Удельная тепловая характеристика производственных зданий. Расчетная и фактическая удельная отопительная характеристика здания

Для теплотехнической оценки конструктивно-планировочных решений и для ориентировочного расчета теплопотерь зданий пользуются показателем - удельная тепловая характеристика здания q.

Величина q, Вт/(м 3 *К) [ккал/(ч*м 3 *°С)], определяет средние теплопотери 1 м 3 здания, отнесенные к расчетной разности температур, равной 1°:

q=Q зд /(V(t п -t н)).

где Q зд - расчетные теплопотери всеми помещениями здания;

V - объем отапливаемой части здания до внешнему обмеру;

t п -t н - расчетная разность температур для основных помещений здания.

Величину q определяют в виде произведения:

где q 0 - удельная тепловая характеристика, соответствующая разности температур Δt 0 =18-(-30)=48°;

β t - температурный коэффициент, учитывающий отклонение фактической расчетной разности температур от Δt 0 .

Удельная тепловая характеристика q 0 может быть определена по формуле:

q0=(1/(R 0 *V))*.

Эту формулу можно преобразовать в более простое выражение, пользуясь приведенными в СНиП данными и приняв, например, за основу характеристики для жилых зданий:

q 0 =((1+2d)*Fс+F п)/V.

где R 0 - сопротивление теплопередаче наружной стены;

η ок - коэффициент, учитывающий увеличение теплопотерь через окна по сравнению с наружными стенами;

d - доля площади наружных стен, занятая окнами;

ηпт, ηпл -коэффициенты, учитывающие уменьшение теплопотерь через потолок и пол по сравнению с наружными стенами;

F c - площадь наружных стен;

F п - площадь здания в плане;

V - объем здания.

Зависимость удельной тепловой характерношки q 0 от изменения конструктивно-планировочного решения здания, объема здания V и относительного к R 0 тр сопротивления теплопередаче наружных стен β, высота здания h, степени остекления наружных стен d, коэффициента теплопередачи окон k он и ширины здания b.

Температурный коэффициент β t равен:

βt=0,54+22/(t п -t н).

Формула соответствует значениям коэффициента β t , которые обычно приводятся в справочной литературе.

Характеристикой q удобно пользоваться для теплотехнической оценки возможных конструктивно-планировочных решений здания.

Если в формулу подставить значение Q зд, то ее можно привести к виду:

q=(∑k*F*(t п -t н))/(V(t п -t н))≈(∑k*F)/V.

Величина тепловой характеристики, зависит от объема здания и, кроме того, от назначения, этажности и формы здания, площади и теплозащиты наружных ограждений, степени остекления здания и района строительства. Влияние отдельных факторов на величину q очевидно из рассмотрения формулы. На рисунке показана зависимость qо от различных характеристик здания. Реперной точке на чертеже, через которую проходят все кривые, соответствуют значения: q о =О,415 (0,356) для здания V=20*103 м 3 , шириной b=11 м, d=0,25 R o =0,86(1,0), k ок =3,48 (3,0); длиной l=30 м. Каждая кривая соответствует изменению одной из характеристик (дополнительные шкалы по оси абсцисс) при прочих равных условиях. Вторая шкала на оси ординат показывает эту зависимость в процентах. Из графика видно, что заметное влияние на qo оказывает степень остекленности d и ширина здания Ь.

График отражает влияние теплозащиты наружных ограждений на общие теплопотери здания. По зависимости qo от β {R o =β*R о.тр) можно сделать вывод, что при увеличении теплоизоляции стен тепловая характеристика уменьшается незначительно, тогда как при ее снижении qo начинает быстро возрастать. При дополнительной теплозащите оконных проемов (шкала k ок) заметно уменьшается qo, что подтверждает целесообразность увеличения сопротивления теплопередаче окон.

Величины q для зданий различных назначений и объемов приводятся в справочных пособиях. Для гражданских зданий эти значения изменяются в следующих пределах:

Потребность в тепле на отопление здания может заметно отличаться от величины теплопотерь, поэтому можно вместо q пользоваться удельной тепловой характеристикой отопления здания qот, при вычислении которой по верхней формуле числитель подставляют не теплопотери, а установочную тепловую мощность системы отопления Q от.уст.

Q от.уст =1,150*Q от.

где Q от - определяется по формуле:

Q от =ΔQ=Q orp +Q вент +Q тexн.

где Q orp - потери тепла через наружные ограждения;

Q вент - расход тепла на нагревание воздуха, поступающего в помещение;

Q тexн - технологические и бытовые тепловыделения.

Значения qот могут быть использованы для расчета потребности в тепле на отопление здания по укрупненным измерителям по следующей формуле:

Q= q от *V*(tп-t н).

Расчет тепловых нагрузок на системы отопления по укрупненным измерителям используют для ориентировочных подсчетов при определении потребности в тепле района, города, при проектировании центрального теплоснабжения и пр.

В последние годы значительно повысился интерес населения к расчёту удельной тепловой характеристики зданий. Этот технический показатель указывается в энергетическом паспорте многоквартирного дома. Он необходим при осуществлении проектно-строительных работ. Потребителей же интересует другая сторона этих расчётов - расходы за теплоснабжение.

Термины, применяемые в расчётах

Удельная отопительная характеристика здания - показатель максимального теплового потока, который нужен для обогрева конкретного здания. При этом перепад между температурой внутри здания и снаружи определяют в 1 градус.

Можно сказать, что эта характеристика наглядно показывает энергоэффективность здания.


Существует различная нормативная документация, где указываются средние значения. Степень отклонения от них и даёт представление о том, насколько эффективна удельная отопительная характеристика сооружения. Принципы расчёта берутся по СНиП «Тепловая защита зданий».

Какими бывают расчёты

Удельную отопительную характеристику определяют разными методами:

  • исходя из расчётно-нормативных параметров (с помощью формул и таблиц);
  • по фактическим данным;
  • индивидуально разработанные методики саморегулирующихся организаций, где во внимание принимаются так же и год возведения здания, и проектные особенности.

Вычисляя фактические показатели, обращают внимание на тепловую потерю в трубопроводах, которые проходят по неотапливаемым площадям, потери на вентиляцию (кондиционирование).

При этом, при определении удельной отопительной характеристики здания, СНиП «Вентиляция отопление и кондиционирование станет настольной книгой. Тепловизионное обследование поможет наиболее правильно выяснить показатели энергоэффективности.

Формулы расчёта

Количество теплоты, теряемой 1 м. куб. здания, с учётом температурной разницы в 1 градус (Q) можно получить по следующей формуле:


Этот расчёт не является идеальным, несмотря на то, что в нём учитывается площадь здания и размеры наружных стен, оконных проёмов и пола.

Есть другая формула, по которой можно выполнить расчёт фактической характеристики, где за основу вычислений берут годовой расход топлива (Q), среднюю температурный режим внутри здания(tint) и на улице (text) и отопительный период (z):


Несовершенство этого вычисления в том, что не в нём не отражена разница температур в помещениях здания. Наиболее удобной считается система расчёта, предложенная профессором Н. С. Ермолаевым:


Преимущество использования этой системы расчёта в том, что в ней учитываются проектировочные характеристики здания. Используется коэффициент, который показывает соотношение размера остекленных окон по отношению к площади стен. В формуле Ермолаева применяются коэффициенты таких показателей, как теплопередача окон, стен, потолков и полов.

Что означает класс энергоэффективности?

Цифры, полученные по удельной тепло характеристике, используются для того, чтобы определить энергоэффективность здания. По законодательству, начиная с 2011 года, все многоквартирные дома должны иметь класс энергоэффективности.


Для того, чтобы определить энергетическую эффективность, отталкиваются от следующих данных:

  • Разница между расчётно-нормативными и фактическими показателями. Фактические иногда определяют способом тепловизионного обследования. В нормативных показателях отражаются расходы на отопление, вентиляцию и климатические параметры региона.
  • Учитывают тип здания и стройматериалы, из которого оно возведено.

Класс энергоэффективности записывают в энергетический паспорт. У разных классов имеются свои показатели расхода энергоресурсов в течение года.

Как можно улучшить энергоэффективность сооружения

Если в процессе расчётов выясняется низкая энергоэффективность сооружения, то есть несколько путей для того, чтобы исправить ситуацию:

  1. Улучшения показателей теплосопротивления конструкций добиваются с помощью облицовки наружных стен, утепления тех этажей и перекрытий над подвальными помещениями теплоизолирующими материалами. Это могут быть сэндвич панели, полипропиленовые щиты, обычное оштукатуривание поверхностей. Эти меры повышают энергосбережение на 30-40 процентов.
  2. Иногда приходится прибегать к крайним мерам и приводить в соответствие с нормативами площади остеклённых конструктивных элементов здания. То есть закладывать лишние окна.
  3. Дополнительный эффект даёт установка окон с теплосберегающими стеклопакетами.
  4. Остекление террас, балконов и лоджий даёт прирост энергосбережения на 10-12 процентов.
  5. Производят регулировку подачи тепла в здание с помощью современных систем контроля. Так, установка одного терморегулятора обеспечит экономию топлива на 25 процентов.
  6. Если здание старое, меняют полностью морально устаревшую отопительную систему на современную (установка алюминиевых радиаторов с высоким КПД, пластиковых труб, в которых теплоноситель циркулирует свободно.)
  7. Иногда достаточно произвести тщательную промывку «закоксованных» трубопроводов и отопительного оборудования, чтобы улучшить циркуляцию теплоносителя.
  8. Есть резервы и в системах вентиляции, которые можно заменить на современные с микро проветриванием, устанавливаемым в окнах. Сокращение теплопотерь на некачественном вентилировании значительно улучшает энергоэффективность дома.
  9. Во многих случаях большой эффект дает монтаж теплоотражающих экранов.

В многоквартирных домах добиться повышения энергоэффективности гораздо сложнее, чем в частных. Требуются дополнительные затраты и не всегда они дают ожидаемый эффект.

Заключение

Результат может дать только комплексный подход с участием самих жильцов дома, которые более всех заинтересованы в тепло сбережении. Стимулирует к экономии энергоресурсов установка тепловых счётчиков.

В настоящее время рынок насыщен оборудованием, которое позволяет сэкономить энергоресурсы. Главное - иметь желание и произвести правильные расчёты, удельной отопительной характеристики здания, по таблицам, формулам или тепловизионного обследования. Если это не получается сделать самостоятельно, можно обратиться к специалистам.

Все здания и сооружения, независимо от типа и классификации, имеют определенные технико-эксплуатационные параметры, которые обязательно должны быть зафиксированы в соответствующей документации. Одним из самых важных показателей считается удельная тепловая характеристика, которая оказывает прямое влияние на размеры оплаты за потребленную тепловую энергию и позволяет определить класс энергоэффективности конструкции.

Удельной отопительной характеристикой принято называть значение максимального теплового потока, который необходим для обогрева конструкции при разнице между внутренней и наружной температурой, равной одному градусу Цельсия. Усреднённые показатели определяются строительными нормами, рекомендациями и правилами. При этом любого характера отклонения от нормативных величин позволяют говорить об энергетической эффективности отопительной системы.

Удельная тепловая характеристика может быть как фактической, так и расчетной. В первом случае для получения максимально приближенных к действительности данных необходимо обследовать здание с использованием тепловизионной аппаратуры, а во втором – показатели определяются с помощью таблицы удельной отопительной характеристики здания и специальных расчетных формул.

С недавних пор определение класса энергетической эффективности является обязательной процедурой для всех жилых домов. Такая информация должна быть включена в энергетический паспорт строения, поскольку каждый класс имеет установленный минимум и максимум расхода энергоресурсов в течение года.

Чтобы определить класс энергетической эффективности сооружения, необходимо уточнить следующую информацию:

  • тип сооружения или здания;
  • строительные материалы, которые были использованы в процессе строительства и отделки здания, а также их технические параметры;
  • отклонение фактических и расчетно-нормативных показателей. Фактические данные могут быть получены расчетным или практическим путем. При проведении расчетов необходимо учитывать климатические особенности конкретной местности, кроме того, нормативные данные должны включать в себя информацию о расходах на кондиционирование, теплоснабжение и вентиляцию.

Повышение энергоэффективности многоэтажного здания

Расчетные данные, в большинстве случаев, говорят о низкой энергетической эффективности многоквартирного жилья. Когда речь идет о повышении этого показателя необходимо четко понимать, что сократить расходы на отопление можно только путем проведения дополнительной термоизоляции, которая поможет сократить теплопотери. Снизить потери тепловой энергии в жилом многоквартирном доме, конечно, можно, однако решение этой задачи будет весьма трудоемким и дорогостоящим процессом.

К основным методам повышения энергетической эффективности многоэтажного здания можно отнести следующее:

  • устранение мостиков холода в строительных конструкциях (улучшение показателей на 2-3%);
  • установка оконных конструкций на лоджиях, балконах и террасах (эффективность методики 10-12%);
  • использование микросистем микровентиляции;
  • замена окон современными многокамерными профилями с энергосберегающими стеклопакетами;
  • приведение к норме площади остекленных конструкций;
  • повышение термического сопротивления строительной конструкции путем отделки подвальных и технических помещений, а также облицовки стен с применением высокоэффективных термоизоляционных материалов (повышение энергосбережения на 35-40%).

Дополнительной мерой по повышению энергетической эффективности жилого многоэтажного дома может стать проведение жильцами энергосберегающих процедур в квартирах, например:

  • установка термостатов;
  • монтаж теплоотражающих экранов;
  • монтаж приборов учета тепловой энергии;
  • установка алюминиевых радиаторов;
  • монтаж системы индивидуального теплоснабжения;
  • сокращение расходов на вентилирование помещений.

Как улучшить энергетическую эффективность частного дома?

Повысить класс энергетической эффективности частного дома можно, используя различные методики. Комплексный подход к решению этой проблемы позволит получить превосходные результаты. Размеры статьи расходов на отопление жилого дома, прежде всего, определяются особенностями системы теплоснабжения. Индивидуальное строительство жилья практически не предусматривает подключение частных домов к централизованным системам теплоснабжения, поэтому вопросы отопления в этом случае решаются с помощью индивидуальной котельной. Сократить расходы поможет установка современного котельного оборудования, которое отличается высоким КПД и экономичной работой.

В большинстве случаев для теплоснабжения частного дома используются газовые котлы, однако такой вид топлива не всегда целесообразен, особенно для местности не прошедшей газификацию. При выборе отопительного котла важно учитывать особенности региона, доступность топлива и эксплуатационных расходов. Не менее важным с экономической точки зрения для будущей системы отопления станет наличие дополнительного оборудования и опций для котла. Сэкономить топливо поможет установка терморегулятора, а также ряда других приборов и датчиков.

Для циркуляции теплоносителя в автономных системах теплоснабжения преимущественно используется насосное оборудование. Несомненно, оно должно быть качественным и надежным. Однако следует помнить, что на работу оборудования для принудительной циркуляции теплоносителя в системе будет приходиться порядка 30-40% общих затрат электроэнергии. При выборе насосного оборудования следует отдавать предпочтение моделям, имеющим класс энергетической эффективности «А».

Эффективность использования терморегуляторов заслуживает отдельного внимания. Принцип работы прибора заключается в следующем: с помощью специального датчика он определяет внутреннюю температуру помещения и в зависимости от полученного показателя отключает или включает насос. Температурный режим и порог срабатывания устанавливается жильцами дома самостоятельно. Главным преимуществом использования терморегулятора является отключение циркуляционного оборудования и нагревателя. Таким образом, жильцы получают существенную экономию и комфортный микроклимат.

Увеличить фактические показатели удельной тепловой характеристики дома помогут также установка современных пластиковых окон с энергосберегающими стеклопакетами, термоизоляция стен, защита помещений от сквозняков и т.д. Следует отметить, что эти меры помогут увеличить не просто цифры, но и повысить комфорт в доме, а также сократить эксплуатационные расходы.

Удельная тепловая характеристика здания - один из важных технических параметров. Он обязательно должен содержаться в энергетическом паспорте. Расчет этих данных необходим для проведения проектно-строительных работ. Знание таких характеристик необходимо и потребителю тепловой энергии, так как они существенно влияют на сумму оплаты.

Понятие тепловой удельной характеристики

Тепловизионное обследование зданий

Прежде чем говорить о расчетах, необходимо определиться с основными терминами и понятиями. Под удельной характеристикой принято понимать значение наибольшего потока тепла, необходимого на обогрев здания или сооружения. При расчете удельных характеристик дельту температур (разницу между уличной и комнатной температурой) принято брать за 1 градус.

По сути, этот параметр определяет энергоэффективность здания. Средние показатели определяются нормативной документацией (строительными правилами, рекомендациями, СНиП и т.п.). Любое отклонение от нормы - независимо от того, в какую оно сторону - дает понятие об энергетической эффективности системы отопления. Расчет параметра ведется по действующим методикам и СНиП «Тепловая защита зданий».

Методика расчета

Может быть расчетно-нормативной и фактической. Расчетно-нормативные данные определяются с помощью формул и таблиц. Фактические данные тоже можно рассчитать, но точных результатов можно добиться только при условии тепловизионного обследования здания.

Расчетные показатели определяются по формуле:

В данной формуле за F 0 принята площадь здания. Остальные характеристики - это площадь стен, окон, пола, покрытий. R - сопротивление передаче соответствующих конструкций. За n берется коэффициент, изменяющийся в зависимости от расположения конструкции относительно улицы. Данная формула не является единственной. Тепловая характеристика может определяться по методикам саморегулируемых организаций, местным строительным нормам и т. п.

Расчет фактической характеристики определяется по формуле:

В этой формуле основными являются фактические данные:

  • расход топлива за год (Q)
  • продолжительность отопительного периода (z)
  • средняя температура воздуха внутри (tint) и снаружи (text) помещения
  • объем рассчитываемого сооружения

Это уравнение отличается простотой, поэтому используется очень часто. Тем не менее оно имеет существенный недостаток, снижающий точность расчетов. Этот недостаток заключается в том, что в формуле не учитывается разница температур в помещениях внутри рассчитываемого здания.

Для получения более точных данных можно использовать расчеты с определением расходов тепла:

  • По проектной документации.
  • По показателям теплопотерь через строительные конструкции.
  • По укрупненным показателям.

С этой целью может применяться формула Н. С. Ермолаева:

Ермолаев предложил для определения фактической удельной характеристики зданий и сооружений использовать данные о планировочных характеристиках здания (p - периметр, S - площадь, H - высота). Отношение площади остекленных окон к стеновым конструкциям передается коэффициентом g 0 . Теплопередача окон, стен, полов, потолков также применяется в виде коэффициента.

Саморегулирующими организациями используются собственные методики. В них учитываются не только планировочные и архитектурные данные здания, но и год его постройки, а также поправочные коэффициенты температур уличного воздуха во время отопительного сезона. Также при определении фактических показателей нужно учитывать потери тепла в трубопроводах, проходящих по неотапливаемым помещениям, а также расходы на вентиляцию и кондиционирование. Эти коэффициенты берутся из специальных таблиц в СНиП.

Класс энергоэффективности

Данные об удельной теплохарактеристике являются основой для определения класса энергоэффективности зданий и сооружений. С 2011 года класс энергоэффективности в обязательном порядке должен определяться для многоквартирных жилых домов.

Для определения энергетической эффективности используются следующие данные:

  • Отклонение расчетно-нормативных и фактических показателей. Причем последние могут быть получены как расчетным, так и практическим путем - с помощью тепловизионного обследования. Нормативные данные должны включать в себя сведения о расходах не только на отопление, но и на вентиляцию и кондиционирование. Обязательно учитываются климатические особенности местности.
  • Тип здания.
  • Использованные строительные материалы и их технические характеристики.

Каждый класс имеет установленные минимальные и максимальные значения расхода энергоресурсов в течение года. Класс энергоэффективности обязательно должен быть включен в энергетический паспорт дома.

Улучшение энергоэффективности

Нередко расчеты показывают, что энергоэффективность здания очень низка. Добиться ее улучшения, а значит, сократить расходы на отопление можно за счет улучшения теплоизоляции. Закон «Об энергосбережении» определяются методики улучшения энергоэффективности многоквартирных домов.

Основные методы

Пеноизол для утепления стен

  • Повышение теплосопротивления стройконструкций. С этой целью может применяться облицовка стен, отделка технических этажей и перекрытий над подвальными помещениями теплоизоляционными материалами. Применение таких материалов дает повышение энергосбережения на 40%.
  • Устранение в строительных конструкциях мостиков холода дадут «прирост» еще на 2–3%.
  • Приведение площади остекленных конструкций в соответствие с нормативными параметрами. Может быть, полностью застекленная стена - это стильно, красиво, роскошно, но на теплосбережении сказывается далеко не лучшим образом.
  • Остекление выносных строительных конструкций - балконов, лоджий, террас. Эффективность метода составляет 10–12%.
  • Установка современных окон с многокамерными профилями и теплосберегающими стеклопакетами.
  • Применение систем микровентиляции.

Жильцы тоже могут позаботиться о теплосбережении своих квартир.

Что могут сделать жильцы?

Хорошего эффекта позволяют добиться следующие способы:

  • Установка алюминиевых радиаторов.
  • Монтаж термостатов.
  • Установка теплосчетчиков.
  • Монтаж теплоотражающих экранов.
  • Применение неметаллических труб в системах отопления.
  • Монтаж индивидуального отопления при наличии технических возможностей.

Повысить энергоэффективность можно и другими способами. Один из самых эффективных - сокращение издержек на вентилирование помещения.

С этой целью можно использовать:

  • Микропроветривание, устанавливаемое на окнах.
  • Системы с подогревом поступающего извне воздуха.
  • Регулирование подачи воздуха.
  • Защита от сквозняков.
  • Оснащение систем принудительной вентиляции двигателями с разными режимами работы.

Улучшение энергоэффективности частного дома

Теплый дом

Для повышения энергоэффективности многоквартирного дома задача реальная, но требует огромных затрат. В результате нередко она остается так и не решенной. Сократить теплопотери в частном доме значительно проще. Этой цели можно добиться разными методами. Подойдя к решению проблемы комплексно, нетрудно получить превосходные результаты.

В первую очередь затраты на отопление складываются из особенностей системы отопления. Частные дома крайне редко подключаются к центральным коммуникациям. В большинстве случаев они отапливаются индивидуальной котельной. Установка современного котельного оборудования, отличающегося экономичностью работы и высоким КПД, поможет сократить расходы на тепло, что не скажется на комфорте в доме. Лучший выбор - газовый котел.

Однако газ не всегда целесообразен для отопления. В первую очередь это касается местностей, где еще не прошла газификация. Для таких регионов можно подобрать другой котел исходя из соображений дешевизны топлива и доступности эксплуатационных расходов.

Не стоит экономить на дополнительном оборудовании, опциях для котла. Например, установка только одного терморегулятора способна обеспечить экономию топлива около 25%. Смонтировав ряд дополнительных датчиков и приборов можно добиться еще более существенного снижения расходов. Даже выбирая дорогостоящее, современное, «интеллектуальное» дополнительное оборудование, можно быть уверенным, что оно окупится в течение первого отопительного сезона. Сложив эксплуатационные затраты в течение нескольких лет, можно наглядно увидеть выгоды дополнительного «умного» оборудования.

Большинство автономных систем отопления строится с принудительной циркуляцией теплоносителя. С этой целью в сеть встраивается насосное оборудование. Без сомнения, такое оборудование должно быть надежным, качественным, но подобные модели могут быть весьма и весьма «прожорливыми». Как показала практика, в домах, где отопление имеет принудительную циркуляцию, 30% затрат на электроэнергию приходится именно на обслуживание циркуляционного насоса. При этом в продаже можно найти насосы, имеющие класс А энергоэффективности. Не будем вдаваться в подробности, за счет чего достигается экономичность такого оборудования, достаточно только сказать, что установка такой модели окупится уже в течение первых трех-четырех отопительных сезонов.

Электрический радиатор

Мы уже упоминали об эффективности использования терморегуляторов, но эти приборы заслуживают отдельного разговора. Принцип работы термодатчика очень прост. Он считывает температуру воздуха внутри обогреваемого помещения и включает/отключает насос при понижении/повышении показателей. Порог срабатывания и желаемый температурный режим устанавливается пользователем. В результате жильцы получают полностью автономную систему отопления, комфортный микроклимат, существенную экономию топлива за счет более продолжительных периодов отключения котла. Важное преимущество использования термостатов - отключение не только нагревателя, но и циркуляционного насоса. А это сохраняет работоспособность оборудования и дорогостоящие ресурсы.

Существуют и другие способы повышения энергоэффективности здания:

  • Дополнительное утепление стен, полов с помощью современных теплоизоляционных материалов.
  • Установка пластиковых окон с энергосберегающими стеклопакетами.
  • Защита дома от сквозняков и т. д.

Все эти методы позволяют увеличить фактические теплохарактеристики здания относительно расчетно-нормативных. Такое увеличение - это не просто цифры, а составляющие комфорта дома и экономичности его эксплуатации.

Заключение

Расчетно-нормативная и фактическая удельная тепловая характеристика - важные параметры, используемые специалистами-теплотехниками. Не стоит думать, что эти цифры не имеют никакого практического значения для жильцов частных и многоквартирных домов. Дельта между расчетными и фактическими параметрами - основной показатель энергоэффективности дома, а значит, и экономичности обслуживания инженерных коммуникаций.