие увеличения продукции лактата и изменения рН мочи в кислую сторону, что затрудняет выведение уратов - труднорастворимых солей мочевой кислоты.

При диагностике данной патологии определяют активность глюкозо-6-фосфатазы в био-птатах печени. Кроме того, используют тест со стимуляцией глюкагоном или адреналином, который в случае болезни даёт отрицательный результат, т.е. после инъекции гормона уровень глюкозы в крови изменяется незначительно.

Лечение состоит в ограничении употребления продуктов, содержащих глюкозу. Рекомендуется исключить из диеты продукты, содержащие сахарозу и лактозу, так как образующиеся из них галактоза и фруктоза после превращения в глюкозо-6-фосфат ведут к дальнейшему накоплению гликогена. Для предотвращения гипогликемии используют метод частого кормления. Этим можно предупредить симптомы гипогликемии.

Гликогеноз I типа наследуется по аутосомно-рецессивному типу. Уже в раннем периоде наиболее заметный признак - гепатомегалия. У больных детей короткое туловище, большой живот, увеличены почки. Больные дети отстают в физическом развитии.

Описанное заболевание иногда обозначают как гликогеноз типа Iа, так как существует его разновидность - тип Ib. Гликогеноз Ib представляет собой редко встречающуюся патологию, которая характеризуется тем, что дефектен фермент транслоказа глюкозо-6-фосфата, обеспечивающий транспорт фос-форилированной глюкозы в ЭР. Поэтому, несмотря на достаточную активность глюкозо-6-фосфатазы, отщепление неорганического фосфата и выход глюкозы в кровь нарушен. Клиническая картина гликогеноза типа Ib такая же, как при гликогенозе Iа.

Болезнь Кори (тип III) весьма распространена. Она составляет 1/4 всех случаев печёночных гликогенозов. Накапливаемый гликоген аномален по структуре, так как дефектен фермент амило-1,6-глюкозидаза, гидролизующий гликозидные связи в местах разветвлений ("деветвящий фермент", от англ, debmnching enzyme). Недостаток глюкозы в крови проявляется быстро, поскольку гликогенолиз возможен, но в незначительном объёме. В отличие от гликогеноза I типа, лактоацидоз и гиперурикемия не отмечаются. Болезнь отличается более лёгким течением.

Болезнь Андерсен (тип IV) - крайне редкое аутосомно-рецессивное заболевание, возникающее вследствие дефекта ветвящего фермента - амило-1,4-1,6-глюкозилтрансферазы. Содержание гликогена в печени не сильно увеличено, но структура его изменена, и это препятствует его распаду. Молекула гликогена имеет мало точек ветвления, а также очень длинные и редкие боковые ветви. В то же время гипогликемия выражена умеренно. Болезнь развивается быстро, отягощается ранним циррозом печени и практически не поддаётся лечению. Дефект фермента ветвления обнаруживается не только в печени, но также в лейкоцитах, мышцах, фибробластах, на ранние и преобладающие проявления болезни обусловлены нарушением функции печени.

Болезнь Херса (тип VI) также проявляется симптомами, обусловленными поражением печени. Данный гликогеноз - следствие дефекта гликогенфосфорилазы. Б гепатоцитах накапливается гликоген нормальной структуры. Течение болезни сходно с гликогенозом I типа, но симптомы выражены в меньшей степени. Сниженная активность гликогенфосфорилазы обнаруживается также в лейкоцитах. Болезнь Херса - редкий тип гликогеноза; наследуется по аутосомнорецессивному типу.

Дефект киназы фосфорилазы (тип IX) встречается только у мальчиков, так как этот признак сцеплен с Х-хромосомой.

Дефект протеинкиназы А (тип X) , так же как и дефект киназы фосфорилазы, проявляется симптомами, сходными с болезнью Херса.

Мышечные формы гликогенозов характеризуются нарушением в энергоснабжении скелетных мышц. Эти болезни проявляются при физических нагрузках и сопровождаются болями и судорогами в мышцах, слабостью и быстрой утомляемостью.

Болезнь МакАрдла (тип V) - аутосомнорецессивная патология, при которой полностью отсутствует в скелетных мышцах активность гликогенфосфорилазы. Поскольку активность этого фермента в гепатоцитах нормальная, то гипогликемия не наблюдается (строение фермента в печени и мышцах кодируются разными генами). Тяжёлые физические нагрузки плохо переносятся и могут сопровождаться судорогами, однако при физических нагрузках гиперпродукция лактата не наблюдается, что подчёркивает значение внемышечных источников энергии для сокращения мышц, например, таких как жирные кислоты, замещающие при данной патологии глюкозу (см. раздел 8). Хотя болезнь не сцеплена с полом, большая частота заболевания характерна для мужчин.

Дефект фосфофруктокиназы характерен для гликогеноза VII типа. Больные могут выполнять умеренные физические нагрузки. Течение болезни сходно с гликогенозом V типа, но основные проявления менее выражены.

Дефект фосфоглщеромугазы и дефект М-субъединицы ЛДГ (ненумерованные по классификации Кори, см. табл. 7-3) характерны для мышечных форм гликогенозов. Проявления этих патологий аналогичны болезни МакАрдла. Дефект фосфоглицеромутазы в мышцах описан только у одного больного.

Агликогенозы

Агликогеноз (гликогеноз 0 по классификации) - заболевание, возникающее в результате дефекта гликогенсинтазы. В печени и других тканях больных наблюдают очень низкое содержание гликогена. Это проявляется резко выраженной гипогликемией в постабсорбтивном периоде. Характерный симптом - судороги, проявляющиеся особенно по утрам. Болезнь совместима с жизнью, но больные дети нуждаются в частом кормлении.

Таблица 1. Характеристика некоторых гликогеновых болезней

Основная роль углеводов определяется их энергетической функцией. И хотя при окислении 1 г углеводов образуется столько же энергии, сколько и при окислении 1 г белка (17,6 кДж), но за счет количества потребляемых углеводов (соотношение белков, жиров и углеводов составляет 1:1: 4) и быстрой мобилизации глюкоза крови является непосредственным источником энергии в организме. Быстрота ее распада и окисления, а также возможность быстрого извлечения из депо обеспечивают экстренную мобилизацию энергетических ресурсов при стремительно нарастающих затратах энергии в случаях эмоционального возбуждения, при интенсивных мышечных нагрузках и др.

Уровень глюкозы в крови составляет 3,3-5,5 ммоль/л (60- 100 мг%) и является важнейшей гомеостатической константой организма. Особенно чувствительной к понижению уровня глюкозы в крови (гипогликемия) является ЦНС. Незначительная гипогликемия проявляется общей слабостью и быстрой утомляемостью. При снижении уровня глюкозы в крови до 2,2-1,7 ммоль/л (40-30 мг%) развиваются судороги, бред, потеря сознания, а также вегетативные реакции: усиленное потоотделение, изменение просвета кожных сосудов и др. Это состояние получило название «гипогликемическая кома». Введение в кровь глюкозы быстро устраняет данные расстройства.

Изменения углеводов в организме. Глюкоза, поступающая в кровь из кишечника, транспортируется в печень, где из нее синтезируется гликоген (рис. 9.7 ).

Рис. 9.7.

Гликоген печени представляет собой резервный, т.е. отложенный в запас, углевод. Количество его может достигать у взрослого человека 150-200 г. Образование гликогена при относительно медленном поступлении глюкозы в кровь происходит достаточно быстро, поэтому после введения небольшого количества углеводов повышения содержания глюкозы в крови (гипергликемии) не наблюдается. Если же в пищеварительный тракт поступает большое количество легко расщепляющихся и быстро всасывающихся углеводов, содержание глюкозы в крови быстро увеличивается. Развивающуюся при этом гипергликемию называют алиментарной, иначе говоря, пищевой. Ее результатом является глюкозурия, т.е. выделение глюкозы с мочой, которое наступает в том случае, если уровень глюкозы в крови повышается до 8,9-10,0 ммоль/л (160- 180 мг%).

При полном отсутствии углеводов в пище они образуются в организме из продуктов распада жиров и белков.

По мере уменьшения концентрации глюкозы в крови происходит расщепление гликогена в печени и поступление глюкозы в кровь (мобилизация гликогена). Благодаря этому сохраняется относительное постоянство содержания глюкозы в крови.

Гликоген откладывается также в мышцах, где его содержится около 1-2%. Количество гликогена в мышцах увеличивается в случае обильного питания и уменьшается во время голодания. При работе мышц под влиянием фермента фосфорилазы, которая активируется в начале мышечного сокращения, происходит усиленное расщепление гликогена, являющегося одним из источников энергии мышечного сокращения.

Захват глюкозы разными органами из притекающей крови неодинаков: мозг задерживает 12% глюкозы, кишечник - 9%, мышцы - 7%, почки - 5% (Е.С. Лондон).

Распад углеводов в организме животных происходит как бескислородным путем до молочной кислоты (анаэробный гликолиз), так и путем окисления продуктов распада углеводов до углекислого газа и воды (аэробный путь).

Регуляция обмена углеводов. Основным параметром регулирования углеводного обмена является поддержание уровня глюкозы в крови в пределах 3,3-5,5 ммоль/л. Изменение содержания глюкозы в крови воспринимается глюкорецепторами, сосредоточенными в основном в печени и сосудах, а также клетками вентромедиального отдела гипоталамуса. Показано участие ряда отделов ЦНС в регуляции углеводного обмена.

Клод Бернар еще в 1849 г. показал, что укол продолговатого мозга в области дна IV желудочка (так называемый сахарный укол) вызывает увеличение содержания глюкозы (сахара) в крови. При раздражении гипоталамуса можно получить такую же гипергликемию, как и при уколе в дно IV желудочка. Роль коры головного мозга в регуляции уровня глюкозы крови иллюстрирует развитие гипергликемии у студентов во время экзаменов, у спортсменов перед ответственными соревнованиями, а также при гипнотическом внушении. Центральным звеном регуляции углеводного и других видов обмена и местом формирования сигналов, управляющих уровнем глюкозы, является гипоталамус. Отсюда регулирующие влияния реализуются вегетативными нервами и гуморальным путем, включающим эндокринные железы (рис. 9.8).

Выраженным влиянием на углеводный обмен обладает инсулин - гормон, вырабатываемый (3-клетками островковой ткани поджелудочной железы. При введении инсулина уровень глюкозы в крови снижается. Это происходит за счет усиления инсулином синтеза гликогена в печени и мышцах и повышения потребления глюкозы тканями организма. Инсулин является единственным гормоном, понижающим уровень глюкозы в крови, поэтому при уменьшении секреции этого гормона развиваются стойкая гипергликемия и последующая глюко- зурия (сахарный диабет, или сахарное мочеизнурение).

Рис. 9.8.

Увеличение уровня глюкозы в крови возникает при действии нескольких гормонов: глюкагона, продуцируемого а-клетками островковой ткани поджелудочной железы; адреналина - гормона мозгового слоя надпочечников; глюкокортикоидов - гормонов коркового слоя надпочечника, которые вызывают главным образом синтез углеводов из неуглеводных соединений - глюконеогенез; соматотропного гормона гипофиза; тироксина и трийодтиронина - гормонов щитовидной железы. В связи с однонаправленностью их влияния на углеводный обмен и функциональным антагонизмом по отношению к эффектам инсулина эти гормоны часто объединяют понятием «контринсулярные гормоны».

  • См.: Коробков А. В. Указ. соч.

Гликоген - основной резервный полисахарид в клетках животных Гликоген представляет собой разветвленный
гомополисахарид, мономером которого является
глюкоза. Остатки глюкозы соединены в линейных
участках α-1,4-гликозидными связями, а в местах
разветвления - связями α-1,6. Молекула гликогена более
разветвлена, чем молекула крахмала, точки ветвления
встречаются через каждые 8-10 остатков глюкозы.
Разветвленная структура гликогена обеспечивает
большое количество концевых мономеров, что
способствует работе ферментов, отщепляющих или
присоединяющих мономеры, так как эти ферменты
могут одновременно работать на многих ветвях
молекулы гликогена.

Гликоген депонируется главным образом в печени и скелетных мышцах и хранится в цитозоле клеток в форме гранул. Гранулы гликогена плохо рас

Гликоген депонируется главным
образом в
печени и скелетных мышцах и
хранится в цитозоле клеток в форме
гранул. Гранулы гликогена плохо
растворимы в воде и не влияют на
осмотическое давление в клетке. Это
обстоятельство объясняет, почему в
клетке депонируется гликоген, а не
свободная глюкоза. С гранулами
связаны и некоторые ферменты,
участвующие в обмене гликогена, что
облегчает взаимодействие ферментов с
субстратами.

Синтез гликогена

Гликоген синтезируется в период
пищеварения (абсорбтивный
период: 1-2 часа после приема
углеводной пищи) в основном в
печени и в мышцах. Этот процесс
требует затрат энергии, так
включение одного мономера в
полисахаридную цепь сопряжено с
расходованием АТФ и УТФ
(реакции 1 и 3).
Образованная УДФ-глюкоза
(реакция 3) является субстратом
для гликогенсинтазы, которая
переносит остаток глюкозы
(реакция 4) на праймер
(олигосахарид из 4-8 остатков
глюкозы) и соединяет его α-1,4глюкозной связью.

Синтез гликогена

Когда длина синтезируемой цепи
увеличивается на 11-12 остатков
глюкозы, фермент ветвления глюкозил- 1,4-1,6-трансфераза
(реакция 5) образует боковую цепь
путем переноса фрагмента из 5-6
остатков глюкозы на внутренний
остаток глюкозы, соединяя его α-1,6гликозидной связью. Затем
удлинение цепей и ветвление их
повторяется много раз.
В итоге образуется сильно
разветвленная молекула,
содержащая до 1млн глюкозных
остатков.


Мобилизация (распад) гликогена происходит в
интервалах между приемами пищи (постабсорбтивный
период) и ускоряется во время физической работы. Этот
процесс осуществляется путем последовательного
отщепления остатков глюкозы, в виде глюкозо-1фосфата (реакция 1) с помощью гликогенфосфорилазы,
расщепляющей α-1,4-гликозидные связи. Этот фермент
не расщепляет α-1,6-гликозидные связи в местах
разветвлений, поэтому необходимы еще два фермента,
после действия которых остаток глюкозы в точке
ветвления освобождается в форме свободной глюкозы
(реакции 2 и 3). Гликоген распадается до глюкозо-6фосфата и свободной глюкозы без затрат АТФ.

Мобилизация (распад) гликогена

Мобилизация гликогена в печени отличается от таковой в
мышцах одной реакцией (реакция 5), обусловленной
наличием в печени фермента глюкозо-6-фосфатазы.
Присутствие в печени глюкозо-6-фосфатазы обеспечивает
главную функцию гликогена печени - высвобождение
глюкозы в кровь в интервалах между едой для
использования ее другими органами.
Таким образом, мобилизация гликогена печени
обеспечивает поддержание глюкозы в крови на постоянном
уровне 3,3-5,5 ммоль в постабсорбтивном периоде. Это
обстоятельство является обязательным условием для
работы других органов и особенно мозга. Через 10-18 часов
после приема пищи запасы гликогена в печени
значительно истощаются, а голодание в течение 24 часов
приводит к полному его исчерпанию.

10. Мобилизация (распад) гликогена

11.

Переключение процессов синтеза и
мобилизации гликогена в печени и
мышцах происходит при переходе из
абсорбтивного состояния в
постабсорбтивное и из состояния покоя
в режим физической работы. В
переключении этих метаболических
путей в печени участвуют инсулин,
глюкагон и адреналин, а в мышцах инсулин и адреналин.

12.

Влияние этих гормонов на синтез и распад гликогена
осуществляется путем изменения в противоположном
направлении активности двух ключевых ферментов:
гликогенсинтазы и гликогенфосфорилазы с помощью их

13.

Первичным сигналом для синтеза инсулина
и глюкагона является изменение
концентрации глюкозы в крови. Инсулин и
глюкагон постоянно присутствуют в крови,
но при переходе из абсорбтивного периода в
постабсорбтивный изменяется их
относительная концентрация. Отношение
концентраций инсулина и глюкагона в крови
называют инсулин-глюкагоновым индексом,
в зависимости от которого изменяется
направление метаболизма гликогена в
печени.

14.

Регуляция метаболизма гликогена
в печени
В период пищеварения концентрация
глюкозы в крови повышается до 10-12
ммоль/л, и это является сигналом для
синтеза и секреции инсулина.
Концентрация инсулина
увеличивается, и его влияние
является преобладающим. Инсулинглюкагоновый индекс в этом случае
повышается.

15. Регуляция метаболизма гликогена в печени

Под влиянием инсулина происходит:
ускорение транспорта глюкозы в клетки
инсулинзависимых мышечной и жировой
тканей;
изменение активности ферментов путем
фосфорилирования и дефосфорилирования.
Так, например, инсулин активирует
фосфодиэстеразу и снижает концентрацию
цАМФ в клетке. Кроме этого, инсулин
активирует фосфопротеинфосфатазу гранул
гликогена, которая дефосфорилирует
гликогенсинтазу и переводит ее в активное
состояние. Дефосфорилирование
гликогенфосфорилазы под влиянием
фосфопротеинфосфатазы, напротив, приводит
к ее инактивации;
изменение количества некоторых ферментов
путем индукции и репрессии их синтеза. В
печени инсулин индуцирует синтез
глюкокиназы, ускоряя тем самым
фосфорилирование глюкозы.
Все эти свойства инсулина приводят к
повышению скорости синтеза гликогена.

16. Под влиянием инсулина происходит:

Регуляция синтеза и распада гликогена в печени
глюкагоном и адреналином
В постабсорбтивном периоде
инсулин-глюкагоновый индекс
снижается и решающим является
влияние глюкагона, который
синтезируется в ответ на снижение
концентрации глюкозы в крови и
стимулирует распад гликогена в
печени. Механизм действия
глюкагона заключается в том, что
он «запускает»
аденилатциклазный каскад
реакций, приводящий к активации
гликогенфосфорилазы и
ингибированию гликогенсинтазы.
1 - глюкагон и адреналин взаимодействуют со специфическими мембранным! рецепторами. Комплекс
гормон-рецептор передает сигнал через аденилатциклазную систему на протеинкиназу А, переводя ее в
активное состояние;
2 - протеинкиназа А фосфорилирует и активирует киназу фосфорилазы;
3 - киназа фосфорилазы фосфорилирует гликогенфосфорилазу, переводя ее ι активную форму;
4. - протеинкиназа А фосфорилирует также гликогенсинтазу, переводя ее в неак тивное состояние;
5 - в результате ингибирования гликогенсинтазы и активации гликогенфосфорилазы ускоряется распад
гликогена

17. Регуляция синтеза и распада гликогена в печени глюкагоном и адреналином

Инозитолфосфатный механизм регуляции синтеза и
распада гликогена в печени адреналином и Са2+
Адреналин имеет сходный с глюкагоном
механизм действия на клетки печени.
Но возможно включение и другой
эффекторной системы передачи сигнала
в клетку печени. Какая система
передачи сигнала в клетку будет
использована, зависит от типа
рецепторов, с которыми
взаимодействует адреналин. Так,
присоединение адреналина к β2рецепторам клеток печени приводит в
действие аденилатциклазную систему.
Взаимодействие же адреналина с αjрецепторами «включает»
инозитолфосфатный механизм
трансмембранной передачи
гормонального сигнала. Результатом
действия обеих систем является
фосфорилирование ключевых
ферментов, изменение их активности и
переключение синтеза гликогена на его
распад.
1 - взаимодействие адреналина с α1-рецептором передает сигнал через инозитолфосфатную систему. Это
сопровождается активацией фосфолипазы С, мобилизацией Сa2+ из ЭР и активацией протеинкиназы С (ПКС).
2 - протеинкиназа С фосфорилирует гликогенсинтазу и переводит ее в неактивное состояние.
3 - комплекс 4Са2+-кальмодулин активирует киназу фосфорилазы и кальмодулинзависимые протеинкиназы.
4 - киназа фосфорилазы фосфорилирует гликогенфосфорилазу и тем самым ее активирует.
5 - гликогенфосфорилаза катализирует первую реакцию распада гликогена

18. Инозитолфосфатный механизм регуляции синтеза и распада гликогена в печени адреналином и Са2+

Регуляция метаболизма гликогена в мышцах
Активация адреналином мышечной
гликогенфосфорилазы происходит
несколько иначе, так как распад
гликогена в скелетных мышцах
стимулируется мышечными
сокращениями
1 - аллостерическая активация
гликогенфосфорилазы. В процессе
мышечного сокращения происходит
превращение АТФ в АМФ, который
является аллостерическим активатором
дефосфорилированной и малоактивной
формы гликогенфосфорилазы;
2 - нервный импульс инициирует
высвобождение из
саркоплазматического ретикулума ионы
Са2+, образующие комплекс с
кальмодулином, способный
активировать киназу фосфорилазы,
которая в свою очередь фосфорилирует
и активирует гликогенфосфорилазу;
3 - активация гликогенфосфорилазы
адреналином посредством
аденилатциклазной системы.

19. Регуляция метаболизма гликогена в мышцах

Значение регуляции обмена
гликогена.
При передаче гормонального сигнала через
внутриклеточные посредники происходит значительное его
усиление, поэтому активация фосфорилазы гликогена при
участии любой системы передачи сигнала в клетку печени
позволяет быстро получить большое количество глюкозы из
гликогена. Усиление гормонального сигнала в мышцах
имеет большое значение для обеспечения энергетическим
материалом интенсивной работы в условиях стресса,
например при бегстве от опасности.
При смене постабсорбтивного состояния на абсорбтивное или
по окончании мышечной работы вся система возвращается в
исходное состояние. Аденилатциклаза и фосфолипаза С
инактивируются, цАМФ разрушается фосфодиэстеразой, а
фосфопротеинфосфатаза вызывает переход всех
внутриклеточных ферментов «каскада» в
дефосфорилированную форму.

20.

Итак, регуляция скоростей
синтеза и распада гликогена в
печени поддерживает постоянство
концентрации глюкозы в крови
(3,3-5,5 ммоль/л).
Регуляция обмена гликогена в
мышцах обеспечивает
энергетическим материалом как
интенсивную работу мышц, так и
энергозатраты в состоянии покоя.

21. Значение регуляции обмена гликогена.

СИНТЕЗ
ГЛЮКОЗЫ ГЛЮКОНЕОГЕНЕЗ

22.

Глюконеогенез - это процесс синтеза
глюкозы из веществ неуглеводной
природы.
Субстратами глюконеогенеза являются:
1. пируват,
2. лактат,
3. глицерол,
4. аминокислоты.

23. СИНТЕЗ ГЛЮКОЗЫ - ГЛЮКОНЕОГЕНЕЗ

Важнейшей функцией
глюконеогенеза является
поддержание уровня глюкозы в
крови в период длительного
голодания и интенсивных
физических нагрузок.
Постоянное поступление
глюкозы в качестве источника
энергии особенно необходимо
для нервной ткани и
эритроцитов.

24.

Процесс протекает главным образом в печени и
менее интенсивно - в корковом веществе почек, а также в
слизистой оболочке кишечника.
Включение различных субстратов в глюконеогенез зависит
от физиологического состояния организма:
- лактат является продуктом анаэробного гликолиза в
эритроцитах, работающих мышцах и других тканях с
низким содержанием О2;
-
глицерол высвобождается при гидролизе жиров в жировой
ткани в постабсорбтивный период или при физической
нагрузке;
- аминокислоты образуются в результате распада белков
мышц и соединительной ткани и включаются в
глюконеогенез при длительном голодании или
продолжительной мышечной нагрузке.
Большинство реакций гликолиза и глюконеогенеза
являются обратимыми и катализируются одними и теми
же ферментами, что и гликолиз. Четыре реакции
глюконеогенеза необратимы.

25. Важнейшей функцией глюконеогенеза является поддержание уровня глюкозы в крови в период длительного голодания и интенсивных физических н

Схема гликолиза и глюконеогенеза

26.

Суммарное уравнение
глюконеогенеза
2 Пируват + 4 АТФ + 2 ГТФ +
+
2 (НАДН+Н) + 4 Н2О
1 Глюкоза + 4 АДФ + 2 ГДФ +
+
6 Н3РО4 + 2 НАДН

27. Схема гликолиза и глюконеогенеза

Глюкозолактатный цикл
или цикл Кори
Использование лактата в качестве субстрата в
глюконеогенезе связано с транспортом его в
печень и превращением в пируват

28. Суммарное уравнение глюконеогенеза

Особенности
обмена глюкозы в
различных тканях
и органах

29. Глюкозолактатный цикл или цикл Кори

Обмен углеводов в
печени
Одной из важнейших функций печени в
процессах обмена веществ является ее участие в
поддержании постоянного уровня глюкозы в
крови (глюкостатическая функция): глюкоза,
поступающая в избытке, превращается в
резервную форму, которая используется в
период, когда пища поступает в ограниченном
количестве.
Энергетические потребности самой печени, как и
других тканей организма, удовлетворяется за
счет внутриклеточного катаболизма
поступающей глюкозы.

30. Особенности обмена глюкозы в различных тканях и органах

Обмен углеводов в
печени
В печени катаболизм глюкозы представлен 2
процессами: 1) гликолитический путь
превращения 1 моль глюкозы в 2 моль лактата с
образованием 2 моль АТФ и
2) пентозофосфатный путь превращения 1 моль
глюкозы в 6 моль СО2 с образованием 12 моль
НАДФН. Оба процесса протекают в анаэробных
условиях, обе ферментативные системы
содержатся в растворимой части цитоплазмы,
оба пути требуют предварительного
фосфорилирования глюкозы.

31. Обмен углеводов в печени

Гликолиз обеспечивает энергией
клеточные реакции
фосфорилирования, синтез белка;
пентозофосфатный путь служит
источником энергии восстановления
для синтеза жирных кислот,
стероидов.

32. Обмен углеводов в печени

При аэробных условиях происходит сочетание гликолиза,
протекающего в цитоплазме и цикла лимонной кислоты с
окислительным фосфорилированием в митохондриях
достигается максимальноый выход энергии в 38 АТФ на 1
моль глюкозы. Фосфотриозы, образующиеся в процессе
гликолиза, могут быть использованы для синтеза глицерофосфата, необходимого для синтеза жиров. Пируват,
который образуется при гликолизе, может быть использован
для синтеза аланина, аспартата и других соединений, через
стадию образования оксалоацетата. В печени реакции
гликолиза могут протекать в обратном направлении и тогда
происходит синтез глюкозы путем глюконеогенеза. В
пентозофосфотном пути образуются пентозы, необходимые для
синтеза нуклеиновых кислот. В отличие от гликолиза
фосфоглюконатный путь необратим и здесь окисляется 1/3
глюкозы, 2/3 глюкозы окисляются по гликолитическому пути.

33. Обмен углеводов в печени

В печени протекают гликогенез и
гликогенолиз. Эти процессы
взаимосвязаны и регулируются как
внутри – так и внеклеточными
соотношениями между
поступлением и потреблением
глюкозы.

34. Обмен углеводов в печени

Обмен углеводов в мышцах
Цель мышечной клетки – наиболее
эффективно использовать
поступающую глюкозу для образования
АТФ, необходимого для осуществления
механической работы – сокращения. В
состоянии покоя значительные
количества глюкозы резервируются в
форме гликогена. Цитоплазма
мышечных клеток содержит в высоких
концентрациях ферменты гликолиза, а
изобилие митохондрий обеспечивает
эффективный распад продуктов
гликолиза через путь лимонной
кислоты и цепь переноса электронов.
Лишь в условиях крайнего утомления
эти аэробные процессы не справляются
с накоплением лактата.

35. Обмен углеводов в печени

Обмен углеводов в мышцах
В мышцах идет гликогенез, мышца осуществляет лишь немногие
синтетические функции. Ключевые ферменты глюконеогенеза в
мышцах отсутствуют, и глюконеогенез не идет. Для
восстановительных синтезов в мышце НАДФН не требуется, и
пентозофосфатный путь почти не функционирует.
Обмен углеводов в мышцах обеспечивает создание тканевых
запасов гликогена в состоянии покоя и использование этих
запасов, а также поступающей глюкозы при напряженной работе;
основные энергетические потребности всех типов мышц
удовлетворяются главным образом за счет окисления продуктов
обмена жиров. Ни медленно сокращающаяся гладкая мышечная
ткань, ни сердечная мышца не потребляют глюкозу в
значительной мере. Во время напряженной работы сердце
обеспечивает себя лактатом для окисления.

36. Обмен углеводов в мышцах

Фосфорилирование глюкозы в мышцах
происходит под дейстием гексокиназы, в
печени этот процесс катализируется
глюкокиназой. Эти ферменты отличаются по
Кm.
Кm≤ 0,1 ммоль/л гексокиназы значительно
ниже Кm = 10 ммоль/л глюкокиназы.
Фермент мышц – гексокиназа участвует во
внутриклеточной регуляции, т.е. этот
фермент будет фосфорилировать глюкозу
только до тех пор, пока глюкозо-6-ф
используется в мышцах для гликолиза или
образования гликогена.
Другое важнейшее различие между тканью
печени и мышцы состоит в отсутствии в
мышцах фермента глюкозо-6-фасфатазы.

37. Обмен углеводов в мышцах

Обмен углеводов в мозге
По сравнению со всеми органами тела функций мозга в
наибольшей степени зависит от обмена углеводов. Если в крови,
поступающей к мозгу, концентрация глюкозы становится вдвое
ниже нормальной, то в течение нескольких секунд наступает
потеря сознания, а через несколько минут – смерть. Для того
чтобы обеспечить освобождение достаточного количества энергии,
катаболизм глюкозы должен осуществляться в соответствии с
аэробными механизмами; об этом свидетельствует даже более
низкая чувствительность мозга к гипоксии, чем гипогликемии.
Метаболизм глюкозы в мозге обеспечивает синтез
нейромедиаторов, аминокислот, липидов, компонентов
нуклеиновых кислот. Пентозофосфатный путь функционирует в
небольшой мере, обеспечивая НАДФН для некоторых из этих
синтезов. Основной катаболизм глюкозы в ткани мозга протекает
по гликолитическому пути.
Гексокиназа мозга имеет высокое сродство к глюкозе, что
обеспечивает эффективное использование глюкозы мозгом.
Активность ферментов гликолиза велика.

38. Обмен углеводов в мышцах

Обмен углеводов в мозге
Высокая активность митохондриальных ферментов цикла
лимонной кислоты предотвращает накопление лактата в тканях
мозга; большая часть пирувата окисляется до Ацетил-КоА.
Небольшая часть Ацетил-КоА используется для образования
нейромедиатора ацетилхолина. Основное количество АцетилКоА подвергается окислению в цикле лимонной кислоты и дает
энергию. Метаболизм цикла Кребса используется для синтеза
аспартата и глутамата. Эти аминокислоты обеспечивают
обезвреживание аммиака в тканях мозга.
Мозг содержит мало гликогена (0,1% от общего веса); этот запас
расходуется очень быстро.
В условиях длительного голодания мозг использует как
источник энергии кетоновые тела. В крайних случаях такие
аминокислоты как глутамат и аспартат превращаются в
соответствующие кетокислоты, которые способны к окислению с
образованием энергии.

39. Обмен углеводов в мозге

Обмен углеводов в
эритроцитах
Эритроциты не содержат ядра, митохондрий. В эритроците не идут реакции
цикла лимонной кислоты, в них нет ферментов дыхательной цепи.
Парадоксальным является тот факт, что эритроцит, перенося кислород для
тканей, сам его не использует и получает энергию за счет аэробных
процессов.
Основным процессом в эритроцитах, который дает энергию, является
анаэробный гликолиз. При расщеплении фру-6-фф образуется НАДН,
необходимый для восстановления избытка метгемоглобина (окисленной
формы гемоглобина, не связывающей О2).
Побочным продуктом гликолиза в эритроцитах является 2,3дифосфоглицерат. 2,3-дифосфоглицерат связывается с гемоглобином,
уменьшает его сродство к О2 и, облегчает освобождение кислорода в тканях.
Пентозофосфатный путь в норме составляет лишь небольшую долю в
катаболизме глюкозы. В условиях повышенной потребности в НАДФН этот
процесс активизируется. НАДФН необходим для того, чтобы поддерживать
внутриклеточный восстановитель, глутатион, в его восстановленной SHформе. Воздействие агентов, ускоряющих окисление глутатиона в S-S-форму,
активирует реакции пентозофосфатного пути, которые обеспечивают
образование восстановленных эквивалентов в форме НАДФН+Н+.

40. Обмен углеводов в мозге

Особенности обмена глюкозы
в клетках опухoли
В клетках опухоли отмечается повышенная активность гексокиназы,
что приводит к быстрому поглощению и окислению глюкозы.
Опухолевая клетка является насосом, который выкачивает глюкозу из
кровотока. В условиях быстро растущей опухоли система кровеносных
сосудов отстает от роста опухоли и в таких клетках протекает
анаэробный гликолиз, который и дает энергию для роста клеток.
Выход энергии при анаэробном гликолизе составляет 2 моль АТФ и
поэтому процесс должен идти с большой скоростью, чтобы обеспечить
клетки опухоли энергией. Вследствие быстрого окисления глюкозы
возникает гипогликемия. Возникновение гипогликемии вызывает
ускорение глюконеогенеза и глюкоза начинает синтезироваться из
аминокислот. Следствием синтеза глюкозы из аминокислот является
падение веса у больных и развивается раковая кахексия.
Мембранная гексокиназа – работает как насос.
Гипогликемия.
Анаэробный гликолиз.
«Принудительный» глюконеогенез.
Раковая кахексия.

Церебральный энергетический обмен в среднем возрасте и при старении Литература 1. В клетке питательные вещества окисляются под действием кислорода и при участии ферментов. При соблюдении характерных для организма физических и химических условий энергия фосфатных макроэргических связей молекулы АТФ составляет 7300 калорий на 1 моль. При высвобождении энергии АТФ превращается в аденозиндифосфат.


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


Контрольная работа

МЕТАБОЛИЗМ МОЗГА

1. Роль клеточных органелл в энергетических процессах, нервной клетки.

3. Метаболизм липидов

10. Церебральный энергетический обмен в среднем возрасте и при старении

Литература

1. Роль клеточных органелл в энергетических процессах, нервной клетки .

Основным источником энергии для клетки являются питательные вещества: углеводы, жиры и белки. Прежде чем достичь клеток организма, углеводы превращаются в глюкозу, белки расщепляются до аминокислот, липиды – до жирных кислот благодаря деятельности желудочно-кишечного тракта и печени. В клетке питательные вещества окисляются под действием кислорода и при участии ферментов. Почти все окислительные реакции происходят в митохондриях, а высвобождаемая энергия запасается в виде макроэргического соединения АТФ. В дальнейшем для обеспечения внутриклеточных метаболических процессов энергией используется именно АТФ, а не питательные вещества.

Синтез АТФ на 95 % осуществляется в митохондриях. Пировиноградная кислота, жирные кислоты и аминокислоты в матриксе митохондрий в итоге превращаются в ацетил-КоА, который, в свою очередь, вступает в серию ферментативных реакций под общим названием «цикл трикарбоновых кислот», чтобы отдать свою энергию.

Кроме того, в митохондриях происходит окисление водорода. В процессе этих реакций каждый атом водорода преобразуется в ион водорода и электрон; электроны в итоге связываются с растворенным атомарным кислородом, образуя молекулы воды и гидроксильные ионы. В последующем ионы водорода и образующиеся гидроксильные ионы объединяются с образованием воды. В ходе этих реакций выделяется огромное количество энергии в форме АТФ. Этот механизм образования АТФ называют окислительным фосфорелированием. Процесс осуществляется в митохондриях посредством высокоспециализированного механизма, названного хемоосмотическим.

Молекула АТФ содержит азотистое основание аденин, пентозный углевод рибозу и три остатка фосфорной кислоты. При соблюдении характерных для организма физических и химических условий энергия фосфатных макроэргических связей молекулы АТФ составляет 7300 калорий на 1 моль. Эти связи легко разрушаются, обеспечивая внутриклеточные процессы энергией сразу, как только возникает потребность. При высвобождении энергии АТФ превращается в аденозиндифосфат. Затем происходит восполнение запасов АТФ путем воссоединения АДФ с остатком фосфорной кислоты за счет энергии питательных веществ. Время оборота АТФ составляет несколько минут (Гайтон А. и Д. Холл, 2008)

Энергия АТФ используется нервной клеткой для выполнения трех важнейших функций:

  1. транспорта веществ через многочисленные мембраны клеток (ионы калия, кальция, магния, фосфора, хлора, органические вещества);
  2. синтеза веществ в разных участках клетки, особенно в фазу роста;
  3. проведения нервного импульса.

2 Обмен углеводов и особенности энергетического обеспечения мозга.

В нервной ткани, составляющей всего 2% массы тела человека, потребляется 20% кислорода, поступающего в организм. За сутки в мозге окисляется 100-120 г глюкозы.

В состоянии спокойного бодрствования на долю мозга приходится примерно 15 % общего метаболизма, следовательно, в покое метаболизм мозга на единицу массы ткани примерно в 7,5 раз превышает усредненный метаболизм тканей, не относящихся к нервной системе. Большая часть повышенного метаболизма мозга связана именно с нейронами, а не с глиальной тканью. Главным потребителем энергии в нейронах являются ионные насосы их мембран, транспортирующие главным образом ионы натрия и кальция наружу, а калия – внутрь клетки. Во время проведения потенциала действия увеличивается потребность в дополнительном мембранном транспорте для восстановления соответствующей разности концентраций ионов по обе стороны мембран нейронов. Функция нервной клетки заключается в проведении нервного импульса, который зависит от градиента концентрации ионов K + и Nа + внутри и вне клетки. АТФ необходима для поддержания активной работы Nа + /K + — АТФ-азы — фермента, поддерживающего потенциал покоя и восстанавливающего его после прохождения нервного импульса. Поэтому, во время интенсивной мозговой активности метаболизм нервной ткани может возрастать на 100-150 % .

Основной путь получения энергии - аэробный распад глюкозы по ГБФ-пути. Глюкоза является почти единственным энергетическим субстратом, поступающим в нервную ткань, который может быть использован ее клетками для образования АТФ. Полное окисление 1 грамм-молекулы глюкозы сопровождается выделением 686000 калорий энергии, при этом только 12000 калорий необходимо для образования 1 грамм-молекулы АТФ. За счет последовательного поэтапного расщепления молекулы глюкозы при окислении каждого моля образуется 38 моль АТФ.

Проникновение глюкозы в ткань мозга не зависит от действия инсулина, который не проникает через гематоэнцефалический барьер. Влияние инсулина проявляется лишь в периферических нервах. следовательно, у больных тяжелым диабетом при практически нулевом уровне секреции инсулина глюкоза легко диффундирует в нейроны, что чрезвычайно важно для предупреждения потери умственных функций у данной категории больных.

В нормальных условиях почти вся энергия, используемая клетками мозга обеспечивается глюкозой, доставляемой кровью. Глюкоза должна постоянно доставляться из капиллярной крови: в любой момент необходим двухминутный запас глюкозы в нейронах в виде гликогена. Окисление неуглеводных субстратов с целью получения энергии невозможно, поэтому при гипогликемии и/или даже кратковременной гипоксии в нервной ткани образуется мало АТФ. Следствием этого являются быстрое наступление коматозного состояния и необратимых изменений в ткани мозга.

Процессы метаболизма глюкозы осуществляются в теле нейрона, и его отростках, шванновских клетках (миелиновой оболочке), следовательно, все отделы нервной ткани способны синтезировать АТФ.

Высокая скорость потребления глюкозы нервными клетками обеспечивается, в первую очередь, работой высокоактивной гексокиназы мозга. В отличие от других тканей, здесь гексокиназа не является ключевым ферментом всех путей метаболизма глюкозы. Гексокиназа мозга обладает в 20 раз большей активностью, чем соответствующий изофермент печени и мышц. Под воздействием гексокиназы и при участии АТФ глюкоза превращается в глюкозо-6-фосфат. Фосфорелирование глюкозы является необратимым процессом и служит способом захвата глюкозы клетками. Глюкоза немедленно связывается с фосфатом и в такой форме уже не может покинуть клетку. Активность изоцитратдегидрогеназы даже при нормальном уровне утилизации глюкозы в состоянии покоя максимальна. Поэтому при повышенном энергопотреблении нет возможностей ускорения реакций ЦТК.

Образование НАДФН 2 , который используется в нервной ткани в основном для синтеза жирных кислот и стероидов, обеспечивается сравнительно высокой скоростью протекания ГМФ-пути распада глюкозы.

Энергия АТФ в нервной ткани используется неравномерно. Аналогично скелетным мышцам, функционирование нервной ткани сопровождается резкими перепадами в потреблении энергии. Скачкообразное повышение энергозатрат происходит при очень быстром переходе от сна к бодрствованию. Для этого существует еще один механизм: образование креатинфосфата. Несмотря на исключительную важность АТФ в качестве способа трансформации энергии, это вещество не является самым представительным хранилищем макроэргических фосфатных связей в клетках

Количество креатинфосфата, содержащего макроэргические фосфатные связи, в клетках в 3-8 раз больше. Кроме того, в условиях организма макроэргические фосфатные связи креатинфосфата содержат более 13000 к/моль. В отличие от АТФ креатинфосфат не может действовать как агент, напрямую сопряженный с переносом энергии питательных веществ функциональным системам клетки, но он может обмениваться энергией с АТФ. Когда в клетках присутствует чрезвычайно большое количество АТФ, энергия АТФ используется для синтеза креатинфосфата, который становится дополнительным депо энергии. Затем, по мере использования АТФ, энергия, содержащаяся в фосфокреатине, быстро возвращается АТФ, которую последняя может передавать функциональным системам клеток.

Эта реакция полностью обратима, ее направление зависит от соотношения АТФ/АДФ в клетках нервной ткани.

В условиях покоя концентрация АДФ в клетках низка, поэтому химические реакции, которые зависят от АДФ как одного из субстратов, осуществляются медленно. Таким образом, АДФ является главным лимитирующим скорость фактором практически всех путей обмена энергии. Когда клетки активируются, АТФ превращается в АДФ, увеличивая его концентрацию пропорционально степени активности клетки. Повышение концентрации АДФ автоматически увеличивает скорость всех метаболических реакций, направленных на высвобождение энергии из питательных веществ. Снижение активности клетки приостанавливает высвобождение энергии вследствие очень быстрого превращения АДФ в АТФ.

Известно, что на работу мозга расходуется около 20% энергии, производимой человеческим организмом. Но на что расходует эту энергию сам мозг?

До недавних пор считалось, что практически вся потребляемая мозгом энергия используется для передачи нервных импульсов, другими словами - на мыслительную деятельность. Сегодня полагают, что только две трети потребляемой мозгом энергии расходуется на распространение импульсов, а оставшаяся часть идёт на поддержание жизнедеятельности клеток самого мозга (С.Е.Северин, 2009).

Эксперименты, проведённые на лабораторных крысах с использованием магнитно-резонансной томографии, помогли установить взаимосвязь между интенсивностью обмена веществ – "скоростью" синтеза молекулы АТФ – и энергопотреблением при различных уровнях мозговой активности.

Это в свою очередь позволило оценить, какая часть общего расхода энергии не зависит от мозговой активности и расходуется на "собственные нужды", в данном случае на поддержание так называемого изоэлектрического состояния: равенства положительных и отрицательных зарядов в клетках мозговой ткани.

Известно, что физические упражнения приводят к значительному расходованию глюкозы мышцами. По этой причине в момент физических нагрузок уровень глюкозы в крови человека снижается. При этом мозг переходит на использование молочной кислоты.

Одним из важнейших факторов, определяющих специфику реакции разных нейронов на недостаток кислорода, является их различие в энергетических потребностях. Последнее, по-видимому, определяется степенью разветвленности дендритов и общей площадью клеточной мембраны, поляризация которой требует постоянного расхода энергии. Системы и центры, включающие в себя преимущественно нейроны, богатые деидритами (новая кора с ее богатейшей сетью вставочных нейронов, клетки Пуркинье мозжечка), согласно этой гипотезе, оказываются особенно ранимыми при гипоксии. Вероятно, существенную роль играют и особенности биохимии нейронов разных областей мозга (теория патоклиза - тенденция определенного анатомического образования центральной нервной системы реагировать определенным патологическим процессом на данный повреждающий фактор, например образование очагов некроза и кист в бледном шаре при отравлении окисью углерода (Рубенштейн, 1998). Именно различием биохимической структуры нейронов пытаются объяснить неодинаковую ранимость различных секторов гиппокампа.

При умирании от кровопотери на фоне длительной артериальной гипотензии важнейшее значение приобретают особенности кровоснабжения различных образований мозга, так как в этих случаях в более выгодном положении оказываются области мозга, расположенные ближе к магистральным сосудам (подкорковые области, системы основания мозга, особенно ствол), функции которых угасают позднее функций новой коры больших полушарий. Распределение областей повреждения в мозге, пережившем прекращение кровообращения, определяется как спецификой обмена веществ различных видов нейронов, так и особенностями кровоснабжения разных отделов и участков мозга.

К этим двум факторам избирательной ранимости различных отделов мозга следует добавить фактор относительной сложности функции (и соответственно ее филогенетического «возраста»), так как более молодые в филогенетическом отношении функции, являющиеся и более сложными (например, мышление), обслуживаются большим числом нейронных систем, расположенных на многих, в том числе и на более высоких анатомических уровнях и, естественно, оказываются более уязвимыми при кислородном голодании. Немаловажное значение имеет и степень функциональной активности систем мозга (а следовательно, их энергетические потребности и состояние кровоснабжения) в момент возникновения гипоксии.

3. Метаболизм липидов

Большая часть липидов нервной ткани находится в составе плазматических и субклеточных мембран нейронов и в миелиновых оболочках. В нервной ткани по сравнению с другими тканями организма содержание липидов очень высокое. Особенностью липидного состава нервной ткани можно считать присутствие фосфолипидов (ФЛ), гликолипидов (ГЛ) и холестерина (ХС) и отсутствие нейтральных жиров. В нервной системе содержится большое количество сфингомиелинов, являющихся по своим электрическим свойствам изоляторами. Эфиры холестерина можно встретить только в участках активной миелинизации. Холестерин интенсивно синтезируется только в развивающемся мозге, так как у взрослого человека низка активность ОМГ-КоА-редуктазы - ключевого фермента синтеза холестерина. Содержание свободных жирных кислот в мозге весьма низкое.

Важная роль холестерола и фосфолипидов в образовании структурных компонентов клеток обусловлена низкой скоростью замещения этих веществ и их функциональное участие в обеспечении процессов памяти в клетках мозга сопряжено именно с этим.

Некоторые нейромедиаторы после взаимодействия со специфическими рецепторами изменяют свою конформацию и изменяют конформацию фермента фосфолипазы С, которая катализирует расщепление связи в фосфатидилинозите между глицерином и остатком фосфата, в результате чего образуется фосфоинозитол и диацилглицерин. Эти вещества являются регуляторами внутриклеточного метаболизма. Диацилглицерин активирует протеинкиназу С, а фосфоинозитол вызывает повышение концентрации Са 2+ . Ионы кальция влияют на активность внутриклеточных ферментов и участвуют в работе сократительных элементов нервных клеток: микрофиламентов, что обеспечивает передвижение различных веществ в теле нервной клетки, аксоне и его растущем кончике. Протеинкиназа С участвует в реакциях фосфорилирования белков внутри нервных клеток. Если это белки-ферменты, то меняется их активность, если это рибосомальные или ядерные белки, то изменяется скорость биосинтеза белков.

Липиды в нервной ткани постоянно обновляются. Скорость их обновления различна, но в целом низка. Некоторые липиды (например: холестерин, цереброзиды, фосфатидилэтаноламины, сфингомиелины) обмениваются медленно - в течение нескольких месяцев и даже лет. Исключение составляют фосфатидилхолин и, особенно, фосфатидилинозиты (содержат глицерин, фосфат, спирт (инозит, жирные кислоты) - они обмениваются очень быстро (в течение суток или недель).

В развивающемся мозге в период миелинизации синтез цереброзидов и ганглиозидов протекает с большой скоростью. У взрослых почти все цереброзиды (до 90%) находятся в миелиновых оболочках, а ганглиозиды - в нейронах. При этом клетки мозга не могут использовать жирные кислоты в целях получения энергии.

4. Метаболизм белков и аминокислот

Свободные аминокислоты нервной ткани или так называемый аминокислотный пул на протяжении многих лет были объектом тщательного изучения. Это объясняется не только исключительной ролью аминокислот как источника синтеза большого числа биологически важных соединений, таких, как белки, пептиды, некоторые липиды, ряд гормонов, витаминов, биологически активных аминов и др. Аминокислоты или их дериваты участвуют и в синаптической передаче, в осуществлении межнейрональных сетей в качестве нейротрансмиттеров и нейромодуляторов. Существенной является также их энергетическая значимость, ибо аминокислоты глутаминовой группы непосредственно связаны с циклом трикарбоновых кислот. Ткань мозга интенсивно обменивается аминокислотами с кровью. Для этого существует две специальные транспортные системы для незаряженных и еще несколько - для аминокислот, имеющих положительный или отрицательный заряд.

До 75% общего количества аминокислот нервной ткани составляют аспартат, глутамат, а также продукты их превращений или вещества, синтезированные с их участием (глутамин, ацетильные производные, глутатион, ГАМК и другие). Их концентрация, и в первую очередь, глутамата, в нервной ткани очень высока. Например, концентрация глутаминовой кислоты может достигать 10 ммоль/л (А.Я.Николаев,2004).

Глутаминовая кислота по праву занимает центральное место в обмене аминокислот мозга. Она используется для образования глутатиона, глутамина и гамма-аминомасляной кислоты. Образуется глутамат из своего кетоаналога - -кетоглутаровой кислоты в ходе реакции трансаминирования. Реакция превращения альфа-КГ в глутамат протекает в ткани мозга с большой скоростью. Образующийся при этом глутамат является для ЦТК побочным продуктом. Большое расходование альфа-КГ восполняется за счет превращения аспарагиновой кислоты в метаболит ЦТК - ЩУК.

Образующаяся из глутамата ГАМК в результате нескольких реакций может быть превращена снова в ЩУК. Так образуется ГАМК-шунт, имеющийся в тканях головного и спинного мозга. Поэтому в этих тканях содержание ГАМК, как промежуточного метаболита циклического процесса, значительно выше, чем в остальных. На образование ГАМК здесь используется до 20% от общего количества глутамата (рис.1). Остальные пути метаболизма аминокислот сходны с имеющимися в других тканях.До сих пор непонятным остается наличие в мозге почти полного набора ферментов орнитинового цикла, не содержащего карбамоилфосфатсинтазы, поэтому мочевина здесь не образуется.

Рис. 1. Схема шунтирования ГАМК (подробности в тексте).

Ткань мозга, как и другие ткани, способна синтезировать заменимые аминокислоты. Здесь постоянно образуется аммиак; его непосредственным источником служит дезаминирование АМФ. Образующийся аммиак связывается с глутаматом и в форме глутамина покидает мозг. Первичными источниками аминогруппы для регенерации АМФ из ИМФ служат разные аминокислоты, а промежуточными переносчиками - глутамат и аспартат. Таким образом, первичным источником аммиака в мозге являются аминокислоты.

Дезаминирование – это процесс отдачи аминогруппы кислотой, в основе которого лежит трансаминирование, т.е. перенос аминогруппы какому-либо акцептору. Аминогруппа аминокислоты переносится к -кетоглутаровой кислоте, которая после этого становится глутаминовой кислотой. Глутаминовая кислота может передавать аминогруппу каким-то веществам либо высвобождать ее в виде аммиака. В процессе утраты аминогруппы глутаминовая кислота вновь становится -кетоглутаровой кислотой, и цикл может повторяться снова. После дезаминирования аминокислот образующиеся кетокислоты в большинстве случаев могут окисляться с выделение энергии для метаболических нужд. При этом обычно осуществляется два последовательных процесса: 1) кетокислоты превращаются в химические вещества, которые могут включаться в цикл лимонной кислоты; 2) затем эти вещества, расщепляясь в цикле лимонной кислоты, служат источником энергии аналогично ацетил – КоА, образующегося при метаболизме углеводов. В целом при окислении 1 г белка образуется АТФ несколько меньше, чем при окислении 1 г глюкозы.

5. Особенности метаболизма нуклеиновых кислот .

В клетках нервной ткани не могут синтезироваться пиримидины (в нервной ткани отсутствует фермент карбамоилфосфатсинтаза). Пиримидины обязательно должны поступать из крови - ГЭБ для них проницаем. ГЭБ легко проницаем и для пуриновых мононуклеотидов, в отличие от пиримидиновых, которые могут синтезироваться в нервной ткани.

В нервной ткани, так же, как и в других, нуклеиновые кислоты обеспечивают хранение и передачу генетической информации и ее реализацию при синтезе клеточных белков. Например, сильные раздражители: громкие звуки, сильные зрительные стимулы и эмоции приводят к повышению скорости синтеза РНК и белка в определенных участках мозга. Это указывает на то, что изменения в нервной системе, отражающие индивидуальный опыт организма, кодируются в виде синтезированных макромолекул.

Информация, благодаря которой нейроны устанавливают селективные связи с определенными нейронами, кодируется в структуре полисахаридных веточек мембранных гликопротеинов. Образование таких связей, не заложенных в период эмбрионального развития, является результатом опыта индивидуума и составляет материальную основу для хранения информации, определяющей особенности поведения данного организма.

6. Роль воды в обеспечении функционирования головного мозга

С обезвоживанием организма сначала уменьшается объем клеточной жидкости, затем внеклеточной, а затем уже вода извлекается из кровяного русла. Этот механизм призван обеспечить водой головной мозг, в котором содержится около 75% воды. Потеря даже 10% воды приводит к тяжелым последствиям. Ведущая роль воды для головного мозга ребенка, находящегося в утробе матери подчеркивается разными исследователями. Ребенок там практически всегда находится вниз головой. В данном положении улучшается кровоснабжение мозга, от которого в этот период зависит вся последующая жизнь человека. Особенно чувствительны к недостатку воды клетки мозга, которые должны постоянно удалять токсические продукты, образующиеся в результате его деятельности. Чтобы мозг мог использовать энергию, получаемую из пищи, она должна пройти множество промежуточных реакций, для чего необходимо достаточное количество воды, которая сама по себе не является энергетическим продуктом.

Кроме того, мозг омывается жидкостью, вырабатываемой капиллярами мозга (спинномозговая жидкость содержит больше натрия и меньше калия, чем все остальные жидкости).

7. Химические особенности миелина

Нервные волокна окружены миелиновой оболочкой, которую в мозге образуют клетки глии (олигодендроглиальные клетки). В расчете на массу сухого вещества миелиновая оболочка содержит 70% липидов и 30% белков. Около 65% всех липидов мозга находится в миелиновых оболочках (табл. 2).

Белки миелина, как правило, гиброфобны, не растворяются в воде, но образуют нековалентные соединения с липидами мембраны. Около 1/3 от всех белков миелина приходится на водорастворимый щелочной белок, получивший название «энцефалитного» белка.

Таблица 1.

Липидный состав миелина нервной ткани человека

липиды

Холестерин

27,7

Цереброзиды

22,7

Фосфатидилэтаноламины

15,6

Фосфатидилхолины

11,2

Сфингомиелины

Фосфатидилсерины

Плазмалогены

12,3

8. Обеспечение энергией проведения возбуждения по нервам .

Энергия, используемая для проведения нервного импульса, является производной потенциальной энергии, запасенной в виде разницы концентраций ионов по обе стороны мембраны нервного волокна. Так, высокая концентрация ионов калия внутри волокна и низкая концентрация снаружи представляют собой разновидность способа аккумулирования энергии. Высокая концентрация ионов натрия на наружной поверхности мембраны и низкая концентрация внутри представляют другой пример запаса энергии. Энергия, необходимая для проведения каждого потенциала действия вдоль мембраны волокна, является производной запасенной энергии, когда небольшое количество калия выходит из клетки, а поток ионов натрия устремляется в клетку. Однако система активного транспорта, обеспечиваемая энергией АТФ, возвращает переместившиеся ионы в исходное положение относительно мембраны волокна.

Для первично-активного транспорта энергия извлекается непосредственно при расщеплении аденозинтрифосфата. Механизм активного транспорта лучше всего изучен для натрий-калиевого насоса (Na + / K + - насоса) – транспортного процесса, который «выкачивает» ионы натрия наружу и «закачивает» в клетку ионы калия. Этот механизм отвечает за поддержание различной концентрации ионов натрия и калия по обе стороны мембраны, а также за наличие отрицательного электрического потенциала внутри клеток. Белок-переносчик представлен комплексом из двух глобулярных белков: более крупного, называемого -субъединицей с молекулярной массой около 100000, и меньшего, называемого -субъединицей, с молекулярной массой около 55000. Крупный белок имеет три специфические характеристики:

1) на обращенноя внутрь клетки части белка имеются три рецепторных участка для связывания ионов натрия;

2) на наружной части белка располагаются два рецепторных участка для связывания ионов калия;

3) внутренняя часть белка, расположенная вблизи участков связывания ионов натрия, обладает АТФ-азной активностью.

Когда два иона калия связываются с белком-переносчиком снаружи и три иона натрия связываются с ним внутри, активируется АТФ-азная функция белка. Это ведет к расщеплению одной молекулы АТФ до АДФ с выделением энергии. Предполагается, что эта энергия вызывает химическое и конформационное изменение молекулы белка-переносчика, в результате происходит перемещение ионов.

Na + / K + -АТФ-аза может работать и в обратном направлении. Относительная концентрация АТФ, АДФ и фосфатов, электрохимические градиенты натрия и калия определяют направление реакции. В нервных клетках около 70% всей потребляемой энергии используется на перемещение натрия наружу и калия внутрь клетки. Na + / K + - насос называют электрогенным, поскольку он создает трансмембранную разность потенциалов, т.е. создает избыток положительных зарядов на поверхности клетки, а внутренняя часть клетки заряжается отрицательно. Наличие электрического потенциала является основой для передачи сигналов в нервных волокнах.

Другим важным механизмом первично активного транспорта является кальциевый насос. Один из них находится в клеточной мембране и «выкачивает» ионы кальция из клетки. Другой «перекачивает» ионы кальция в митохондрии. В каждом из этих случаев белок-переносчик пронизывает мембрану насквозь и функционирует как АТФ-аза.

В хориоидном сплетении мозга вещества должны транспортироваться не просто через клеточную мембрану, а через слой клеток. Основными механизмами транспорта через клеточный слой являются:

1) активный транспорт через клеточную мембрану на одной стороне транспортирующих клеток;

2) простая или облегченная диффузия через мембрану на противоположной стороне этих клеток.

Количество энергии, необходимое для активного переноса вещества через мембрану, определяется степенью концентрации вещества во время переноса. Необходимая энергия пропорциональна десятичному логарифму степени концентрирования вещества и выражается следующей формулой (1).

, (1)

где С 1 – концентрация вещества вне клетки, С 2 - концентрация вещества внутри клетки (По А.Гайтону и Д.Холлу, 2008).

В нервных волокнах информация передается с помощью потенциалов действия, которые представляют собой быстрые изменения мембранного потенциала, распространяющиеся вдоль мембраны волокна. От деполяризованных областей мембраны к прилегающим невозбужденным областям распространяются локальные круговые токи. Эти токи возникают в связи с переносом через деполяризованную мембрану положительных электрических зарядов в виде диффундирующих внутрь волокна ионов натрия, которые затем распространяются на протяжении нескольких миллиметров в обоих направлениях вдоль оси аксона. В результате в этих новых областях немедленно открываются натриевые каналы, что и лежит в основе распространения потенциала действия. Эти вновь деполяризованные области усиливают локальные круговые токи, текущие дальше вдоль мембраны, постепенно деполяризуя все более отдаленные ее участки. Таким образом, процесс деполяризации распространяется по всей длине волокна. Это проведение деполяризации вдоль нервного волокна называют нервным импульсом.

Проведение каждого потенциала действия вдоль нервного волокна слегка уменьшает разницу концентраций ионов натрия и калия внутри и снаружи мембраны. Для одиночного потенциала действия эти изменения столь малы, что их нельзя измерить. От 100 тыс. до 50 млн импульсов могут пройти по крупному нервному волокну, прежде чем разности концентраций достигнут уровня, при котором проведение потенциала действия прекращается. Со временем возникает необходимость восстановить разность концентраций для ионов по обе стороны мембраны. Это обеспечивается работой Na + / K + - насоса. Поскольку для работы этого насоса необходима энергия, «подзарядка» нервного волокна является активным метаболическим процессом, использующим энергию АТФ. Особым свойством Na + / K + - насоса является резкое усиление уровня его активности при появлении избытка ионов натрия внутри волокна. Активность насоса повышается пропорционально примерно третьей степени изменения внутриклеточной концентрации ионов натрия.

9. Церебральный энергетический обмен в детстве

Исследования динамики церебрального энергетического обмена базируются главным образом на анализе изменений кровотока, состояния ГЭБ, метаболизма глюкозы и кислорода у человека.

Поступление энергетических субстратов из крови в мозг осуществляется через ГЭБ. Считается, что основные функции ГЭБ созревают в пренатальный период. Совсем недавно появились данные, свидетельствующие о ряде тонких перестроек во внутрикраниальном сосудистом сопротивлении и изменении размеров капилляров, которые имеют место при развитии человека и животных.

Поступление глюкозы из крови в мозг связано с развитием системы транспортных белков, главными из которых являются GLUT 1 и GLUT 3 , локализующиеся в ГЭБ, а также в нейронах и глии. В исследованиях на крысах показано, что GLUT 1 с молекулярной массой 55 kDa находится в клетках эндотелия, GLUT 1 с молекулярной массой 45 kDa - в неваскуляризированном мозге, вероятно, в глии; GLUT 3 является основным нейрональным транспортером глюкозы. Увеличение утилизации глюкозы мозгом в процессе его созревания тесно связано с характером экспрессии несосудистого GLUT 1 (45 kDa) и более специфичного GLUT 3 . Предполагается, что клеточная экспрессия белка-переносчика глюкозы есть показатель утилизации глюкозы в мозге развивающихся крыс.

У новорожденных интенсивность обмена глюкозы низкая. Метаболизм глюкозы в мозге крысят повышается в возрасте от 1 до 3 мес., что примерно соответствует первой декаде жизни у человека. Получены данные об особенностях изменения метаболизма глюкозы в различных структурах мозга у человека при развитии. Наиболее высокая скорость метаболизма глюкозы (СМГ) у новорожденных имеет место в сенсомоторной коре, таламусе, мозговом стволе и черве мозжечка. В течение первого года жизни происходит смена паттерна СМГ в соответствии с созреванием филогенетически более молодых структур. На втором и третьем месяце наиболее высокая СМГ наблюдается в теменной, височной, первичной зрительной областях коры, в базальных ганглиях и полушариях мозжечка. Метаболизм глюкозы остается низким в дорсолатеральной части зрительной коры по сравнению с первичной зрительной корой. СМГ не высокая в лобных областях вплоть до 2-4 мес. К концу первого года паттерн СМГ качественно такой же, как у взрослого человека, однако количественные изменения происходят в течение всего детского периода. В интервале от 4 до 9 лет наблюдаются наиболее высокие значения СМГ коры и относительно молодых подкорковых образований, затем уже в конце второй декады жизни СМГ снижается почти в два раза.

В раннем детском возрасте в ЦНС в качестве энергетического субстрата кроме глюкозы используются кетоновые тела, что приводит к закислению мозга. По этой причине сопряженность между интенсивностью мозгового кровотока и метаболизмом глюкозы в этом возрасте меньше, чем во взрослом организме.

По мере развития мозга и усиления окислительных реакций число митохондрий, приходящихся на нервную клетку, увеличивается вдвое (Н.Д.Ещенко, 1999). При созревании мозга в 2-3 раза повышается содержание основных компонентов дыхательной цепи митохондрий: цитохромов и флавопротеинов.

На ранних стадиях постнатального онтогенеза способность сохранять постоянство рН ограничена. Показано, что острый метаболический ацидоз (или алкалоз), который создавали у неполовозрелых крыс для проверки их способности поддерживать рН в мозге, стабилизировался в пределах от 7,1 до 7,5 в коре через неделю после рождения. В этом возрасте мозг крыс был более устойчив к воздействию метаболического ацидоза, чем алкалоза.

Рост мозгового кровотока и метаболизма глюкозы происходит параллельно с увеличением функциональной активности мозга. Предполагается, что быстрая восходящая часть кривой СМГ связана с сверхпродукцией синапсов и терминалей, плато - с периодом повышенных энергетических требований в связи с активным образованием синаптических контактов между нейронами, период спуска - с избирательным сокращением синапсов, в этот период наблюдается заметное уменьшение пластичности мозга.

10. Церебральный энергетический обмен в среднем возрасте

и при старении .

Исследованы различия между мужчинами и женщинами по уровню потребления глюкозы мозгом. Полученные результаты весьма неоднозначны. Во многих исследованиях такие различия найдены не были, в то время как в ряде других работ выявлен более высокий уровень потребления глюкозы у женщин. Авторы связывают такие отличия с высоким уровнем эстрогенов, так как женщины были обследованы в период от 5 до 15 дня менструального цикла.

При обследовании взрослых здоровых испытуемых обнаружили, что в состоянии спокойного бодрствования уровень потребления глюкозы как у мужчин, так и у женщин выше в ассоциативных областях слева, а в лимбических отделах височной доли – справа. У мужчин в лимбических отделах височной доли метаболизм выше, а в поясной извилине ниже, чем у женщин.

Целостность церебральной сосудистой системы является одним из решающих факторов для сохранности когнитивных функций человека в зрелом возрасте и при старении. Имеются серьезные доказательства того, что цереброваскулярные функции снижаются при старении. Многие авторы показали возрастозависимое ухудшение кровотока из-за атеросклероза и потери иннервации базальной поверхности артерий мозга.

Главные изменения транспортной функции ГЭБ при старении связаны с перестройкой в составе соединительной ткани и гладкой мускулатуры сосудистых стенок, утолщением сосудистой базальной мембраны, истончением эндотелия, увеличением перицитарной глии и потерей эндотелиальных митохондрий. Эти изменения, в целом, влекут за собой глубокие нарушения в микрососудах, включение сторонних веществ в базальную мембрану и изменения в образующих ее специфических белках и липидах. При старении развиваются фокальные и преходящие бреши в ГЭБ. Таким образом, нейрональные популяции в определенном регионе мозга становятся уязвимыми. В пожилом и старческом возрасте также усиливается действие протеолитических ферментов на базальную мембрану, которое увеличивает проницаемость ГЭБ при росте трансцеллюлярной транспортной активности эндотелиальных клеток.

В то же время для ряда веществ проницаемость ГЭБ при старении снижается. Обнаружено уменьшение транспорта гексозы и бутирата, холина и трийодтиронина. Транспорт большинства нейтральных и основных аминокислот стабилен при старении. Однако транспорт метионина, оцененный с помощью позитронно-эмиссионной томографии, у человека уменьшается с возрастом, начиная с 5 лет. Потенциальный механизм возрастозависимых изменений связан с нарастанием количества артериовенозных анастомозов, что лишает некоторые отделы мозга достаточного питания. Изменения в микрососудах обусловлены также перестройкой белкового состава и накоплением продуктов перекисного окисления липидов вместе с изменением вязкости мембраны изолированных микрососудов. От интенсивности энергетического обмена зависит концентрация моноаминовых и пуриновых метаболитов и продуктов обмена норадреналина; последние оказывают сильное влияние на проницаемость ГЭБ. При старении изменяется также нейротрансмиттерная регуляция локального мозгового кровотока. Медиаторная активность, особенно бета-адренергических нейротрансмиттеров, значительно уменьшается в церебральных микрососудах при старении. Многие нейротрансмиттеры плохо проходят через эндотелиальную мембрану и накапливаются внутри эндотелия капилляров головного мозга. Стенки капилляров в норме содержат ДОПА-декарбоксилазу и моноаминоксидазу, которые расщепляют нейротрансмиттеры, действующие на сосуды. При старении этот механизм нарушается.

Наряду с сосудистой системой стареет и циркуляторная система цереброспинальной жидкости (ЦСЖ). При этом хороидное сплетение кальцифицируется, оборот ЦСЖ уменьшается. Арахноидальная мембрана утолщается, и как следствие происходит загрязнение ЦСЖ различными метаболитами.

На проницаемость ГЭБ могут влиять вещества, находящиеся в крови, а также кислотность крови. Показано, что когда крысам давали препараты, снижающие рН крови, поступление меченого натрия в хороидное сплетение и ЦСЖ уменьшалось. Кислые соли вводили интраперитониально крысам с удаленными почками и определяли скорость поступления меченого натрия в различные отделы мозга и в ЦСЖ. Выраженный ацидоз (pH артериальной крови 7,2), вызванный инъекцией соляной кислоты, снижал скорость поступления натрия как в ЦСЖ, так и в ткани мозга примерно на 25%, в то время, как мягкий ацидоз (pH = 7,3) от инъекции NH 4 Cl уменьшал поступление натрия в мозг на 18%, а в ЦСЖ на 10%. (В.А. Марфи и С. Иохансон, 1989).

При старении транспорт ряда веществ в мозг несколько снижается из-за увеличения сосудистого сопротивления, вызванного атеросклерозом, появления артерио-венозных анастомозов и изменения проницаемости ГЭБ, основные вещества беспрепятственно достигают клеток нервной ткани.

Средний уровень метаболизма кислорода достоверно снижается при старении. С возрастом этот показатель значительно уменьшается в больших полушариях, причем в большей степени в левом. Особенно заметное уменьшение метаболизма O 2 наблюдается в области левого хвостатого ядра. Закономерность настолько характерна, что в некоторых случаях скорость поглощения О 2 используется для определения биологического возраста.

Нормальное старение мозга млекопитающих связано с рядом генетических изменений метаболизма, которые включают, вероятно, первичные наследственные вариации нейрональных инсулиновых рецепторов, десенситизацию нейрональных инсулиновых рецепторов при циркуляции гормона стресса кортизола и последующую дисфункцию рецепторов из-за изменения структуры и функции мембран. Последствия даже легкого нарушения метаболизма глюкозы и продукции энергии связаны с изменениями гомеостаза, которые характерны для процесса старения. Вследствие сдвигов в метаболизме глюкозы и продукции энергии происходят отклонения в связывании и высвобождении ацетилхолина, обмене Ca 2+ и др. Дополнительное образование свободных радикалов и структурные перестройки мембран рассматриваются как первичные изменения при старении. Стресс в пожилом и старческом возрасте вызывает более сильные и длительные нарушения гомеостаза, влияющие на мембраны.

Гипометаболизм глюкозы может наблюдаться у человека и животных даже при нормальном уровне мозгового кровотока. Показано, что у крыс старше 3 месяцев потребление глюкозы во многих отделах мозга снижается, хотя кровоток остается нормальным до 12 месяцев. Нарушение сопряжения кровотока и метаболизма глюкозы при старении по сравнению со зрелым возрастом обусловлено использованием в качестве энергетического субстрата, кроме глюкозы, других веществ, в частности кетоновых тел. Такое изменение энергетического метаболизма сопровождается снижением церебрального рН.

При старении потребление глюкозы изменяется в различных отделах мозга по-разному. Наиболее характерен гипометаболизм глюкозы в лобных областях. Показано, что при нормальном старении относительное снижение энергетического обмена в лобных отделах ковариативно связано с увеличением метаболизма в теменно-затылочных ассоциативных областях, базальных ганглиях, среднем мозге и мозжечке. Подобный профиль коррелировал с возрастом. Гипометаболизм глюкозы наблюдается кроме лобных областей и в других ассоциативных отделах - височной, височно-теменных областях, а также в передней поясной извилине и переднем таламусе.

Найдено также, что при старении в условиях спокойного бодрствования корреляция между уровнем потребления глюкозы в лобных и теменных отделах мозга снижается и у мужчин, и у женщин.

При старении происходят изменения в кислородном и гликолитическом путях метаболизма глюкозы у человека и животных. Активность многих энзимов гликолитического пути обмена глюкозы снижается. Содержание в мозге крыс конечного продукта гликолиза - лактата уменьшается в возрасте 24 и 30 месяцев и соответствует 91 и 87% от уровня в молодом возрасте, на 15% в возрасте 24 месяцев снижается содержание пирувата по сравнению с 12-месячными животными.

Вследствие митохондриальных изменений происходят нарушения в кислородном пути метаболизма глюкозы, причем эти отклонения более значительны, чем в гликолизе. При старении возникают изменения в митохондриальном геноме, что приводит к нарушению функциональной активности митохондрий, снижению тканевого дыхания и окислительного фосфорилирования.

Содержание макроэргических соединений (АТФ и креатинфосфата) с возрастом постепенно снижается. Так, уровень АТФ в мозге крыс был меньше в 12-месячном возрасте по сравнению с 6-месячным в 1,1 раза, в 30 месяцев снижение составляло 6% от уровня 12 месяцев. Уровень креатинфосфата уменьшался у крыс в возрасте 24 и 30 месяцев до 93 и 90% соответственно от его содержания в 12 месяцев.

У человека содержание креатинина и креатина в ЦСЖ, как показателей энергетического обмена мозга (эти вещества образуются в результате распада макроэргического соединения креатинфосфата), также имеет положительную корреляцию с возрастом.

При старении уровень рН в нейронах снижается. Такой эффект был выявлен в исследованиях срезов гиппокампа у мышей, причем внеклеточный рН не менялся с возрастом. В дальнейшем эта закономерность была подтверждена при изучении методом ЯМР-спектроскопии внутриклеточного рН в затылочных областях у здоровых людей в возрасте от 23 до 69 лет, находившихся в состоянии спокойного бодрствования. Обнаружено также, что у людей старше 40 лет сразу после фотостимуляции рН снижается, в более молодом возрасте это не наблюдается. Развитие внутринейронального ацидоза при старении может нарушать процессы тканевого дыхания и окислительного фосфорилирования в митохондриях и способствовать усилению свободно-радикального окисления.

Литература

ОСНОВНАЯ ЛИТЕРАТУРА

Смирнов В.М., Будылина С.М. Физиология сенсорных систем и высшей нервной деятельности. – М.: «Академия». – 2009. – 336 с.

Смирнов В.М.и соавт. Физиология центральной нервной системы. – М. .: «Академия». – 2008. – 368 с.

Шульговский В.В. Основы нейрофизиологии. – Учеб. пособие для студентов вузов. – М.: «Аспект Пресс». - 2005. – 277 с.

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА.

Атлас. Нервная система человека. Строение и нарушения. /Под ред В.М. Астапова, Ю.В. Микадзе. 4-е изд., перераб. и доп. - М.: ПЕР СЭ. - 2004. - 80 с.

Абрахамс П. Физиология. – М.: ЗАО БММ. – 2008. – 192 с.

Агаджанян Н.А. Основы физиологии человека. - Учебник для студентов вузов. - 2-е изд.- М.: РУДН. - 2001.- 408 с.

Алейникова Т.В. с соавт. Физиология центральной нервной системы. – Ростов – на – Дону: Феникс. – 2006. – 376 с.

Лурия А.Р. Основы нейропсихологии. - М.: «Академия». – 2009. – 384 с.

Ашмарин И.П., Ещенко Н.Д., Каразеева Е.П. Нейрохимия в таблицах и схемах. – М.: «Экзамен». – 2007. – 143 с.

Начала физиологии. - Учебник для вузов. / Под ред. А.Д. Ноздрачева. – С-Пб. – 2002. – 1088 с.

Тевс Г., Шмидт Р. Физиология человека в 3-х т. – М.: Мир. – 2005. – Т.1.- 323 с.

Другие похожие работы, которые могут вас заинтересовать.вшм>

6645. Обмен веществ и энергии (метаболизм) 39.88 KB
Поступление веществ в клетку. Благодаря содержанию растворов солей сахаров и других осмотически активных веществ клетки характеризуются наличием в них определенного осмотического давления. Разность концентрации веществ внутри и снаружи клетки называют градиентом концентрации.
12816. НЕЙРОДЕГЕНЕРАТИВНЫЕ ЗАБОЛЕВАНИЯ МОЗГА 268.35 KB
Структура нейродегенеративных заболеваний. Нарушения медиаторной системы мозга. Пептиды. Нейротрофические и ростовые факторы мозга. Цитокины. Амилоидные пептиды: молекулярная основа болезни Альцгеймера. Генетические аспекты патологии Альцгеймера.
12822. ИШЕМИЧЕСКИЕ ЗАБОЛЕВАНИЯ ГОЛОВНОГО МОЗГА 150.05 KB
Структура церебро-васкулярных заболеваний. Нейромедиаторы. Система возбуждающих аминокислот. Роль оксида азота. Регуляторные пептиды. Нейротрофические и ростовые факторы. Интерлейкины. Регуляция трансмембранных процессов при ишемии мозга. Гормоны при ишемии мозга.
1049. Синдром функциональной несформированности лобных отделов мозга 2.18 MB
Нейропсихологические синдромы поражения лобных долей мозга. Синдром функциональной несформированности лобных отделов мозга В последнее время психологи работающие в сфере образования отмечают заметное увеличение количества детей с отклонениями в психическом развитии. Известно что психические процессы не являются содержанием мозга но являются его функцией. Развитие структур и систем мозга строго подчинено базисным нейробиологическим закономерностям актуализирующимся...
12782. Церебролизин, как медицинский препарат. Экология современного мозга 149.93 KB
Впервые были обнародованы данные о терапии амиотрофического бокового склероза Завалишин И. 1987 и последующий интерес к экспериментальному изучению нейротрофинов послужили поводом для зарождения идеи нейротрофической терапии и объяснения терапевтического механизма ЦР. Эти результаты экспериментальных работ послужили основой для понимания нейротрофической роли ЦР при использовании его в терапии большого спектра неврологических расстройств...
14002. ПЕРСПЕКТИВЫ ВНЕДРЕНИЯ ТРАНСПЛАНТАЦИИ КОСТНОГО МОЗГА В РЕСПУБЛИКЕ УЗБЕКИСТАН 2.47 MB
Источники стволовых клеток. Трансплантация стволовых кроветворных клеток по мировым данным. Рассматривая возможные варианты внедрения трансплантации костного мозга в Узбекистане самым приемлемым для начала на данном этапе мы видим аутологичную пересадку стволовых клеток костного мозга далее ТКМ и или СКК...
7761. ЭКСТРАПИРАМИДНАЯ НЕРВНАЯ СИСТЕМА, МОЗЖЕЧЕК, КОРА БОЛЬШОГО МОЗГА 35.45 KB
ЭКСТРАПИРАМИДНАЯ НЕРВНАЯ СИСТЕМА На ранних этапах эволюции до появления пирамидной системы экстрапирамидная система была основной двигательной системой за счет которой осуществлялись движения тела животных а также поддержание общего мышечного тонуса то на более поздних этапах ведущую роль в осуществлении движений стала выполнять кора большого мозга а экстрапирамидная система перешла в ее соподчинение. Связи экстрапирамидной системы в частности с корой большого мозга гипоталамусом лимбической системой а также наличие тесной...
5594. Психические расстройства при органических поражениях головного мозга в детском и подростковом возрасте 19.37 KB
Знание психопатологии и этиологии острых и хронических органических психосиндромов в детском возрасте. Распознавание гиперкинетического синдрома. Умение различать описанные в литературе проявления частичной недостаточности отдельных функций. Знание основ возможностей терапии детей и подростков с поражениями головного мозга.
12098. Неинвазивные методы стимуляции спинного мозга для активации нейрональных локомоторных сетей и восстановления локомоторных функций 17.47 KB
Краткое описание разработки Создаваемый метод стимуляции спинного мозга предназначен для разработки новой эффективной медицинской технологии лечения и двигательной реабилитации спинальных больных. Предложен новый способ активации нейрональных спинальных локомоторных сетей генератора шагательных движений с помощью неинвазивной электрической чрескожной стимуляции спинного мозга. Установлено что чрескожная электрическая стимуляция спинного мозга приложенная к ростральным сегментам поясничного утолщения T11T12 позвонки в условиях внешней...
12041. Способ получения дедифференцированных клеток ретинального пигментного эпителия глаза взрослого человека для восстановления поврежденных тканей головного мозга и сетчатки глаза 17.21 KB
Разработан способ индукции трансдифференцировки клеток ретинального пигментного эпителия РПЭ глаза взрослого человека в нейральном направлении in vitro для получения малодифференцированных нейронов и глиальных клеток. Данная разработка позволит иметь источник аутологичных или аллогенных клеток для трансплантации с целью стимуляции восстановления поврежденных тканей головного мозга и сетчатки при широком спектре нейродегенеративных заболеваний мозга болезни Паркинсона Альцгеймера Гентингтона и дегенеративнодистрофических заболеваний глаз...